DTU Library

Short convolutional codes with maximal free distance for rates 1/2, 1/3, and 1/4
(Corresp.)

Larsen, Knud J.

Published in:
I E E E Transactions on Information Theory

Publication date:
1973

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Larsen, K. J. (1973). Short convolutional codes with maximal free distance for rates 1/2, 1/3, and 1/4 (Corresp.). I E E E Transactions on Information Theory, 19(3), 371-372.

[^0]computed with $Q\left(x_{i}, x_{j}\right)$ becomes small. Finally, since
$$
W\left(P^{t}\right)=\sum_{1}^{n} I\left(x_{m_{i}}, x_{m_{j(i)}}\right)
$$
$\left|W\left(P^{t}\right)-W\left(Q^{t}\right)\right|$ becomes small as
$$
\max _{x}|P(x)-Q(x)|
$$
becomes small. As a consequence of (5) it then follows that
\[

$$
\begin{equation*}
\max _{t \in T}\left|W\left(P_{s}^{t}\right)-W\left(P^{t}\right)\right| \xrightarrow{s} 0 \text { with probability } 1 \tag{6}
\end{equation*}
$$

\]

The implication of (6) is simply that for all s sufficiently large we will, with probability 1 , always pick a tree in T^{\prime} if we choose $t(s)$ such that $W\left(P_{s}^{t}\right)$ is maximum. Using the theorem of Chow and Liu quoted earlier with (6), (3) now follows.

The same ideas as outlined above also yield the following statement. If P is an arbitrary distribution and $P_{s}{ }^{t(s)}$ is picked as before, then

$$
W\left(P_{s}^{t(s)}\right) \xrightarrow{s} \max _{t \in T} W\left(P^{t}\right) \text { with probability } 1
$$

even though $P_{s}^{t(s)}$ itself may not converge.

Acknowledgment

C. K. Chow wishes to thank Prof. H. Chernoff of Stanford University for his interest and enlightening suggestions.

References

[1] C. K. Chow and C. N. Liu, "Approximating discrete probability distributions with dependence trees," IEEE Trans. Inform. Theory, vol. IT-14, pp. 462-467, May 1968.

Short Convolutional Codes With Maximal Free Distance for Rates $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$

KNUD J. LARSEN

Abstract-This paper gives a tabulation of binary convolutional codes with maximum free distance for rates $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$ for all constraint lengths (measured in information digits) v up to and including $v=14$. These codes should be of practical interest in connection with Viterbi decoders.

A binary convolutional code of rate $R-1 / n$ and constraint length ν, measured in information digits, is specified by its code generating polynomials

$$
G^{(i)}(D)=1+g_{1}^{(i)} D+g_{2}^{(i)} D^{2}+\cdots+g_{v-1}^{(i)} D^{v-1}
$$

for $1 \leq i \leq n$ where each $g_{j}{ }^{(i)}$ is a binary digit. It is now well known that the Viterbi decoding algorithm is the maximumlikelihood decoding rule for the trellis defined by such a code [1] and that surprisingly good performance on memoryless channels such as the deep-space channel can be obtained for codes with small enough v, say $v \leq 10$, so that the Viterbi decoder could actually be implemented [2]. It is also well known [2]-[4] that the free distance $d_{\text {free }}$ of the convolutional

[^1]TABLE I
Rate $\frac{1}{2}$ Codes With Maximum Free Distance

A. Noncatastrophic Codes						
ν	N	generat	ors(octal)	$\mathrm{d}_{\text {free }}$	hound $<$	
3	6	5	7^{1}	5	5	
4	8	15	17^{1}	6	6	
5	10	23	35^{1}	7	8	
6	12	53	75^{1}	8	8	
7	14	133	171^{1}	10	10	
8	16	247	$371{ }^{1}$	10	11	
9	18	561	$753{ }^{1}$	12	12	
10	20	1167	1545	12	13	
11	22	2335	3661	14	14	
12	24	1335	5723	15	16	
13	26	10533	17661	16	16	
14	28	21675	27123	16	17	
B. Catastrophic Codes						
ν	N	generators(octal)		$\mathrm{d}_{\text {free }}$	bound	
5	10	27	35	8	8	
12	24	5237	6731	16	16	
14	28	21645	37133	17	17	\checkmark

${ }^{1}$ This code was found by Odenwalder [4] and is listed here for completeness.
code is the appropriate criterion of goodness for the convolutional code used with Viterbi decoding.

