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Abstract

Short-chain fatty acids (SCFA; acetate, propionate, and butyrate) are generated in colon by 

bacterial fermentation of dietary fiber. Though diffusion in protonated form is a significant route, 

carrier-mediated mechanisms constitute the major route for the entry of SCFA in their anionic 

form into colonic epithelium. Several transport systems operate in cellular uptake of SCFA. MCT1 

(SLC16A1) and MCT4 (SLC16A3) are H+-coupled and mediate electroneutral transport of SCFA 

(H+: SCFA stoichiometry; 1:1). MCT1 is expressed both in the apical membrane and basolateral 

membrane of colonic epithelium whereas MCT4 specifically in the basolateral membrane. SMCT1 

(SLC5A8) and SMCT2 (SLC5A12) are Na+-coupled; SMCT1-mediated transport is electrogenic 

(Na+: SCFA stoichiometry; 2:1) whereas SMCT2-mediated transport is electroneutral (Na+: SCFA 

stoichiometry; 1:1). SMCT1 and SMCT2 are expressed exclusively in the apical membrane. An 

anion-exchange mechanism also operates in the apical membrane in which SCFA entry in anionic 

form is coupled to bicarbonate efflux; the molecular identity of this exchanger however remains 

unknown. All these transporters are subject to regulation, notably by their substrates themselves; 

this process involves cell-surface receptors with SCFA as signaling molecules. There are 

significant alterations in the expression of these transporters in ulcerative colitis and colon cancer. 

The tumor-associated changes occur via transcriptional regulation by p53 and HIF1α and by 

promoter methylation. As SCFA are obligatory for optimal colonic health, the transporters 

responsible for the entry and transcellular transfer of these bacterial products in colonic epithelium 

are critical determinants of colonic function under physiological conditions and in disease states.

Didactic Synopsis

Major teaching points

• Fermentation of dietary fiber by colonic bacteria yields short-chain fatty acids 

(SCFA)

• SCFA elicit beneficial effects on colon via extracellular and intracellular actions

• Extracellular actions of SCFA occur via receptors in apical membrane of colonic 

epithelium
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• Intracellular actions of SCFA in colonic epithelium involve inhibition of histone 

deacetylases (HDACs), generation of energy, and conversion into ketone bodies

• Entry of SCFA into colonic epithelium is mostly carrier-mediated

• MCT1 and MCT4 are H+-coupled transporters expressed in apical membrane 

(MCT1) and basolateral membrane (MCT1 and MCT4) of colonic epithelium, 

mediating SCFA influx from lumen and SCFA efflux into blood

• SMCT1 and SMCT2 are Na+-coupled transporters expressed solely in apical 

membrane of colonic epithelium, mediating SCFA influx from lumen

• SCFA transporters are defective in ulcerative colitis

• MCT1 and SMCT1 function as tumor suppressors in colon and are 

downregulated in colon cancer

• The tumor-suppressive function of MCT1 and SMCT1 might be related to 

dietary fiber content

Introduction

The bacteria that reside in normal colon are called commensals, with an overt connotation 

that only the bacteria benefit from their cohabitation with the host. It has become 

increasingly evident in recent years, however, that the cohabitation is actually beneficial to 

the bacteria and the host, highlighting the symbiotic nature of the relationship. The 

advantages to the bacteria are obvious; the host provides the bacteria a place to colonize and 

also all the nutrients for them to survive and proliferate. How does the host benefit from this 

relationship? Recent studies have provided unequivocal evidence for the obligatory role for 

colonic bacteria in maintenance of optimal colonic health. The intestinal tract represents the 

largest immune system in the body, necessitated by the presence of trillions of bacteria 

nearby in the intestinal and colonic lumen. However, as the bacteria in normal colon are 

beneficial to the host, the mucosal immune system actively learns to tolerate the bacteria 

without an overly antagonistic inflammatory response; interestingly, bacteria themselves 

play an essential role in educating the mucosal immune cells. The epithelial cells lining the 

intestinal tract (enterocytes, goblet cells, enteroendocrine cells, and Paneth cells in small 

intestine, and colonocytes, goblet cells, and enteroendocrine cells in colon) serve as a barrier 

between the bacteria and the host, and also act as an intermediary between the bacteria and 

the immune cells residing in the lamina propria. How do the bacteria communicate with host 

cells to elicit their biological effects? Chemical communication seems to be the major mode 

of interaction in this regard. Bacteria in the intestinal tract generate a broad range of 

metabolites that serve as messengers between the bacteria and the host. Bacteria generate 

these metabolites as intermediates in their constitutive metabolic pathways and also by 

chemical modification of specific dietary constituents by enzymatic reactions unrelated to 

their normal metabolism. Most of these metabolites, if not all, elicit beneficial effects on the 

host. Examples of such metabolites are short-chain fatty acids (SCFA) (acetate, propionate, 

and butyrate), lactate, tryptophan degradation products (indole-3-aldehyde, indole-3-acetic 

acid), and modified fatty acids (7, 8, 15, 34, 49, 108, 114, 116). Several molecular targets 

have been identified for these bacterial metabolites in colonic epithelium and mucosal 
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immune cells; this includes cell-surface G-protein-coupled receptors, intracellular receptors, 

and enzymes (7, 8, 15, 34, 49, 108, 114, 116).

Among the bacterial metabolites that elicit beneficial effects on the host, SCFA constitute a 

major component, both quantitatively and qualitatively (54,89,97,99,134). The molecular 

targets for SCFA in the host reside on the cell surface as well as inside the target cells. In 

colonic epithelium and mucosal immune cells, two cell-surface G-protein-coupled receptors, 

GPR109A and GPR43, are targets for SCFA with butyrate as the agonist for GPR109A and 

all three SCFA as agonists for GPR43 (7, 8, 15, 34, 49, 108, 114, 116). As these receptors 

are present in the lumen-facing apical membrane of colonic epithelium (20, 60, 106, 107, 

120), luminal SCFA activate these receptors without the need to enter the cells. Activation of 

these receptors decreases cellular levels of cAMP and increases intracellular Ca2+, which 

serve as second messengers to elicit biological effects (14, 69, 71, 78, 109, 115, 126, 133). 

