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Short distance versus long distance physics:
The classical limit of the minimal length uncertainty relation

Sándor Benczik,* Lay Nam Chang,† Djordje Minic,‡ Naotoshi Okamura,§ Saiffudin Rayyan,i and Tatsu Takeuchi¶

Institute for Particle Physics and Astrophysics, Physics Department, Virginia Tech, Blacksburg, Virginia 24061
~Received 5 April 2002; published 28 June 2002!

We continue our investigation of the phenomenological implications of the ‘‘deformed’’ commutation rela-

tions @ x̂i ,p̂ j #5 i\@(11b p̂2)d i j 1b8p̂i p̂ j #. These commutation relations are motivated by the fact that they
lead to the minimal length uncertainty relation which appears in perturbative string theory. In this paper, we
consider the effects of the deformation on the classical orbits of particles in a central force potential. Com-
parison with observation places severe constraints on the value of the minimum length.
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I. INTRODUCTION

As is well known, in the case of point particles, sho
distance physics directly translates into high energy phys
This is a simple consequence of the Heisenberg uncerta
principle. In local quantum field theories, which describe
dynamics of point particles, the fundamental degrees of fr
dom are revealed at high energy, or equivalently, at sh
distance. Also, there is a clear separation between ultrav
and infrared physics from the point of view of the renorm
ization group.

In string theory, however, there is growing evidence t
the physics at short distances, in contrast with local quan
field theory, is not clearly separated from the physics at lo
distances@1–7#. The fundamental formulation of this so
called UV-IR mixing, as well as its observable consequenc
are not understood at present. Various authors have ar
that some kind of UV-IR mixing is necessary to understa
the cosmological constant problem@8,9# or the observable
implications of short distance physics on inflationary co
mology @10#.

Motivated by these questions, we have recently@11,12#
investigated various observable consequences of the U
mixing embodied in the ‘‘deformed’’ commutation relatio
@13#

@ x̂,p̂#5 i\~11b p̂2!. ~1!

This commutation relation implements the minimal leng
uncertainty relation

Dx>
\

2 S 1

Dp
1b DpD , ~2!

which appears in perturbative string theory@1,2#. Note the
UV-IR mixing manifest in Eq.~2!: when the uncertainty in
momentumDp is large~UV!, the uncertainty in the position
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IR

Dx is proportional toDp and is therefore also large~IR!.
Note also that Eq.~2! implies a lower bound forDx:

Dx>\Ab. ~3!

In the context of perturbative string theory, the existence
this minimal length is tied to the fact that strings cann
probe distances shorter than the string length scalel S @22#.
Thus,

\Ab; l S . ~4!

In Ref. @11# we determined the eigenvalues and eige
functions of the harmonic oscillator when the position a
momentum obey Eq.~1!, and studied the possible constrai
that can be placed onb by precision measurements on ele
trons trapped in strong magnetic fields. Subsequently, in R
@12#, we pointed out that Eq.~1! implies the finiteness of the
cosmological constant and a modification of the blackbo
radiation spectrum of the cosmic microwave backgrou
One important observation made in Refs.@11,12# was that
various observable effects of the minimal length uncertai
relation are non-perturbative in the ‘‘deformation paramete
b ~i.e., contain all orders inb) even thoughb appears only
to linear order in Eqs.~1! and ~2!.

In this paper we continue our investigation and consi
the effects of the ‘‘deformation’’ of the canonical commut
tion relations on the orbits of classical particles in a cen
force potential. We find that comparison with observati
places a strong constraint on the size of the minimum len

II. THE CLASSICAL LIMIT

In D dimensions, Eq.~1! is extended to the tensorial form
@13#

@ x̂i ,p̂ j #5 i\~d i j 1b p̂2d i j 1b8p̂i p̂ j !. ~5!

If the components of the momentump̂i are assumed to com
mute with each other,

@ p̂i ,p̂ j #50, ~6!

then the commutation relations among the coordinatesx̂i are
almost uniquely determined by the Jacobi identity~up to
possible extensions! as
©2002 The American Physical Society03-1
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@ x̂i ,x̂ j #5 i\
~2b2b8!1~2b1b8!b p̂2

~11b p̂2!
~ p̂i x̂ j2 p̂ j x̂i !.

~7!

In the classical limit, the quantum mechanical commu
tor is replaced by the Poisson bracket via

1

i\
@Â,B̂#⇒$A,B%. ~8!

