
Short Chosen-Prefix Collisions for MD5

and the Creation of a Rogue CA Certificate

Marc Stevens1, Alexander Sotirov2,
Jacob Appelbaum3, Arjen Lenstra4,5, David Molnar6,

Dag Arne Osvik4 and Benne de Weger7

1 CWI, Amsterdam, The Netherlands
2 http://www.phreedom.org
3 http://www.appelbaum.net

4 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
5 Alcatel-Lucent Bell Laboratories

6 University of California at Berkeley
7 EiPSI, TU Eindhoven, The Netherlands

1−7 md5-collisions@phreedom.org

Abstract. We present a refined chosen-prefix collision construction for
MD5 that allowed creation of a rogue Certification Authority (CA) cer-
tificate, based on a collision with a regular end-user website certificate
provided by a commercial CA. Compared to the previous construction
from Eurocrypt 2007, this paper describes a more flexible family of dif-
ferential paths and a new variable birthdaying search space. Combined
with a time-memory trade-off, these improvements lead to just three
pairs of near-collision blocks to generate the collision, enabling construc-
tion of RSA moduli that are sufficiently short to be accepted by current
CAs. The entire construction is fast enough to allow for adequate pre-
diction of certificate serial number and validity period: it can be made to
require about 249 MD5 compression function calls. Finally, we improve
the complexity of identical-prefix collisions for MD5 to about 216 MD5
compression function calls and use it to derive a practical single-block
chosen-prefix collision construction of which an example is given.

Keywords: MD5, collision attack, certificate, PlayStation 3

1 Introduction

At Eurocrypt 2007, it was shown how chosen-prefix collisions for MD5
can be constructed and an undesirable consequence for any public key
infrastructure (PKI) was pointed out in the form of different certificates
with the same valid signature (cf. [13]). Actual realization of the threat
in question was considered to be hard due to a combination of difficul-
ties, some related to the construction, others to the way certificates are

produced by CAs. Thus, some CAs kept using MD5, either consciously
based on the perception that the obstacles were too high, or because they
were unaware of lurking dangers.

It was found, however, that for at least one commercial CA the rele-
vant obstacles could be overcome with non-negligible probability. Under-
standably, this triggered new research in the earlier chosen-prefix collision
construction. A couple of non-trivial refinements removed all remaining
obstacles, thereby in principle allowing us to create real havoc.

Obviously, creating havoc was not our goal. It was our intention and
priority that all relevant responsible parties would develop a thorough
understanding of the implications of chosen-prefix collisions for MD5.
Furthermore, before publishing the details of our results, we wanted to
make sure that all parties would have had both a strong impetus and
ample time to adequately change their procedures. Therefore, we decided
to actually implement our construction and to try and exploit it in prac-
tice by attempting to create a harmless rogue CA certificate that would
be accepted by all regular web browsers: harmless, because they would
only do so after setting their date back to August 2004, because we would
keep the private key of the rogue CA in question under tight control, and
because we would not right away reveal the details of our method. After
a moderate number of attempts we succeeded to create such a certificate.

The announcement of our successful creation of a rogue CA certifi-
cate had the desired effect. CAs and other vendors responded swiftly and
adequately. We believe that as a result of our exercise, the bar to under-
mine the security of PKI was raised, somewhat. Given that the current
situation with respect to usage of MD5 looks much better than when we
made our announcement, we feel that the details behind our method can
now be revealed. We also feel that this should indeed be done to give
others the opportunity to further build on them and to develop a better
understanding of the lack of strength of currently popular cryptographic
hash functions. Fully appreciating the details presented here requires a
full understanding of the approach from [13].

We describe, roughly, what was achieved in the Eurocrypt 2007 pa-
per [13] and why those methods were believed to have limited impact.
Given any two chosen message prefixes P and P ′, it was shown how suf-
fixes S and S′ can be constructed such that the concatenations P‖S and
P ′‖S′ collide under MD5. In the X.509 certificate context, the prefixes in-
clude the Distinguished Name fields, and the suffixes are the initial parts
of the RSA moduli. A simple, previously published method was then used
to construct a further extension T such that each of P‖S‖T and P ′‖S′‖T

2

is a complete to-be-signed part, with two different hard to factor RSA
moduli contained in S‖T and S′‖T , respectively. Because the two to-
be-signed parts still collide under MD5, this allowed construction of two
X.509 certificates with identical MD5-based signatures but different Dis-
tinguished Names and different public keys. Put differently, assuming full
control over the prefix part P and RSA public key data of a legitimate
user, a certificate of that user’s data can be used to fraudulently obtain
a rogue certificate for any party identified by a prefix part P ′ selected by
the attacker. Using moderate resources, the calculation of suffixes S, S′

and T , given any chosen prefixes P and P ′, can be completed in a day
using e.g. a quad-core PC.