In addition to these extra-cellular actions, SCFA also have intracellular actions, which 

obviously require their entry into colonic epithelial cells. Furthermore, SCFA have to 

traverse the epithelial cells to the serosal side to act on the immune cells present in the 

lamina propria. The entry from the lumen into cells as well as transcellular transit require 

transport mechanisms without which SCFA cannot produce their intracellular effects in 

colonic epithelial cells nor can they act on mucosal immune cells. As such, SCFA 

transporters expressed in colonic epithelium are major determinants of the beneficial effects 

of SCFA on the host. Defects in the expression and function of these transporters are closely 

associated with pathological conditions such as ulcerative colitis and colon cancer (33, 35, 

125). In this article, we review what is known on the molecular identity, function, and 

regulation of SCFA transporters expressed in colonic epithelial cells.

Proton-Coupled Transporters for SCFA

Monocarboxylate transporter 1

Molecular identification and general functional features—The molecular 

identification of monocarboxylate transporter 1 (MCT1) has an interesting history. It was 

first cloned as a mutant protein from a specific clone of Chinese hamster ovary (CHO) cells 

with ability to transport mevalonate (3,5-dihydroxy-3-methylpentanoic acid), a precursor for 

endogenous synthesis of cholesterol (63). This clonal cell line varied from the parent CHO 

cell line in its ability to survive in the presence of low levels of mevalonate in culture 

medium when endogenous synthesis of mevalonate was inhibited with a pharmacological 

agent, indicating that the clonal cell was able to take up mevalonate. This was not the case 

with the parent cell line. The transporter responsible for mevalonate uptake in the clonal 

CHO cell line was then cloned and shown to exhibit mevalonate transport activity. 

Interestingly, the parent cell line that had no mevalonate transport activity also had mRNA 

and protein for the cloned transporter at levels comparable to those in the mutant cell line. 

Subsequently, it was found that the mutant cell line had a point mutation in the transporter 

resulting in the substitution of a single amino acid (phenylalanine at position 360 changed to 

cysteine) with a gain of function to transport mevalonate, a feature not shared by the wild-

type transporter expressed in the parent cell line. The actual transport function of the wild-

type transporter remained unknown. A couple of years later, the same investigative team that 
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cloned the mutant transporter identified the transport function of the wild-type transporter as 

a H+-coupled transporter for monocarboxylates such as lactate and pyruvate (36). Based on 

this transport function, the transporter was named monocarboxylate transporter 1 (MCT1). 

According to the Human Genome Organization nomenclature, MCT1 is referred to as 

SLC16A1 (53,82,92). The functional features of MCT1 include a H+:monocarboxylate 

stoichiometry of 1:1, rendering the transport process electroneutral, recognition of aliphatic 

short-chain (carbon chain length two to five) monocarboxylates as substrates, and 

stereoselectivity toward the isomers of lactate, preferring L-lactate over D-lactate (53, 82, 

92). The Michaelis constant for L-lactate is in the low millimolar range (3–5 mmol/L). 

MCT1 is inhibited by α-cyano-4-hydroxycinnamate, bioactive flavonoids (e.g., quercetin 

and phloretin), and thiol-modifying agents (e.g., p-chloromercuribenzene sulfonate). There 

are, however, several newer inhibitors that are selective for MCT1 with inhibitor potency in 

nanomolar range (47,91,96,131); examples of such MCT1-specific inhibitors include AR-

C155858 and AZD3965, both developed by AstraZeneca.

Structurally, human SLC16A1 consists of 500 amino acids with 12 putative transmembrane 

domains; both amino and car-boxy termini are predicted to be on the cytoplasmic side of the 

plasma membrane. The human gene is located on chromosome 1 (1p13.2-p12) (37). The 

MCT1 gene spans ~44 kb and consists of five exons, with only exons two to four coding for 

the protein (22, 110). The promoter region contains binding sites for several transcription 

factors, including nuclear factor for the κ light chain of immunoglobulin in B cells (NF-κB), 

activator proteins 1 and 2 (AP1 and AP2), specificity protein 1 (Sp1), upstream stimulatory 

factor (USF), T-cell factor/lymphoid enhancer factor (TCF/LEF), and the oncogene c-MYC 

(22, 26, 51, 110).

MCT1 requires an ancillary protein for its trafficking to and localization in the plasma 

membrane; CD147, also known as basigin or EMMPRIN, a widely expressed glycoprotein, 

plays this role (66). In the plasma membrane, MCT1 and CD147 remain tightly associated. 

Interestingly, though the transport function of MCT1 is susceptible to inhibition by thiol-

modifying agents, removal of all cysteine residues in MCT1 does not eliminate the 

susceptibility to inhibition by these agents, indicating that the inhibition is not due to direct 

modification of any of the thiol groups in MCT1 (132). The ancillary protein CD147 is 

responsible for this inhibition. This shows that CD147 not only functions as a chaperone but 

also is critical for the transport function of MCT1. In some cell types, MCT1 interacts with 

another protein, called embigin (132), which is closely related to basigin, both proteins 

forming a subgroup of the immunoglobulin superfamily. Though basigin or embigin could 

interact with MCT1 and function as a chaperone in in vitro ectopic expression studies, 

basigin is the endogenous chaperone for MCT1 in most cell types. The sites on MCT1 that 

interact with its chaperones basigin or embigin (75) or with the selective inhibitor AR-

C155858 (88) have been determined; this was possible by homology modeling using the 

established structure of Escherichia coli glycerol-3-phosphate transporter (57). The 

transmembrane domain of basigin is in close proximity to the transmembrane domains 3 and 

6 of MCT1.

MCT1 expression in the intestinal tract and its relevance to SCFA transport—
MCT1 has a wide tissue distribution pattern with mRNA and protein detected in almost all 
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human tissues (53,82). As lactate is a substrate for MCT1 and almost all tissues either 

generate or utilize this metabolite in biochemical pathways, it is not surprising that the 

transporter is expressed ubiquitously. Substrate selectivity of MCT1 includes several 

additional endogenous metabolites such as acetate, propionate, and pyruvate (53, 82). The 

primary ketone body β-hydroxybutyrate is also a substrate for MCT1; during starvation, the 

circulating levels of this metabolite increase markedly to millimolar concentrations from 

hepatic synthesis to serve as the metabolic fuel to neurons in place of glucose, and this 

metabolite crosses the blood-brain barrier via MCT1. The recognition of short-chain 

aliphatic monocarboxylates as substrates by MCT1 forms the basis of the connection of this 

transporter to the intestinal tract. SCFA generated by fermentation of dietary fiber by 

intestinal bacteria are short-chain monocarboxylates. In addition, dietary components such 

as yogurt and other milk fermentation products contain lactate. These bacterial metabolites 

and dietary constituents are absorbed into enterocytes in the small intestine and colonocytes 

in the colon very effectively, and some of them (e.g., acetate and propionate) appear in portal 

circulation in significant quantities (56, 97, 99). This means that the lumen-facing apical 

membrane and the serosa-facing basolateral membrane of these absorptive cells must have 

transport systems for these monocarboxylates for influx into cells across the former 

membrane and efflux from the cells into portal blood across the latter membrane. This 

phenomenon is particularly relevant to colon where SCFA are generated in large quantities. 