The rates of most practical interest for Viterbi decoding on memoryless channels are $R=\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$. $R=\frac{1}{2}$ codes with maximal $d_{\text {free }}$ are already known for $v \leq 9$ [4] and $R=\frac{1}{2}$ codes with maximal $d_{\text {free }}$ are known for $v \leq 24$ [5]. $R=\frac{1}{3}$ codes with maximal $d_{\text {free }}$ are known for $v \leq 8$ [4] and with nearly maximal $d_{\text {frec }}$ for $v \leq 28$ [6]. The best $R=\frac{1}{4}$ codes reported are repetitions of the Bahl-Jelinek $R=\frac{1}{2}$ codes [5], i.e., $G^{(\mathbf{3})}(D)=$ $G^{(1)}(D)$ and $G^{(4)}(D)=G^{(2)}(D)$. In this correspondence we report rate $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$ codes with maximal $d_{\text {free }}$ for $v \leq 14$.

The newly found codes, together with some previously known codes with maximal $d_{\text {free }}$ for rates $R=\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$ are listed in Tables I, II, and III, respectively, where we follow the usual practice of listing the generating polynomials by the octal form of the binary sequence $1, g_{1}{ }^{(i)}, g_{2}{ }^{(i)}, \cdots, g_{v \sim 1}^{(i)}$, for $1 \leq i \leq n$. The number $N=\nu R^{-1}$ is the total constraint length. The optimality of $d_{\text {free }}$ for these codes can be established from a simple upper bound, due to Heller [7],

$$
\begin{equation*}
d_{\mathrm{free}} \leq \min _{1 \leq k}\left[\frac{n}{2} \frac{2^{k}}{2^{k}-1}(v+k-1)\right] \tag{1}
\end{equation*}
$$

where [] denotes integer part of the enclosed expression. This bound can be improved [8] for some (n, v) using the Griesmer bound for block codes [9]. The latter bound says that if d_{0} is the minimum distance of an (N, k) binary linear code, and if $d_{i}=\left[\left(d_{i-1}+1\right) / 2\right]$, then $d_{0}+d_{1}+\cdots+d_{k-1} \leq N \quad[=$ $(v+k-1) n$ in this case]. Thus by checking for every (n, v) the bound (1) can in some cases be improved by one. The resulting upper bound is listed in the Tables I, II, and III.

From Tables II and III it is seen that optimal codes (in the sense of maximum $d_{\text {free }}$) achieving the bound for rates $R=\frac{1}{3}$ and $\frac{1}{4}$ were found for all constraint lengths (up to and including 14). These codes, all of which are noncatastrophic [10], were found by judicious choosing of the generating polynomials followed by a computer verification of their $d_{\text {free }}$ using a corrected version of the algorithm given by Bahl et al. [11], [12].

TABLE II
Rate $\frac{1}{3}$ Noncatastrophic Codes With Maximum Free Distance

N	generators (octal)			$\mathrm{d}_{\text {free }}$	bound ,
39	5	7	$7{ }^{1}$	8	8
412	13	15	17^{1}	10	10
515	25	33	37^{1}	12	12
618	47	53	75^{1}	13	13
721	133	145	175^{2}	15	15
024	225	331	$367{ }^{1}$	16	16
927	557	663	711	18	78
1030	1117	1365	1633	20	20
1133	2353	2671	3175	22	22
1236	4767	5723	6265	24	24
1339	10533	10675	17661	24	24
1442	21645	35661	37133	26	26

${ }^{1}$ This code was found by Odenwalder [4] and is listed here for completeness.
${ }_{2}$ This code was also found by Odenwalder [4], but was overlooked. The corresponding code in [4] has free distance only 14.