One obstacle against actual abuse of this construction is apparent from
the above description. Only the signing CA has full control over the final
contents of the P -part: an attacker will have to wait and see what serial
number and validity period will be inserted. Obviously, an unpredictable
P will make it impossible to concoct the collision required for a rogue
certificate. On the other hand, if the full contents of P can reasonably
be predicted one day in advance, nothing seems to be in the way of the
construction of a rogue certificate. That, however, is not the case: the
S and S′ as found during the collision construction of [13] lead to RSA
moduli that are too large. More precisely, S and S′ both typically consist
of 11 near-collision blocks (i.e., 11 · 512 bits) and require 5 additional
blocks to generate secure 8192-bit RSA moduli. On the other hand, CAs
do not necessarily accept RSA moduli of more than 2048 bits. Despite
this mismatch, there was no real incentive to reduce the lengths of the
RSA moduli, because the assumption that P could be predicted a day in
advance sounded preposterous to begin with.

The practical validity of the above assumption came as somewhat of
a surprise: practical in the sense that the prefix P cannot be predicted
with 100% certainty, but with high enough probability to make further
research efforts worthwhile to try and reduce the number of near-collision
blocks to, say, 3. In principle the latter can be achieved by throwing
more resources at the construction of the collision. It quickly turned out,
as further explained below, that either the running time or the space
requirements of this approach are prohibitive. To get the rogue certificate
construction to work for an actual CA, a better approach to chosen-prefix
collisions for MD5 was imperative.

Our improved chosen-prefix collision construction for MD5 is based
on two main ingredients. In the first place, we managed to generalize the
known differential path constructions (as described in [13] and extended

3

in [12]) to an entire family of differential paths. As a result, more bits
can be eliminated per pair of near-collision blocks, at a somewhat higher
complexity of the actual construction of those blocks than before. This is
described in Section 3, after notation and MD5 have been introduced in
Section 2. The reader is forewarned that full appreciation of the improved
differential paths requires familiarity with [13, Section 5]. Secondly, we
introduced a variable birthday search that permits a flexible choice of
search space between the two extremes of 96 bits (as in [13]) and 64 bits
(as introduced in [12] and actually used for [14]): in this way more time can
be invested in the birthday search to achieve a lower average number of
required near-collision blocks. The details along with the more contrived
parameter selection that this all leads to can be found in Section 4. The
construction of the rogue CA certificate is described in Section 5. Section 6
describes an improvement creating a chosen-prefix collision using only a
single near-collision block.

2 Preliminaries

2.1 Notation

MD5 operates on 32-bit words (v31v30 . . . v0) with vi ∈ {0, 1}, that are
identified with elements v =

∑31
i=0 vi2

i of Z/232
Z and referred to as 32-

bit integers. In this paper we switch freely between these representations.

Integers are denoted in hexadecimal as, for instance, 1E16 and in bi-
nary as 000111102. For 32-bit words X and Y we denote their bitwise
AND, OR and XOR as X ∧ Y , X ∨ Y and X ⊕ Y , respectively, X is
the bitwise complement of X, the i-th bit vi of X = (v31v30 . . . v0) is de-
noted X[i], and RL(X,n) (resp. RR(X, n)) is the cyclic left (resp. right)
rotation of X by n bit positions.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such
that the messages P‖S and P ′‖S′ collide under MD5. In this paper any
variable X related to the message P‖S or its MD5 calculation, may have
a corresponding variable X ′ related to the message P ′‖S′ or its MD5
calculation. Furthermore, δX = X ′−X for such a ‘matched’ X ∈ Z/232

Z.
For a ‘matched’ variable Z that consist of tuples of 32-bit integers, say
Z = (z1, z2, . . .), we define δZ as (δz1, δz2, . . .).

2.2 MD5 overview

MD5 works as follows:

4

1. Padding. Pad the message with: first a ‘1’-bit, next the least number
of ‘0’ bits to make the length equal to 448 mod 512, and finally the
bitlength of the original unpadded message as a 64-bit little-endian
integer. As a result the total bitlength of the padded message is 512N
for a positive integer N .

2. Partitioning. Partition the padded message into N consecutive 512-bit
blocks M1, M2, . . . ,MN .

3. Processing. MD5 goes through N + 1 states IHVi, for 0 ≤ i ≤ N ,
called the intermediate hash values and denoted this way to achieve
consistency with [13]. Each intermediate hash value IHVi consists of
four 32-bit words ai, bi, ci, di. For i = 0 these are fixed public values
(a0, b0, c0, d0) = (6745230116, EFCDAB8916, 98BADCFE16, 1032547616).
For i = 1, 2, . . . , N intermediate hash value IHVi is computed as
MD5Compress(IHVi−1,Mi) using the MD5 compression function de-
scribed in detail below.

4. Output. The resulting hash value is the last intermediate hash value
IHVN , expressed as the concatenation of the hexadecimal byte strings
of the four words aN , bN , cN , dN , converted back from their little-
endian representation.