As such, numerous studies have examined the transport of SCFA, particularly butyrate, in 

apical membrane vesicles and basolateral membrane vesicles prepared from colonic 

epithelium (80, 98, 127, 129). In both membrane preparations, butyrate uptake was 

stimulated by an inwardly directed H+ gradient and also by an outwardly directed HCO3
− 

gradient, suggesting two potentially different mechanisms for butyrate uptake: SCFA−/H+ 

cotransport and SCFA−/HCO3
− exchange. The cotransport process was not due to nonionic 

diffusion because the uptake was saturable and inhibitable by structurally similar SCFA. The 

exchange process was not due to any known anion exchanger because the uptake was not 

sensitive to anion-exchange inhibitors. Interestingly, though the presence of MCT1 protein 

was documented in the apical membrane and shown to participate in butyrate uptake by 

some investigators almost two decades ago (100, 101), the involvement of this transporter in 

SCFA uptake in colon did not receive much attention even after a decade later (8). It is now 

well accepted that MCT1 is solely responsible for SCFA−/H+ cotransport in the apical 

membrane (38, 100, 101). The transporter is expressed not only in the apical membrane but 

also in the basolateral membrane (2, 59, 120), suggesting a role in the efflux of SCFA from 

the cells to the serosal side. The electroneutral cotransport of SCFA− with H+ via MCT1 

could occur in either direction (influx or efflux) depending on the transmembrane 

concentration gradient for a given SCFA−. As the concentration of SCFA is very high in the 

lumen, apical membrane MCT1 mediates the influx of SCFA into cells; those SCFA that are 

not degraded by cellular metabolic pathways would then leave the cells via MCT1 in the 

basolateral membrane to enter portal circulation. Regional distribution of MCT1 expression 

along the intestinal tract supports a role for the transporter in SCFA uptake; the expression is 

significantly higher in colon than in small intestine, matching the regional differences in 

SCFA production in the intestinal lumen (30, 38).
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The localization of MCT1 in the apical versus basolateral membrane of colonic epithelial 

cells still remains a little bit controversial because of the evidence in published reports for 

localization selectively either in the apical membrane or in the basolateral membrane and, in 

some reports, localization in both membranes. The reasons for this discrepancy are not 

known. It is possible that there are species differences in the differential localization of 

MCT1 in the apical membrane versus the basolateral membrane in colonic epithelial cells. 

Given the fact that luminal components regulate the expression of the transporter in the 

apical membrane, experimental conditions such as fed state versus overnight starvation when 

the animals were used for the analysis could have also contributed to this controversy. The 

most plausible conclusion from the published reports, however, is that MCT1 is expressed in 

both apical and basolateral membranes, even though the relative abundance of the 

transporter protein might vary between the two membranes and the presence of the 

transporter in the apical membrane might depend on dietary conditions. Whichever is the 

location of MCT1 in the intestinal and colonic epithelial cells, the chaperone CD147 seems 

to follow MCT1 location. In differentiated Caco-2 cells, MCT1 is present in the apical 

membrane, and the interaction of MCT1 with its chaperone CD147 is necessary for the 

trafficking of MCT1 to this membrane (16).

Regulation of MCT1 expression in normal colon—As SCFA play a critical role on 

colonic health, the regulatory aspects of MCT1 in the intestinal tract have physiological and 

clinical significance. Decreased expression of the transporter would mean defective entry of 

SCFA into intestinal and colonic epithelial cells, thereby attenuating the beneficial effects of 

these bacterial metabolites that are mediated by their intracellular actions (e.g., histone 

deacetylase [HDAC] inhibition, decreased production of metabolic energy). The cell lines of 

intestinal origin, namely IEC6 from rat small intestine and Caco-2 from human colon, 

express MCT1; the participation of the transporter in H+-coupled uptake of butyrate and 

other SCFA has been documented in these cell lines (39, 52, 113). Regulation of MCT1 

expression and function has been investigated primarily in Caco-2 cells. Activation of the 

atypical protein kinase C isoform PKCζ with phorbol esters in this cell line upregulates 

MCT1 expression at the level of mRNA, protein, and transport function (103). The 

transcription factor AP2 mediates this effect. Somatostatin, a neuropeptide in the intestinal 

tract, also induces the expression of MCT1 as well as its ancillary protein CD147 via p38 

MAP kinase signaling pathway (104). In contrast, the transcription factors USF1 and USF2 

repress MCT1 expression without involving the Sp1 site in the MCT1 promoter (51). An 

important aspect of MCT1 regulation is the ability of butyrate to influence the transporter 

protein density in the plasma membrane (12, 13, 21, 137), suggesting that luminal butyrate is 

a key determinant of MCT1 function in colon. Detailed studies of this phenomenon have 

shown participation of two independent signaling pathways, one involving epigenetic 

modulation with butyrate-dependent inhibition of HDACs and the other involving the cell-

surface receptor GPR109A for butyrate (12, 13). The GPR109A-mediated increase in MCT1 

protein density in the plasma membrane is pertussis toxin-sensitive and is associated with 

decreased cellular levels of cAMP (12). The transcription factor NF-κB also participates in 

butyrate-induced upregulation of MCT1, but this process is independent of protein kinase A 

and protein kinase C (13). The substrate-dependent regulation of MCT1 expression observed 

in Caco-2 cells might also occur in vivo. Oral feeding of dietary fiber (e.g., pectin, β-glucan) 
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increases the total cellular MCT1 protein levels and also the apical membrane expression 

and function of MCT1 in cecum and colon in animal models (64, 84). It is likely that these 

dietary manipulations increase the production of butyrate by bacteria in cecum and colon, 

which then induce the expression of MCT1. It is notable that the MCT1 promoter contains 

cis elements, which are expected to be responsive to Wnt signaling (110). As this pathway is 

important in the regulation of proliferation and differentiation of intestinal and colonic 

epithelial stem cells (24, 87), Wnt signaling might control the expression of MCT1 in the 

intestinal tract under normal physiological conditions.