TABLE III
Rate $\frac{1}{4}$ Noncatastrophic Codes With Maximum Free Distance

The noncatastrophic rate $\frac{1}{2}$ codes (Table I-A) are all optimal (i.e., maximum $d_{\text {free }}$) but some of them ($v=5,8,10,12$, and 14) do not achieve the bound. The optimality is here established through a complete search covering all possibly optimal codes.

If we allow the codes to be catastrophic, which might be of interest in connection with framing of input data, we can find codes achieving the bound for $v=5,12$, and 14 , too, if the definition of $d_{\text {free }}$ [3] is slightly modified: $d_{\text {free }}$ is the weight of the minimum weight path in the trellis that diverges from the state 0 and later reconverges to this state; this reconvergence is not required in [3]. For a noncatastrophic code the two definitions are identical. The catastrophic codes for $v=5,12$, and 14 are listed in Table I-B.

Acknowledgment

The author is grateful to Dr. J. L. Massey (Guest Professor) and Dr. E. Paaske of the Laboratory for Communication Theory, Technical University of Denmark, for their supervision of the work reported here.

References

[1] J. K. Omura, "On the Viterbi decoding algorithm," IEEE Trans. Inform. Theory (Corresp.), vol. IT-15, pp. 177-179, Jan. 1969.
[2] J. A. Heller and I. M. Jacobs, "Viterbi decoding for satellite and space communication," IEEE Trans. Commun. Technol., pt. II, vol. COM-19, pp. 835-848, Oct. 1971.
[3] J. L. Massey and D. J. Costello, Jr., "Nonsystematic convolutional codes for sequential decoding in space applications," IEEE Trans. codes for sequential decoding in space applications,' IEEE Tran
Commun. Technol., pt. II, vol. COM-19, pp. 806 813, Oct. 1971 .
[4] J. P. Odenwalder, "Optimal decoding of convolutional codes," Ph.D. dissertation, Dep. Syst. Sci., Sch. Eng. Appl. Sci., Univ. California, Los Angeles, 1970.
[5] L. R. Bahl and F. Jelinek, "Rate $\frac{1}{2}$ convolutional codes with complementary generators," IEEE Trans. Inform. Theory, vol. IT-17, pp. 718-727, Nov. 1971.
[6] S. J. Curry, "Sclection of convolutional codes having large free distance," Ph.D. dissertation, Dep. Syst. Sci., Univ. California, Los Angeles, 1971.
[7] J. A. Heller, "Sequential decoding: Short constraint length convolutional codes;" Jet Propulsion Lab., California Inst. Technol., Pasadena, Space Program Summary 37-54, vol. 3, Dec. 1968, pp. 171-174.
[8] J. Layland and R. McEliece, "An upper bound on the free distance of a trce code," Jct Propulsion Lab., California Inst. Technol., Pasadena, Space Program Summary 37-62, vol. 3, Apr. 1970, pp. 63-64.
[9] J. H. Griesmer, "A bound for error-correcting codes," IBM J. Res. Develop., vol. 4, no. 5, 1960.
[10] J. L. Massey and M. K. Sain, "Inverses of linear sequential machines," IEEE Trans. Comput., vol. C-17, pp. 330-337, Apr. 1968.
[11] L. R. Bahl, C. D. Cullum, W. D. Frazer, and'F. Jclinck, "An cfficient algorithm for computing the free distance," IEEE Trans. Inform. Theory, vol. IT-18, pp. 437-439, May 1972.
[12] K. J. Larsen, Correction to "An efficient algorithm for computing the free distance," Rep. Lab. Commun. Theory, Technical Univ. Denmark. Lyngby, 1972.

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

[^1]: Manuscript received June 19, 1972; revised September 11, 1972.
 The author is with the Laboratory for Communication Theory, Technical University of Denmark, Lyngby, Denmark.