2.3 MD5 compression function

The input for the compression function MD5Compress(IHV, B) is an in-
termediate hash value IHV = (a, b, c, d) and a 512-bit message block B.
The compression function consists of 64 steps (numbered 0 to 63), split
into four consecutive rounds of 16 steps each. Each step t uses modular
additions, a left rotation, and a non-linear function ft. These functions
involve Addition Constants ACt =

⌊
232 |sin(t + 1)|

⌋
for 0 ≤ t < 64, and

Rotation Constants RCt defined as

(RCt, RCt+1, RCt+2, RCt+3) =

(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X, Y, Z) =

F (X, Y, Z) = (X ∧ Y) ⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X, Y, Z) = (Z ∧ X) ⊕ (Z ∧ Y) for 16 ≤ t < 32,

H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X, Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

5

The message block B is partitioned into sixteen consecutive 32-bit words
m0, m1, . . ., m15 (with little-endian byte ordering), and expanded to 64
words Wt, for 0 ≤ t < 64, of 32 bits each:

Wt =

mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

To facilitate the analysis we follow an ‘unrolled’ description instead of a
cyclic state. For each step t the compression function algorithm maintains
a working register with 4 state words Qt, Qt−1, Qt−2 and Qt−3 and calcu-
lates a new state word Qt+1. With (Q0, Q−1, Q−2, Q−3) = (b, c, d, a), for
t = 0, 1, . . . , 63 in succession Qt+1 is calculated as follows:

Ft = ft(Qt, Qt−1, Qt−2),

Tt = Ft + Qt−3 + ACt + Wt,

Rt = RL(Tt, RCt),

Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the
intermediate hash value and returned as output:

MD5Compress(IHV, B) = (a + Q61, b + Q64, c + Q63, d + Q62). (1)

3 A new family of differential paths

The suffixes S and S′ in a chosen-prefix collision consist of three con-
secutive parts: padding bitstrings, birthday bitstrings and near-collision
bitstrings. The padding bitstrings are arbitrarily chosen such that the
birthday bitstrings end on the same 512-bit block border. The birthday
bitstrings result in a δIHV that will be eliminated by a sequence of near-
collision blocks which make up the near-collision bitstrings as described
in [13, Section 5.3]. Fewer near-collision blocks are required if the fam-
ily of differential paths is more effective, whereas finding a δIHV that
requires fewer near-collision blocks increases the birthday search com-
plexity. Thus, if both search time and number of near-collision blocks are
limited, a more effective family of differential paths is required.

In our target application, generating a rogue CA certificate, we have
to deal with two hard limits. Because the CA that is supposed to sign

6

our (legitimate) certificate does not accept certification requests for RSA
moduli larger than 2048 bits, each of our suffixes S and S′ and their
common appendage T must fit in 2048 bits. This implies that we can use
at most 3 near-collision blocks. Furthermore, to reliably predict the serial
number, the entire construction must be performed within a few days.

Table 1. Family of partial differential paths using δm11 = ±2q−10 mod 32.

t δQt δFt δWt δTt δRt RCt

35 − 60 0 0 0 0 0 ·

61 0 0 ±2q−10 mod 32 ±2q−10 mod 32 ±2q 10

62 ±2q 0 0 0 0 15

63 ±2q 0 0 0 0 21

64 ±2q +
∑w′

λ=0
sλ2q+21+λ mod 32

Here w′ = min(w, 31 − q) and s0, . . . , sw′ ∈ {−1, 0, +1} for a fixed parameter w ≥ 0.
Interesting values for w are between 2 and 5.

Thus, as shown in Table 1, we have extended the family of differ-
ential paths used to construct chosen-prefix collisions. The larger choice
is parameterized by the non-negative integer w: a larger value allows
elimination of more differences in δIHV per near-collision block, but in-
creases the cost of constructing each near-collision block by a factor of
roughly 22w. The value for w in Table 1 can be chosen freely, however due
to the blow-up factor of 22w only the values 2, 3, 4, and 5 are of interest.

Compared to the earlier differential paths in [13, Table 2] and [12,
Table 7-2], the new ones vary the carry propagations in the last 3 steps
and the boolean function difference in the last step. This change affects
the working state only in difference δQ64. Each possible value δQ64 may
be caused by many different carry propagations and boolean function
differences. When performing the collision finding for an actual near-
collision block using a particular differential path, we do not consider
just one such possible variation but for the last 3 steps check only if the
δQt’s are as specified.

4 Variable birthday search space, time-memory trade-off

A birthday search on a search space V is generally performed by iterat-
ing a properly chosen deterministic function f : V → V and by assuming
that the points of V thus visited form a ‘random walk’ [9]. After ap-
proximately

√
π|V |/2 iterations one may expect to have encountered a

7

collision, i.e., different points x and y such that f(x) = f(y). Because the
entire trail can in practice not be stored and to take advantage of par-
allelism, different pseudo-random walks are generated, of which only the
startpoints, lengths, and endpoints are kept. The walks are generated to
end on ‘distinguished points’, points with an easily recognizable bitpat-
tern depending on |V |, available storage and other characteristics. The
average length of a walk is inversely proportional to the fraction of dis-
tinguished points in V . Because intersecting walks share their endpoints,
they can easily be detected. The collision point can then be recomputed
given the startpoints and lengths of the two colliding walks.