Alterations in MCT1 expression in colon in disease states—SCFA protect against 

colonic inflammation and colon carcinogenesis at least partly by their actions inside the 

colonic epithelial cells. As carrier-mediated process is the primary pathway for the entry of 

these bacterial metabolites into colonic epithelium, the expression and function of SCFA 

transporters represent important risk modifiers for colitis and colon cancer. Based on the 

known beneficial effects of SCFA, one would expect that decreased expression of SCFA 

transporters would be associated with increased susceptibility and severity of colitis and 

colon cancer. As the Michaelis constant for MCT1-mediated butyrate uptake is in the 4 to 10 

mmol/L range (21, 52, 104), it is likely that MCT1 is the principal contributor to butyrate 

uptake into colonic epithelial cells at butyrate concentrations normally found in the lumen 

(10–15 mmol/L). Therefore, changes in MCT1 expression in colon that occur in colitis and 

colon cancer might have clinical and therapeutic significance as such changes would 

indicate altered butyrate availability to colonic epithelial cells and provide clues as to 

mechanisms underlying the pathogenesis of the diseases.

In Caco-2 cells, treatment with the proinflammatory cytokine TNF-α decreases the 

expression of MCT1, suggesting that inflammation might be associated with suppression of 

MCT1 expression (130). In pigs as an animal model, high-protein diet leads to bacterial 

fermentation of proteins in the colon, resulting in increased production of TNF-α, and this 

condition is also associated with decreased expression of MCT1 (130). A similar 

phenomenon occurs in colitis in humans and in laboratory animals (123,124). In humans 

with colitis and in rats with dextran sulfate sodium-induced colitis, MCT1 expression is 

markedly decreased, accompanied with decreased uptake of butyrate (124). In the colon 

cancer cell line HT-29, treatment with proinflammatory cytokines IFN-γ and INF-α 
suppressed MCT1 expression and transport function (124). We examined the publicly 

available databases for changes in colonic expression of MCT1 in patients with ulcerative 

colitis (Table 1). Of the 12 different datasets examined, MCT1 mRNA abundance is 

decreased significantly in inflamed colon tissues compared to healthy or noninflamed colon 

tissues in 10 datasets. The magnitude of the observed changes in inflamed colon varies from 

dataset to dataset, ranging 17% to 95% of expression found in control tissue. These findings 

indicate that decreased availability of butyrate to colonic epithelial cells underlies colonic 

inflammation in ulcerative colitis. As butyrate is not only the primary metabolic fuel for 

colonic epithelial cells but also is an effective epigenetic modifier due to its ability to inhibit 

HDACs, which would have impact on a broad spectrum of biological processes via 

alterations in the transcription of multiple genes, any or all of these mechanisms might 

contribute to pathogenesis of ulcerative colitis. It has also to be emphasized that decreased 
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transport function of MCT1 results in decreased entry of butyrate and also other important 

biologically active monocarboxylates such as acetate, propionate, and lactate into colonic 

epithelial cells. Except for the role of these other bacterial/dietary substrates of MCT1 as a 

carbon source for energy production, little is known as to whether these monocarboxylates 

have additional biological effects in colon cells and whether their deficiency would impact 

on ulcerative colitis. For example, propionate is also an inhibitor of HDACs, almost as 

potent as butyrate (18,121), but this has not received much attention. Lactate and its 

metabolic product pyruvate are known to increase cellular levels of the multi-functional 

transcription factors HIF-1α and HIF-2α (81, 93), but its potential relevance to ulcerative 

colitis has not been investigated.

Colonic absorption of butyrate is coupled to electrolyte absorption even though the 

mechanisms underlying the association remain largely unknown at the molecular level (8). 

In this regard, it is important to note that exposure of Caco-2 cells to enteropathogenic E. 
coli, a food-borne human pathogen that causes diarrhea, decreases MCT1 protein density in 

the plasma membrane; nonpathogenic E. coli does not elicit this effect (11). Interestingly, 

the probiotic Lactobacillus acidophilus counteracts enteropathogenic E. coli; some unknown 

component in the culture medium secreted by Lactobacillus, which is heat-sensitive, 

mediates this effect (67). The decreased membrane localization and function of MCT1 in 

this model by a diarrheagenic E. coli strain would be expected to cause defective absorption 

of butyrate in colon, which would decrease electrolyte absorption thus contributing to 

diarrhea.

A close relationship between MCT1 and cancer is obvious and logical because of lactate as a 

substrate for MCT1 (53,76,92). Most cancer cells exhibit Warburg effect in which lactate is 

generated as the glycolytic end product even in the presence of sufficient oxygen. Unless 

this lactate is removed, cancer cells would be subject to detrimental effects of resultant 

intracellular acidification. As MCT1 is a lactate/H+ sym-porter, most cancer cells upregulate 

this transporter to eliminate lactic acid. Relevant to this functional role of MCT1 in cancer 

cells is the finding that the expression of this transporter is positively regulated by c-MYC 

(26). The relationship of MCT1 to colon cancer is not that simple as it is in cancers of 

noncolonic tissues. This transporter is responsible for the entry of SCFA into colonic 

epithelial cells from the lumen under physiological conditions. This is not the case in 

noncolonic tissues, which do not encounter butyrate or propionate at relevant concentrations. 

As butyrate and propionate are HDAC inhibitors, the function of MCT1 could be considered 

as tumor preventive in colon. Therefore, one would expect no benefit for colon cells to 

upregulate MCT1 during carcinogenesis. Instead, colonic epithelial cells could promote 

carcinogenesis by downregulating MCT1 expression as a means to avoid HDAC inhibition 

by preventing the entry of butyrate and propionate from the lumen.

Most studies have shown that MCT1 expression is indeed downregulated significantly in 

colon cancer. The tumor-associated decrease in MCT1 is demonstrable at mRNA and protein 

levels (68). We examined several publicly available datasets on gene expression in colon 

cancer and found the decrease in MCT1 expression in tumors to be significant in most cases 

(five of seven datasets); in none of these datasets is the expression of MCT1 increased (Table 

2). This suggests that the availability of butyrate is decreased in colon cancer cells. In 
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normal colon epithelial cells, exposure to butyrate differentially affects the expression of 

various genes; interestingly, the changes in many of these genes in normal epithelium are 

opposite to that found in colon cancer tissue as would be expected if the downregulation of 

MCT1 in cancer cells leads to decreased entry of butyrate (23). It has to be noted, however, 

that some studies have reported significant upregulation of MCT1 expression in colon cancer 

(94, 95). Using publicly available datasets, we examined the relationship between the 

expression of levels of MCT1 and overall survival in patients with colon cancer (Fig. 1). We 

found a tendency, though statistically not significant, toward increased survival in patients 

with relatively higher expression of MCT1 when datasets for colon cancer and colorectal 

cancer were analyzed, and the survival was significantly better with higher expression levels 

of MCT1 when rectal cancer was analyzed separately. Thus it appears that the robust 

expression of MCT1 in the apical membrane of normal colonic epithelial cells serves an 

important role in preventing colon cancer and that colon cancer cells suppress the expression 

of this transporter to block the entry and the tumor-suppressive function of butyrate.