Let p be the probability that a birthday collision satisfies additional
conditions that cannot be captured by V or f . On average 1/p birthday
collisions have to be found at a cost of Ctr =

√
π|V |/(2p) iterations, plus

recomputation of 1/p intersecting walks at Ccoll iterations. To achieve
Ccoll ≈ ǫ · Ctr for any given ǫ ≤ 1 and optimizing for the expected walk
lengths, one needs to store approximately 1/(p · ǫ) walks. The value for p
depends in an intricate way on k (cf. below), w, and the targeted number
of near-collision blocks and is extensively tabulated in the final version [15]
of [13]. The value for ǫ depends on the amount of available space to store
walks. For very small ǫ the overall birthdaying complexity is about Ctr.

The first chosen-prefix collision example from [13] used a 96-bit birth-
day search space V with |V | = 296 to find a δIHV = (δa, δb, δc, δd) with
δa = 0, δb = δc = δd. This search can be continued until a birthday col-
lision is found that requires a sufficiently small number of near-collision
blocks, which leads to a trade-off between the birthday search and the
number of blocks. If one would aim for just 3 near-collision blocks, one
expects 257.33 MD5 compressions for the 96-bit birthday search, which
would take about 50 days on 215 PlayStation 3 game consoles.

By leaving δb free, we get an improved 64-bit search space (cf. [12], [14]).
In the resulting birthday collisions, the differences in δb compared to δc
were handled by the differential path from [12, section 7.4] which corre-
sponds to δQ64 = ±2q ∓2q+21 mod 32 in Table 1 (cf. equation 2.3(1)). This
significantly decreasing the birthday search complexity, but also increases
the average number of near-collision blocks. When aiming for 3 blocks,
birthdaying requires about 255.73 MD5 compressions. But the probability
that a birthday collision is useful becomes so small that the space require-
ments are prohibitive: about 250.15 bytes, i.e., more than a petabyte.

A more flexible approach is obtained by interpolating between the
above 64-bit and 96-bit birthday searches, while exploiting the family of
differential paths from Section 3. For any k ∈ {0, 1, . . . , 32}, we can do

8

a (64 + k)-bit search similar to the one above, but with δb = δc mod 2k.
Since δb does not introduce new differences compared to δc in the lower
k bits, the average number of near-collision blocks may be reduced – in
particular when taking advantage of our new family of differential paths
– while incurring a higher birthdaying cost. For any targeted number of
near-collision blocks, this leads to a trade-off between the birthdaying
cost and space requirements (unless the number of blocks is at least 6,
since then 241MB suffices for the plausible choice w = 2). Table 2 gives
birthday complexities for k = 0, a range of w-values to control the number
of differences that can be eliminated per near-collision block, and number
r of near-collision blocks. The smallest amount of memory required for
Ccoll to be smaller than Ctr is denoted by M .

Table 2. Birthday complexities and memory requirements for k = 0.

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5

r Ctr M Ctr M Ctr M Ctr M Ctr M Ctr M

14 236.68 1MB 234.01 1MB 232.96 1MB 232.84 1MB 232.83 1MB 232.83 1MB
13 237.55 1MB 234.69 1MB 233.22 1MB 232.93 1MB 232.88 1MB 232.87 1MB
12 238.55 1MB 235.59 1MB 233.71 1MB 233.16 1MB 233.02 1MB 232.98 1MB
11 239.68 2MB 236.71 1MB 234.50 1MB 233.63 1MB 233.34 1MB 233.24 1MB
10 240.97 11MB 238.06 1MB 235.60 1MB 234.42 1MB 233.91 1MB 233.71 1MB
9 242.40 79MB 239.63 2MB 237.02 1MB 235.56 1MB 234.80 1MB 234.45 1MB
8 244.02 732MB 241.43 21MB 238.76 1MB 237.09 1MB 236.05 1MB 235.51 1MB
7 245.73 8GB 243.43 323MB 240.83 9MB 239.02 1MB 237.73 1MB 236.95 1MB
6 247.92 164GB 245.69 7GB 243.22 241MB 241.40 20MB 239.89 3MB 238.85 1MB
5 249.82 3TB 247.92 164GB 245.89 10GB 244.20 938MB 242.59 102MB 241.34 18MB
4 249.33 2TB 247.42 82GB 245.81 9GB 244.55 2GB
3 248.17 231GB

Having a cluster of 215 PlayStation 3 (PS3) game consoles at our dis-
posal obviously influenced our parameter choices. When running Linux
on a PS3, our application has access to 6 Synergistic Processing Units
(SPUs), a general purpose CPU, and about 150MB of RAM per PS3. For
our birthday search, the 6× 215 SPUs are computationally equivalent to
approximately 8600 regular 32-bit cores, due to each SPU’s 4 × 32-bit
wide SIMD architecture. The other parts of the chosen-prefix collision
construction are not suitable for the SPUs, but we were able to use the
215 PS3 CPUs for the construction of the actual near-collision blocks.
With these resources, the choice w = 5 still turned out to be accept-
able despite the 1000-fold increase in the cost of the actual near-collision
block construction. This is the case even for the hard cases with many

9

differences between IHV and IHV′: as a consequence the differential paths
contain many bitconditions which leaves little space for so-called ‘tunnels’
(cf. [6]), thereby complicating the near-collision block construction.

For w = 5 and the targeted 3 near-collision blocks, Table 3 shows the
time-memory tradeoff when the birthday search space is varied with k.
With 150MB at our disposal per PS3, for a total of about 30GB, we
decided to use k = 8 as this optimizes the overall birthday complexity for
the plausible case that the birthday search takes

√
2 times longer than

expected. The overall chosen-prefix collision construction takes on average
less than a day on the cluster of PS3s. In theory we could have used 1TB
(or more) of hard drive space, in which case it would have been optimal
to use k = 0 for a birthday search of about 20 PS3 days.

Table 3. Birthday complexities and memory requirements for r = 3.

w = 3 w = 4 w = 5

k Ctr M Ctr M Ctr M

0 248.17 231GB
2 249.10 210GB
4 250.43 330GB 249.29 68GB
6 251.33 287GB 250.54 96GB 249.69 30GB
8 251.98 177GB 250.74 32GB 249.99 11GB
10 252.43 82GB 251.24 16GB 250.44 5GB
12 252.44 22GB 251.64 7GB 250.90 3GB
14 252.76 9GB 252.01 3GB 251.38 2GB
16 253.13 4GB 252.48 2GB 251.96 675MB
18 253.59 2GB 253.02 733MB 252.61 418MB
20 253.96 673MB 253.46 340MB 253.13 215MB
22 254.43 324MB 254.01 182MB 253.73 123MB
24 254.92 160MB 254.59 102MB 254.33 71MB
26 255.52 92MB 255.25 64MB 255.04 47MB
28 256.11 52MB 255.95 42MB 255.83 36MB
30 256.74 32MB 256.68 29MB 256.61 26MB
32 257.27 17MB 257.27 17MB 257.27 17MB

5 Rogue CA certificate construction

In this section we present some of the details of the construction of the
to-be-signed parts of our colliding certificates, as outlined in Figure 1.

The chosen prefix of the website certificate contains a subject Dis-
tinguished Name (a domain name), as well as the first 208 bits of the
RSA modulus, chosen at random, as padding to reach proper alignment

10

serial number

validity period

commercial CA name

domain name

2048 bit RSA public key

serial number

validity period

commercial CA name

rogue CA name

1024 bit RSA public key

legitimate website

certificate
rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions

“CA = FALSE”

Fig. 1. The to-be-signed parts of the colliding certificates.

with the rogue CA certificate. Furthermore, an educated guess has to be
included for the serial number and validity period fields that the signing
CA will insert when it processes the legitimate website’s certification re-
quest. For the targeted commercial CA it turned out, based on repeated
observations, that the validity period can be predicted very reliably as
the period of precisely one year plus one day, starting exactly six seconds
after a certification request is submitted. Furthermore, it was found that
the targeted CA uses sequential serial numbers. Being able to predict the
next serial number, however, is not enough, because the construction of
the collision can be expected to take at least a day, implying a substantial
and uncertain increment in the serial number by the time the collision
construction is finished. The increment in serial number over a weekend,
however, does not vary a lot and Monday morning’s serial numbers can
be predicted, roughly, on the Friday afternoon before.

The chosen prefix of the rogue CA certificate contains a short rogue
CA name, a 1024-bit RSA public key, and the first part of the X.509v3
extension fields. One of these extension fields is the ‘basic constraints’
field, containing a bit that identifies the certificate as a CA certificate (in
Figure 1 denoted by “CA=TRUE”). The final part of the rogue chosen
prefix contains an indication that all remaining bits of this to-be-signed
part should be interpreted as an extension field of the type “Netscape
Comment”, a field that is ignored by most application software. In Fig-
ure 1 this field is denoted as ‘tumor’.

Given these two chosen prefixes, the collision bits consisting of birth-
day bits and near-collision blocks are computed as described above. We
describe how those bits are interpreted on either side. The birthday bits

11

occupy 96 bits. Immediately after them there is a border between MD5
input blocks. In the website certificate the birthday bits are part of the
RSA modulus, in the rogue CA certificate they belong to the tumor.