Consequences due to loss of function of MCT1 in humans and mice—Genetic 

mutations in MCT1 leading to loss of function have been identified in humans (83,128). 

Homozygosity for mutations causing inactivation of the transporter leads to defective 

utilization of ketone bodies in extrahepatic tissues and consequently results in profound 

ketoacidosis, aggravated during fasting or infections even in childhood (128). The affected 

children also have significant developmental delay. Lactate transport in erythrocytes is 

defective. Urinary excretion of ketone bodies is also elevated at least during the episodes of 

ketoacidosis. The patients might also experience intolerance to exercise. Intravenous 

administration of glucose alleviates these symptoms. Utilization of β-hydroxybutyrate, the 

predominant ketone body in circulation, occurs primarily in the brain, skeletal muscle, and 

cardiac muscle, and it is transported into cells and across the blood-brain barrier via MCT1. 

Therefore, the observed clinical consequences of loss-of-function mutations in MCT1 are 

logical. However, there is no information as to whether these patients exhibit any clinical or 

pathological phenotype in colon. Interestingly, mutations in MCT1 leading to increased 

expression of the transporter have also been reported (77, 90); these individuals have 

exercise-induced hyperinsulinism. The likely mechanism underlying this phenomenon is the 

stimulation of insulin secretion in response to increased MCT1-mediated entry and 

subsequent utilization of lactate for ATP production in pancreatic β cells, thereby increasing 

insulin secretion. Surprisingly, homozygous deletion of MCT1 in mice is embryonically 

lethal, associated with axon damage and neuronal loss in the brain (72, 73). Heterozygous 

deletion, on the other hand, results in resistance to development of obesity on a high-fat diet 

accompanied with increased insulin sensitivity and absence of hepatic steatosis. Even though 

the consequences and their severity vary between humans and mice with loss of function of 

MCT1, these findings highlight an important role for this transporter in energy homeostasis.

While the generation of SCFA is most pronounced in the large intestine in nonruminants, 

bacterial fermentation occurs mostly in the foregut in ruminants. This makes it relevant to 

understand the role of monocarboxylate transporters in SCFA absorption in the gut in 

ruminants. The total cellular levels of MCT1 protein in ruminants are in the following order: 

rumen > cecum > colon > small intestine (65). The expression of the protein, however, 
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seems to be restricted mostly to the basolateral membrane (3, 46), suggesting the 

participation of the transporter in the efflux of SCFA from the cells into the serosal side 

rather than in the influx from the lumen into cells.

Monocarboxylate transporter 4

Monocarboxylate transporter 4 (MCT4) is also a transporter capable of electroneutral H+/

monocarboxylate symport; according to Human Genome Nomenclature, it is recognized as 

SLC16A3. The gene is located on human chromosome 17q25.3 and codes for a protein 

consisting of 465 amino acids and 12 transmembrane domains (70). The promoter contains 

binding sites for HIF-1α. Compared to MCT1, MCT4 has much lower affinity for lactate 

and other monocarboxylates; the Michaelis constant for lactate transport is in the range of 25 

to 30 mmol/L, almost 10 times higher than the corresponding value for MCT1 (53,82,92). 

Further, the affinity of MCT4 for pyruvate is much lower than for lactate, again in contrast 

with MCT1, which has relatively higher affinity for pyruvate than for lactate. In cancer cells, 

MCT4 is kinetically more suited to mediate lactate efflux than lactate influx. As such, the 

expression of MCT4 is upregulated in cancer and the transcription of MCT4 gene is 

enhanced by HIF-1α (76, 92). Compared to MCT1, relatively less is known on the 

expression and function of MCT4 in the intestinal tract. There are, however, two reports that 

have documented the presence of MCT4 in the basolateral membrane of enterocytes in rat 

duodenum (61) and of colonocytes in human colon (38), indicating that MCT4 might be 

involved in the efflux of butyrate and other monocarboxylates from the cells into the serosal 

side. Portal blood does contain bacterially derived SCFA such as acetate and propionate; 

butyrate is present at relatively lower concentrations compared to the other two SCFA 

because of the preferential use of butyrate by colonic epithelial cells for metabolism and 

energy production. Uptake of butyrate via MCT4 has been demonstrated in the rat intestinal 

cell line IEC-18 (62), but it is not clear whether this cell line differentiates in culture to 

exhibit polarized apical and basolateral membranes; therefore, it is likely that the MCT4-

mediated SCFA uptake monitored in this cell line represents transport function in the 

basolateral membrane rather than in the apical membrane.

Very little is known at present on the expression of MCT4 in the intestinal tract in disease 

states. Many of the publicly available databases also do not contain any information related 

to MCT4 expression in colonic diseases. Wherever available, analysis of the data shows that 

the expression of MCT4 is either not affected or slightly upregulated in colitis (Table 1) and 

colon cancer (Table 2).

Sodium-Coupled Transporters for SCFA

Sodium-coupled monocarboxylate transporter 1

Identification and function of SMCT1—Sodium-coupled monocarboxylate transporter 

1 (SMCT1) belongs to the SLC5 gene family and is identified as SLC5A8 (135). This 

transporter was originally discovered as a candidate tumor suppressor in colon (74). The 

gene is located on human chromosome 12q23.1, consists of 15 exons, and codes for a 

protein of 610 amino acids (74). Normal colon expresses the transporter but colon cancer 

tissues do not; the tumor-associated silencing of the gene occurs via DNA methylation, 
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primarily in exon 1. The promoter of SLC5A8 has been analyzed and the presence of 

binding sites for several transcription factors has been identified (136). Positive regulation of 

the gene expression has been documented with the transcription factors Sp1 and CCAAT/

enhancer binding protein β (C/EBPβ) (136). There also seems to be a role for C/EBPδ as 

evident from markedly reduced expression of the transporter in kidney in c/ebpδ-null mice 