After the birthday bits, there are 3 near-collision blocks of 512 bits
each. In the website certificate these are part of the RSA modulus, thereby
fixing 208 + 96 + 3 × 512 = 1840 bits of the website’s RSA modulus. In
the rogue CA certificate these 3 blocks are the second part of the tumor.

After the collision bits, another 2048 − 1840 = 208 bits are needed
to complete the website’s 2048-bit RSA modulus. These 208 bits have
to be determined in such a way that the complete factorization of the
RSA modulus is known, in order to be able to submit a valid certificate
signing request for the website. The RSA modulus does not have to be
secure as it will not be used after obtaining the website’s certificate. Its
least significant 208 bits are determined as follows. Let B denote the fixed
1840-bit part of the RSA modulus followed by 208 one bits. Now select a
random 224-bit integer q until B mod q is less than 2208, and keep doing
so until both q and ⌊B/q⌋ are prime. As a result n = ⌊B/q⌋q has the
desired 1840 leading bits and, for purely esthetic reasons, n’s smallest
prime factor q is larger than the 67-digit largest factor found (so far)
using the Elliptic Curve integer factorization method.

Finally the website’s RSA public exponent is set, followed by the
X.509v3 extensions of the website certificate. All bits after the collision
bits in the website certificate’s to-be-signed part are copied to the tumor
in the rogue CA certificate.

A legitimate PKCS#10 Certificate Signing Request can now be sub-
mitted to the signing CA. This CA requires proof of possession of the
private key corresponding to the public key inside the request. This is
done by signing the request using this private key and this is the sole rea-
son that we needed the factorization of the website’s RSA modulus. Upon
correct submission, the signing CA returns a website certificate. If the se-
rial number and validity period as inserted by the CA indeed match our
guess, then the website certificate’s to-be-signed part will collide under
MD5 with the rogue CA certificate’s to-be-signed part, and the signing
CA’s MD5-based digital signature will be equally valid for the rogue data.

Getting the right serial number at the right time requires some care.
About half an hour before the targeted submission moment, the same
request is submitted, and the serial number in the resulting certificate is
inspected. If it is already too high, the entire attempt has to be aban-
doned. Otherwise, the request is repeatedly submitted, with a frequency
depending on the gap that may still exist between the serial number re-

12

ceived and the targeted one, and taking into account possible certification
requests by others. In this way the serial number is slowly nudged toward
the right value at the right time.

A proof of concept rogue CA certificate constructed in this manner,
where it required some experimentation and a moderate number of at-
tempts to get the correct serial number and validity period, was obtained
using a commercial CA. Full details, including the rogue CA certificate,
are available from www.win.tue.nl/hashclash/rogue-ca/.

6 Independent additional improvement

We show how to construct a chosen-prefix collision for MD5 that consists
of 84 birthday bits followed by one pair of near-collision blocks, for a
chosen-prefix collision-causing appendage of 84 + 512 = 596 bits. The
construction is based on an even richer family of differential paths that
allows elimination using a single pair of near-collision blocks of a set of
δIHVs that is bounded enough so that finding the near-collision blocks is
still feasible, but large enough that such a δIHV can be found efficiently
by a birthday search. Instead of using the family of differential paths
based on δm11 = ±2i, we use the fastest known collision attack for MD5
and vary the last few steps to find a large family of differential paths.

We first present a new collision attack for MD5 with complexity of
approximately 216 MD5 compressions improving upon the 220.96 MD5
compressions required in [20]. Our starting point is the partial differen-
tial path for MD5 given in Table 4. It is based on message differences
δm2 = 28, δm4 = δm14 = 231 and δm11 = 215 which is very similar to
those used by Wang et al. in [17] for the first collision attack against MD5.
This partial differential path can be used for a near-collision attack with
complexity of approximately 214.8 MD5 compressions. This leads in the
usual fashion to an identical-prefix collision attack for MD5 that requires
approximately 216 MD5 compressions, since one has to do it twice: first
to add differences to δIHV and then to eliminate them again. It should
be noted that usually bitconditions are required on the IHV and IHV′ be-
tween the two collision blocks which imply an extra factor in complexity.
In the present case, however, we can construct a large set of differential
paths for the second near-collision block that will cover all bitconditions
that are likely to occur, thereby avoiding the extra complexity.

By properly tuning the birthday search, the same partial differential
path leads to the construction of a single near-collision block chosen-prefix
collision for MD5. By varying the last steps of the differential path and

13

Table 4. Partial differential path for fast near-collision attack.

t δQt δFt δWt δTt δRt RCt

30 − 33 0 0 0 0 0 ·

34 0 0 215 215 231 16

35 231 231 231 0 0 23

36 231 0 0 0 0 4

37 231 231 231 0 0 11

38 − 46 231 231 0 0 0 ·

47 231 231 28 28 231 23

48 0 0 0 0 0 6

49 0 0 0 0 0 10

50 0 0 231 0 0 15

51 − 59 0 0 0 0 0 ·

60 0 0 231 231 −25 6

61 −25 0 215 215 225 10

62 −25 + 225 0 28 28 223 15

63 −25 + 225 + 223 25 − 223 0 25 − 223 226 − 214 21

64 −25 + 225 + 223 + 226 − 214

Partial differential path for t = 29, . . . , 63 using message differences δm2 = 28, δm4 =
δm14 = 231, δm11 = 215. The probability that it is satisfied is approximately 2−14.5.

by allowing the collision finding complexity to grow by a factor of about
226, we have found a set S of about 223.3 different δIHV = (δa, δb, δc, δd)
of the form δa = −25, δd = −25 + 225, δc = −25 mod 220 that can be
eliminated. Such δIHVs can be found using an 84-bit birthday search with
step function f : {0, 1}84 → {0, 1}84 of the form

f(x) =

{
φ(MD5compress(IHV, B‖x) + δÎHV) for σ(x) = 0

φ(MD5compress(IHV′, B′‖x)) for σ(x) = 1,

where δÎHV is of the required form, σ : x 7→ {0, 1} is a balanced selector
function and φ(a, b, c, d) 7→ a‖d‖(c mod 220). There are 2128−84 = 244

possible δIHVs of this form, of which only about 223.3 are in the allowed set
S. It follows that a birthday collision has probability p = 223.3/(244 · 2) =
2−21.7 to be useful, where the additional factor 2 stems from the fact that
different prefixes are required.

A useful birthday collision can be expected after
√

π284/(2p) ≈ 253.2

MD5 compressions, requires 400MB of storage and takes about 3 days
on 215 PS3s. The expected complexity of finding the actual near-collision
blocks is bounded by about 214.8+26 = 240.8 MD5 compressions. In Table 5
two 128-byte messages are given both consisting of a 52-byte chosen prefix

14

and a 76-byte single-block chosen-prefix collision suffix and with colliding
MD5 hash value D320B6433D8EBC1AC65711705721C2E1.

Table 5. Example single-block chosen-prefix collision.

Message 1
4F64656420476F6C6472656963680A4F64656420476F6C6472656963680A4F64

656420476F6C6472656963680A4F64656420476FD8050D0019BB9318924CAA96

DCE35CB835B349E144E98C50C22CF461244A4064BF1AFAECC5820D428AD38D6B

EC89A5AD51E29063DD79B16CF67C12978647F5AF123DE3ACF844085CD025B956

Message 2
4E65616C204B6F626C69747A0A4E65616C204B6F626C69747A0A4E65616C204B

6F626C69747A0A4E65616C204B6F626C69747A0A75B80E0035F3D2C909AF1BAD

DCE35CB835B349E144E88C50C22CF461244A40E4BF1AFAECC5820D428AD38D6B

EC89A5AD51E29063DD79B16CF6FC11978647F5AF123DE3ACF84408DCD025B956

7 Conclusion

We have shown that the length of formerly rather long chosen-prefix col-
lisions for MD5 can be reduced to a minimum at a still acceptable cost,
and that short enough chosen-prefix collision-causing appendages can be
found fast enough to cause trouble, if so desired.

As secure cryptographic hash function for digital signature applica-
tions, MD5 has been declared dead over and over again. The improve-
ments in the collision construction for MD5 presented here firmly hammer
another nail into its coffin. We have been told that simply removing all
existing MD5 applications would break too much. Nevertheless, we hope
that our work has contributed to a sooner ending of MD5’s funeral.

In Table 6 we present a historical overview of the decline in complexity
of MD5 and SHA-1 collision finding. It clearly illustrates that attacks only
get better, not worse. Not reflected in the table is the fact that already
in 1993 it was known that there was serious trouble with MD5, based on
collisions in its compression function (cf. [1], [3]). We leave any speculation
about the future of SHA-1 cryptanalysis to the knowledgeable reader.

A possible mitigation of the risk posed by chosen-prefix collisions when
signing documents is to let the signer add a sufficient amount of fresh ran-
domness at the appropriate spot in the to-be-signed data, i.e., not as a
suffix but preferably somewhere early on. For certificates the serial num-
ber, or even a somewhat variable validity period, would be an appropriate

15

Table 6. Collision complexities – Historical overview.