(117). As most colon cancer cells silence the transporter gene by DNA methylation, 

treatment of these cells with inhibitors of DNA methylation induces the expression of the 

gene (74,119). Nontransformed colon epithelial cells constitutively express the transporter in 

contrast to colon cancer cells; ectopic expression of the transporter in colon cancer cells 

leads to cell death. These features seem to fulfill the requirements expected of a tumor 

suppressor. Nonetheless, the exact transport function of SLC5A8 remained unknown for 

some time even after the discovery of its potential tumor-suppressive function in colon 

(6,33,35,49). There was one initial study reporting that SLC5A8 is an iodide transporter 

expressed at high levels in the apical membrane of thyroid follicular cells, thereby naming 

the transporter as apical iodide transporter (AIT) (102). However, this finding has not yet 

been confirmed independently in other laboratories and also any potential connection of the 

iodide transport to the tumor-suppressive function is not readily obvious. Subsequently, 

SLC5A8 was identified as a Na+-coupled transporter for monocarboxylates, including the 

bacterially derived SCFA, endogenous metabolites such as lactate and pyruvate (17, 43, 86), 

the ketone body β-hydroxybutyrate (79), the B-complex vitamin niacin (42,44), the cyclic 

amino acid pyroglutamate (85), and even some of pharmacological and therapeutic agents 

that exist as anionic monocarboxylates at physiological pH (e.g., dichloroacetate, 3-

bromopyruvate, and 5-aminosalicylate) (4, 5, 58, 122). The transport process is electrogenic 

with the influx of Na+ and monocarboxylate substrates causing depolarization, thus 

indicating cotransport of at least two Na+ with one monocarboxylate substrate.

Expression and regulation of SMCT1 in normal colon and in colon cancer—As 

a Na+-coupled active transporter for SCFA, some of which are inhibitors of HDACs, it made 

sense that the transporter functions as a tumor suppressor in colon. But this rationale 

requires the location of the transporter in the lumen-facing apical membrane of colonic 

epithelial cells under normal conditions. We showed that this was indeed the case. The 

transporter expression increases along the intestinal tract from duodenum to colon and the 

transporter protein is found exclusively in the apical membrane (20, 44) where it has access 

to luminal SCFA generated by bacterial fermentation. Non-transformed colonic epithelial 

cells express the transporter but almost all of the colon cancer cells examined show 

markedly decreased levels of the transporter; the decrease is due to DNA methylation (119). 

Ectopic overexpression of SLC5A8 in normal cells has no effect on cell viability in the 

presence or absence of butyrate, propionate or pyruvate, all of which are HDAC inhibitors, 

indicating that the ability of the transporter to mediate the influx of SCFA has no detrimental 

effect on normal colon epithelial cells (119). This is not the case with colon cancer cells. As 

the transporter is absent in these cells, exposure to low concentrations of butyrate, 

propionate or pyruvate does not affect their viability. In contrast, when SLC5A8 is 

overexpressed ectopically, the cells undergo apoptosis but only exposed to butyrate or 

propionate (119). This suggests that SLC5A8-mediated active uptake of SCFA into cancer 

cells underlies the cell death caused by SCFA. Interestingly, the original paper that described 
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the tumor-suppressive function of SLC5A8 also reported similar experiments; however, in 

that paper ectopic expression of the transporter was found to be sufficient to induce cell 

death in colon cancer cells in the absence of butyrate or propionate (74). This was puzzling 

because it was not readily apparent how the expression of the transporter protein could cause 

apoptosis unless coupled to the transporter-mediated uptake of an HDAC inhibitor such as 

butyrate. We then noticed that colon cancer cells are routinely cultured in the presence of 

pyruvate, an HDAC inhibitor. There was no effect of this metabolite on the viability of 

cancer cells because these cells did not express SLC5A8 to mediate concentrative uptake of 

pyruvate into cancer cells. But when the transporter was expressed ectopically, pyruvate 

present in the culture medium now entered the cells actively via SLC5A8 and induced cell 

death; this process involved HDAC inhibition. Analysis of publicly available databases 

shows downregulation of SLC5A8 in colon cancer in majority of cases (Table 2), which is 

expected from the tumor-suppressive role of SCFA and the potential role of SLC5A8 in 

mediating the cellular entry of these metabolites. But the transporter is also silenced in 

cancers of various noncolonic tissues (e.g., lung, prostate, pancreas, mammary gland, brain, 

stomach, and liver); the silencing is seen in cancer cell lines originating from these cancers 

and when the transporter is expressed ectopically, the cells undergo cell death (33). 

Obviously, the tumor-suppressive function of SLC5A8 in these tissues has nothing to do 

with SCFA; it is related to pyruvate as an inhibitor of HDACs. Pyruvate is present in 

circulation at concentrations sufficient to cause HDAC inhibition after actively transported 

into cancer cells of noncolonic origin via SLC5A8. The tumor-suppressive function of the 

transporter has been investigated in detail in breast cancer; here ectopic expression of 

SLC5A8 in breast cancer cells leads to cell death, but again only in the presence of 

monocarboxylates such as pyruvate that are an HDAC inhibitors (29). These findings 

highlight the tumor-suppressive activity of pyruvate and also explain why tumor cells 

possess robust activity to convert pyruvate into lactate, which is not an inhibitor of HDACs, 

and maintain low levels of pyruvate inside the cells (118). The effective conversion of 

pyruvate into lactate in tumor cells is a key component of Warburg effect; but this was 

always thought to be due to defective mitochondrial function resulting in ineffective 

oxidation of pyruvate, thus necessitating its conversion into lactate so as to maintain high 

level of glycolysis (35). The discovery that pyruvate is an inhibitor of HDACs but lactate is 

not adds a new dimension to the tumor-associated lactate production and represents a novel 

aspect of the Warburg effect.

In normal colon, bacteria-derived SCFA are the primary substrates for SLC5A8. This raised 

an interesting question as to whether colonic bacteria control the expression of this 

transporter. This indeed turned out to be the case (20). Normal mice express the transporter 

in ileum and colon, the expression restricted to the apical membrane. On the other hand, 

germ-free mice have markedly reduced expression of the transporter, both at mRNA and 

protein levels. Interestingly, when the colon of germ-free mice is colonized with bacteria, the 

expression returns to levels comparable to those found in conventional mice over period of 

about 4 weeks. These findings clearly point to colonic bacteria as a key determinant of 

SLC5A8 expression. The molecular mechanisms involved in this bacteria-dependent control 

remain however largely unexplored. In vitro studies with intestinal and colonic epithelial cell 

lines, certain probiotic strains positively regulate the expression of SLC5A8 and also 
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counteract the negative effects of proinflammatory cytokines or antibiotic treatment on the 

expression (10, 19). The strains that induce the expression include Lactobacillus plantarum, 

Lactobacillus casei, and Lactobacillus GG. Oral administration of these strains elicits a 

similar positive effect on Slc5a8 expression in ileum and colon in vivo in mice (10, 19). The 

ability of the probiotic to reverse the antibiotic-induced suppression of SLC5A8 expression 

is reproducible with tributyrin, a source of butyrate, suggesting that the bacterial 

fermentation product butyrate is at least partly responsible for the effects of the probiotic 

(19); beyond this, nothing much is known on this phenomenon at the molecular level. 