MD5 SHA-1
year identical-prefix chosen-prefix identical-prefix chosen-prefix

pre-2004 264 (trivial) 264 (trivial) 280 (trivial) 280 (trivial)
2004 240 [16], [17]
2005 237 [5] 269 [18]

263 [19]
2006 232 [6], [11] 249 [13] 280−ǫ [10]
2007 225 [12] 242 [12] 261 [8]
2008 221 [20]
2009 216 (this paper) 239 (this paper) 252 [7]

Complexity is given as the number of calls to the relevant compression function. The
figures are optimized for speed, i.e., for collisions using any number of near-collision
blocks. For other collision lengths the complexities may differ.

spot. Although this would work, it can be argued that such a counter-
measure relies on unintentional choices of the X.509 certificate standard.
Indeed, we would be in favor of a more fundamental way to add random-
ness to to-be-hashed data, such as using randomized hashing as a mode
of operation for hash functions as proposed in [4]. The collision was, at
least partially, achievable because of ‘flabby structure’ of the certificate
(cf. [2]), so that may have to be addressed as well. On the other hand, a
more ‘rigid’ structure would not be an excuse to use a poor hash function:
irrespective of the elegance or lack thereof of the certificate structure, we
need a solid hash function.

As far as we know, no harm was done using our rogue CA certificate.
The positive effects we intended to achieve by its construction have been
realized. From this point of view, and because it required new cryptana-
lytic insights in MD5, the project described in this paper was very grat-
ifying. Nevertheless, there was another, secondary aspect that is worth
mentioning here. Although, as stated earlier, creating havoc was not our
goal, we must admit that some havoc was created by our announcement.
Despite our best efforts to inform the party that was arguably most di-
rectly affected by our work (as documented on one of the related websites),
we also felt we should not reveal our identities to avoid any attempt to file
an injunction barring our announcement. Overall, this did not stimulate a
healthy exchange of information of which all parties involved could have
profited. We do not know how the present legal climate could best be
changed to address this problem, but hope that the difficulties as clearly
observed in our case help to expedite a solution.

16

Acknowledgements

We are grateful for comments by the Crypto 2009 reviewers, and support
by the European Commission through the EU ICT program ECRYPT II,
by the Swiss National Science Foundation, and by EPFL DIT.

References

1. B. den Boer and A. Bosselaers, Collisions for the compression function of MD5,
Eurocrypt ’93, LNCS 765, pp. 293–304, 1994.

2. W. Diffie, personal communication, January 2009.
3. H. Dobbertin, Cryptanalysis of MD5 Compress, May 1996,

http:www-cse.ucsd.edu/~bsy/dobbertin.ps.
4. S. Halevi and H. Krawczyk, Strengthening Digital Signatures via Randomized Hash-

ing, Internet Draft, http://tools.ietf.org/html/draft-irtf-cfrg-rhash-01.
Crypto 2006, LNCS 4117, pp. 41–59, 2006.

5. Vlastimil Klima, Finding MD5 Collisions on a Notebook PC Using Multi-message

Modifications, Cryptology ePrint Archive, Report 2005/102.
6. Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute,

Cryptology ePrint Archive, Report 2006/105.
7. Cameron McDonald, Philip Hawkes and Josef Pieprzyk, SHA-1 collisions now 252,

Eurocrypt 2009 Rump session.
8. Florian Mendel, Christian Rechberger and Vincent Rijmen, Update on SHA-1,

Crypto 2007 Rump session.
9. Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with crypt-

analytic applications, Journal of Cryptology 12(1), 1–28, 1999.
10. Christian Rechberger, unpublished result, 2006.
11. Marc Stevens, Fast Collision Attack on MD5, Cryptology ePrint Archive, Report

2006/104.
12. Marc Stevens, On collisions for MD5, Master’s thesis, TU Eindhoven, June 2007,

available from http://www.win.tue.nl/hashclash/.
13. Marc Stevens, Arjen Lenstra and Benne de Weger, Chosen-Prefix Collisions for

MD5 and Colliding X.509 Certificates for Different Identities, in M. Naor (Ed.),
Eurocrypt 2007, LNCS 4515, pp. 1–22, 2007.

14. Marc Stevens, Arjen Lenstra and Benne de Weger, Predicting the win-

ner of the 2008 US presidential elections using a Sony PlayStation 3,
http://www.win.tue.nl/hashclash/Nostradamus/, 2007.

15. Marc Stevens, Arjen Lenstra and Benne de Weger, Chosen-Prefix Collisions for

MD5 and Applications, in preparation.
16. Xiaoyun Wang, Xuejia Lai, Dengguo Feng and Hongbo Yu, Collisions for hash

functions MD4, MD5, HAVAL-128 and RIPEMD, Crypto 2004 Rump Session.
17. Xiaoyun Wang and Hongbo Yu, How to Break MD5 and Other Hash Functions,

Eurocrypt 2005, LNCS 3494, pp. 19-35.
18. Xiaoyun Wang, Yiqun Lisa Yin and Hongbo Yu, Finding Collisions in the Full

SHA-1, Crypto 2005, LNCS 3621, pp. 17-36.
19. Xiaoyun Wang, Andrew Yao and Frances Yao, New Collision Search for SHA-1,

Crypto 2005 Rump session.
20. Tao Xie, FanBao Liu and DengGuo Feng, Could The 1-MSB Input Difference

Be The Fastest Collision Attack For MD5?, Cryptology ePrint Archive, Report
2008/391.

17