Nonetheless, the in vitro and in vivo data with the probiotics confirm the potential role of 

normal conventional bacteria as a regulator of SLC5A8 expression in colon. 

Notwithstanding the strong data in support of the expression of SLC5A8 mRNA in colon 

and its relationship to colon cancer, convincing demonstration of the transport function of 

this Na+-coupled transporter in normal human colon is lacking. Butyrate uptake in the 

human intestinal cell line Caco-2 or in human colonic apical membrane vesicles is 

predominantly Na+-independent with little evidence of Na+-coupled butyrate uptake activity 

that could be ascribed to SLC5A8 (52, 55). As such, the functional relevance of SLC5A8 to 

colonic absorption of SCFA across the apical membrane in humans still remains to be 

established.

Relevance of dietary fiber content to tumor-suppressive function of SLC5A8—
In vitro experiments with colon cancer cell lines have shown convincingly that SLC5A8 

does function as a tumor suppressor. Expression profiles for SLC5A8 in colon cancer tissues 

from patients have also confirmed in a majority of cases the downregulation of the 

transporter in cancer (Table 2). However, we found no association between overall survival 

of colon cancer patients and the level of SLC5A8 expression in tumor tissues (Fig. 2). There 

was a weak correlation (P = 0.047) between the levels of SLC5A8 mRNA levels and overall 

survival when data for patients with colon cancer were analyzed separately. But, the trend 

correlating higher expression with lower overall survival goes against the tumor-suppressive 

function of the transporter. If the transporter functions as a tumor suppressor in vivo, higher 

level of expression in tumor tissues would be expected to be associated with a better overall 

survival and vice versa, but it is not the case. The same was true in experiments with Slc5a8-

knockout mice (32). There was no difference between wild-type mice and the knockout mice 

in terms of disease progression and severity in experimental models of colitis and colon 

cancer. Again, if the transporter plays a protective role against colonic inflammation and 

carcinogenesis in vivo, deletion of the transporter would be expected to increase the 

progression and severity of colitis and colon cancer. Why then was not the case with Slc5a8-

knockout mice? The answer to this puzzling question apparently lies in the relative 

contribution of SLC5A8 to the overall entry of SCFA from lumen into colonic epithelial 

cells under physiological conditions. SLC5A8 is a high-affinity transporter for SCFA; the 

Michaelis constant for SLC5A8-mediated transport of SCFA is in the low micromolar range 

(50–100 μmol/L), but the luminal concentrations of SCFA are at least three orders of 

magnitude higher. Under these conditions, SLC5A8 operates at a fully saturated level and 

the amount of SCFA entering the cells via this transporter might be much less relative to the 

entry mediated by the low-affinity SCFA transporter MCT1, which exhibits Michaelis 

constant for SCFA in the millimolar range. Therefore, it is plausible that under normal 
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dietary conditions, deletion of Slc5a8 in mice does not lead to any significant reduction in 

SCFA entry into colonic epithelium, thus explaining why the knockout mice do not show 

increased sensitivity to experimentally induced colitis or colon cancer. A recent study has 

provided supporting evidence of this explanation (50). While the Slc5a8-knockout mice did 

not show any difference in disease severity compared to wild-type mice in experimental 

colitis and colon cancer when fed a normal diet, there was a marked difference between the 

two mouse lines when fed a low-fiber diet. The progression and severity of colonic 

inflammation and colon cancer were much greater in the knockout mice than in wild-type 

mice under low-fiber dietary conditions. While these data are convincing to explain why 

deletion of Slc5a8 did not affect colitis or colon cancer under normal dietary conditions, it 

would be important to know if deletion of MCT1, which contributes to the bulk of SCFA 

entry into cells, promotes colitis and colon cancer. But such data are not available. 

Homozygous deletion of MCT1 (Slc16a1−/−) is embryonically lethal; heterozygous mice 

(Slc16a1+/−) are viable (73) but the colonic phenotype has not been investigated in these 

mice. An appropriate mouse model to study the role of Slc16a1 in colitis and colon cancer 

would be colon-specific deletion of the transporter. Possibly such mice would be viable but 

exhibit increased sensitivity to experimental colitis and colon cancer even when fed a normal 

diet with optimal fiber content.

Sodium-coupled monocarboxylate transporter 2

Sodium-coupled monocarboxylate transporter 2 (SMCT2) is a low-affinity transporter for 

SCFA with Michaelis constant in millimolar range (45, 111). It is also known as SLC5A12. 

The expression pattern of this transporter along the intestinal tract is, however, opposite to 

that of SMCT1 (SLC5A8) (111). The expression of SLC5A12 is restricted to small intestine 

and almost not detectable in colon. In contrast, SLC5A8 expression increases along the 

intestinal tract with maximum expression in colon. Therefore, the low-affinity SCFA 

transporter SLC5A12 might play a physiological role in the intestinal absorption of dietary 

monocarboxylates such as lactate, but is unlikely to be relevant to the handling of bacterially 

derived SCFA in colon.

ABCG2 and Butyrate Export

ABCG2 (also known as BCRP or breast cancer resistance protein) is an ATP-dependent 

efflux pump expressed in the lumen-facing apical membrane of colonic epithelial cells, 

though the expression in colon being less than in jejunum and ileum (28,31). It is also 

expressed at high levels in normal and cancer stem cells where it is believed to function as a 

protectant against endogenous and exogenous genotoxic molecules (1,25). As the transporter 

mediates the efflux of a broad spectrum of anticancer drugs, it seems logical that 

chemoresistant cancer cells have increased expression of this transporter. Accordingly, the 

transporter has received immense attention mostly for it role in chemoresistance (27, 112). 

In contrast, the physiological function of the transporter in the intestinal tract has received 

much less attention. As the intestinal and colonic epithelial cells are constantly exposed to 

potential carcinogens present in diet or generated by bacterial metabolism of dietary 

constituents, ABCG2 protects the intestinal tract from cancer by blocking such carcinogens 

from intracellular accumulation. In fact, the expression of this transporter is downregulated 
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in colon cancer, even though the molecular pathways contributing to this tumor-associated 

silencing of the gene remain unknown (48). Interestingly, it has been shown recently that the 

SCFA butyrate is a substrate for ABCG2-mediated efflux in intestinal cells (40, 41). 

Butyrate as an inhibitor of HDACs protects colon from carcinogenesis; as such, the 

decreased expression of ABCG2 in colon cancer might potentiate the tumor-suppressive 

function of this bacterial fermentation product.

Butyrate Transport via SCFA−/HCO3
− Exchange: Indirect Role for MCTs?

With regard to electrolyte absorption in the intestinal tract, Na+ and Cl− are absorbed and 

HCO3
− is secreted in small intestine and colon; the two regions of the intestinal tract differ 

only in the handling of K+, which is absorbed in small intestine but secreted in colon. The 

secretion of HCO3
− in colon is stimulated by SCFA (8,9). Studies with purified apical 

membrane vesicles from rat and human colon did provide evidence for an apparent SCFA
−/HCO3

− exchange; loading of the membrane vesicles with HCO3
− stimulated the uptake of 

SCFA− into vesicles (80,101,105). However, the exchange between extravesicular SCFA− 

and intravesicular HCO3
− was not sensitive to inhibitors of prototypical anion exchangers, 

potentially ruling out direct exchange between SCFA− and HCO3
− through a single 

transporter functioning as an anion exchanger. But, in the same studies, thiol-modifying 

agents inhibited the HCO3
−-dependent SCFA− uptake and inwardly directed H+ gradient 

stimulated the uptake of SCFA− into vesicles, both being the features of MCT1. The 

cooccurrence of Na+/H+ exchangers and Cl−/HCO3
− exchangers in the same membrane 

along with MCT1 and the interrelationship among HCO3
−, H+, pH, and H2CO3 potentially 

enables functional coupling between the exchangers and MCT1. Furthermore, the same 

phenomenon of the stimulation of SCFA− uptake by the presence of HCO3
− on the trans side 

was also observed in colonic basolateral membrane vesicles (98,127). This membrane is not 

involved in HCO3
− efflux in vivo but expresses MCT1 and MCT4. In addition, the SCFA

−/HCO3
− exchanger in colonic apical membrane postulated to mediate SCFA-stimulated 

HCO3
− secretion has never been identified at molecular level. Taken collectively, it appears 

that the H+-coupled transporters for SCFA could have contributed indirectly for the SCFA
−/HCO3

− exchange observed in intact colon or in isolated membrane vesicles.

Conclusion

For a long time, the bacterially derived SCFA were believed to be absorbed in colon 

predominantly via nonionic diffusion, but now it is clear that the process is primarily carrier-

mediated. Transporters for SCFA have been identified and are expressed both in the lumen-

facing apical membrane and the serosa-facing basolateral membrane of colonic epithelial 

cells. SCFA, particularly butyrate, serve as the major metabolic fuel for colonic epithelium; 

therefore, the transporters responsible for the entry of SCFA are critical for colon health. 

Three transporters are important for the handling of SCFA by colon; MCT1 (SLC16A1) and 

SMCT1 (SLC5A8) in the apical membrane and, MCT1 and MCT4 (SLC16A3) in the 

basolateral membrane (Fig. 3). MCT1, a H+-coupled low-affinity transporter, is most likely 

the major contributor to SCFA entry into colonic epithelium under normal dietary conditions 

when luminal concentrations of SCFA are high whereas SMCT1, a Na+-coupled high-

affinity transporter, plays a critical role in the process under conditions of low fiber content 
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in the diet with consequent decrease in the luminal concentrations of SCFA. Colonic bacteria 

and luminal butyrate promote the expression of MCT1 and SMCT1 in colon. SCFA protect 

colon against inflammation and carcinogenesis; hence, MCT1 and SMCT1 function as 

suppressors of colitis and colon cancer. Accordingly, the levels of these two transporters in 

colon are decreased significantly in disease states involving colitis and colon cancer. In 

conclusion, the SCFA transporters MCT1 and SMCT1 provide an important link between 

colonic bacteria and colon health and are obligatory for the beneficial effects of colonic 

bacteria and their fermentation products on colon. The ATP-dependent efflux transporter 

ABCG2, which also accepts butyrate as a substrate, is expressed in the apical membrane; it 

mediates the efflux of butyrate from the cells, but little is known on the relative contribution 

of this transporter to the overall handling of butyrate by the colonic epithelium.
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Figure 1. 
Relationship between MCT1 (SLC16A1) mRNA expression levels in tumor tissues and 

overall survival of patients with cancer of colon and rectum. (A) Cancers of colon and 

rectum combined; (B) cancer of colon; and (C) cancer of rectum. OS, overall survival. In 

patients with rectal cancer, higher expression of SLC16A1 correlates significantly with 

improved overall survival. The trend, but not statistically significant, of positive correlation 

between SLC16A1 expression levels and overall survival is observed when data for patients 

with colon cancer and rectal cancer are combined. When data for patients with colon cancer 

are analyzed separately, there is no significant correlation between SLC16A1 expression 

levels and overall survival.
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Figure 2. 
Relationship between SMCT1 (SLC5A8) mRNA expression levels in tumor tissues and 

overall survival of patients with cancer of colon and rectum. (A) Cancers of colon and 

rectum combined; (B) cancer of colon; and (C) cancer of rectum. OS, overall survival. There 

is no statistically significant correlation between SLC5A8 mRNA levels in tumor tissues and 

overall survival of the patients. There is a weak correlation between the two parameters 

when data for colon cancer alone are analyzed, but this correlation seems to indicate that 

higher expression of SLC5A8 is associated with lower overall survival, a trend that goes 

against the tumor-suppressive function of SLC5A8.
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Figure 3. 
Polarized expression of short-chain fatty acid transporters in colonic epithelium. SCFA, 

short-chain fatty acids; MCT1, monocarboxylate transporter 1 (SLC16A1); MCT4, 

monocarboxylate transporter 4 (SLC16A3); SMCT1, sodium-coupled monocarboxylate 

transporter 1 (SLC5A8); ABCG2, ATP binding cassette transporter, gene family G, member 

2. CD147 is the chaperone (ancillary protein) for MCT1 and MCT4.
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