So the classical limits of Eqs.~5!–~7! read

$xi ,pj%5~11bp2! d i j 1b8pipj ,

$pi ,pj%50,

$xi ,xj%5
~2b2b8!1~2b1b8!bp2

~11bp2!
~pixj2pjxi !. ~9!

We are keeping the parametersb and b8 fixed as\→0,
which in the string theory context corresponds to keeping
string momentumscale fixed while the stringlengthscale is
taken to zero.

Note that for Eq.~8! to make sense, the Poisson brack
must possess the same properties as the quantum mech
commutator, namely, it must be anti-symmetric, bilinear, a
satisfy the Leibniz rules and the Jacobi identity. These
quirements allow us to derive the general form of our Po
son brackets for any functions of the coordinates and m
menta as

$F,G%5S ]F

]xi

]G

]pj
2

]F

]pi

]G

]xj
D $xi ,pj%

1
]F

]xi

]G

]xj
$xi ,xj%, ~10!

where repeated indices are summed. In particular, we
that the time evolutions of the coordinates and momenta
governed by

ẋi5$xi ,H%5$xi ,pj%
]H

]pj
1$xi ,xj%

]H

]xj
,

ṗi5$pi ,H%52$xi ,pj%
]H

]xj
. ~11!

This deformed version of classical mechanics is not w
out its difficulties, the foremost being how one can constr
‘‘canonical transformations’’ which relate the dynamic
variables at one length scale to those at another. For
minimal length to be a well defined length scale, all dynam
cal variables at all length scales must obey Eq.~9!. As a
consequence, for instance, one cannot identify the positio
a composite particle with the center of mass of its const
ents. In retrospect, it is not surprising that this difficu
would exist given the UV-IR mixing nature of Eqs.~5!–~7!
from which Eqs.~9! have been derived.
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We merely point out this difficulty as a caveat and do n
attempt to propose any solution in the current paper. Inste
we apply Eq.~11! to the motion of macroscopic objects an
look for signatures of the deformation.

III. MOTION IN CENTRAL FORCE POTENTIALS

For the Hamiltonian of a particle in a central force pote
tial,

H5
p2

2m
1V~r !, r 5Axixi , ~12!

the derivatives with respect to the coordinates and mome
are

]H

]pj
5

pj

m
,

]H

]xj
5

]V

]r

xj

r
. ~13!

Therefore, the time evolutions of the coordinates and m
menta in this case are

ẋi5@11~b1b8!p2#
pi

m

2@~2b2b8!1~2b1b8!bp2#S 1

r

]V

]r DLi j xj ,

ṗi52@~11bp2! xi1b8~p•x! pi #S 1

r

]V

]r D , ~14!

where

Li j [
xipj2xj pi

~11bp2!
.

The Li j ’s defined here are the generators of rotation:

$xk ,Li j %5xi dk j2xj dki , $pk ,Li j %5pi dk j2pj dki .
~15!

For motion in a central force potential, theLi j ’s are con-
served due to rotational symmetry:

$Li j ,H%50. ~16!

So is

L2[2
1

2
Li j L ji 5

p2 r 22~p•x!2

~11bp2!2
. ~17!

The conservation of theLi j ’s imply that the motion of the
particle will be confined to a two-dimensional plane spann
by the coordinate and momentum vectors at any point
time. Therefore, without loss of generality, we can assu
that the motion is in thex1x2 plane and

L1252L215L, Li j 50 otherwise. ~18!

Then, the motion can be described by the time depende
of the distance from the originr, and the angle
3-2
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f[tan21
x2

x1
. ~19!

The equation of motion forr is given by

ṙ 5
1

2r

d

dt
~r 2!5

1

2r

d

dt
~xixi !5

xi

r
xi̇

5
1

m
@11~b1b8!p2# pr , ~20!

where

pr[
~p•x!

r
5Ap22

L2~11bp2!2

r 2
. ~21!

Since the energy,E, is also conserved, we can write the m
mentum squared as a function ofr via

p252m@ E2V~r !#. ~22!

Therefore, the right-hand side of Eq.~20! can be written
completely in terms of conserved quantities and functions
r:
es

02600
f

dr

dt
5

1

m
@112m~b1b8!~E2V!#

3A2m~E2V!2
L2@112mb~E2V!#2

r 2
. ~23!

The equation of motion for the anglef is

ḟ5
x1ẋ22x2ẋ1

r 2

5
L

mr2 H @11~b1b8!p2#~11bp2!

1@~2b2b8!1~2b1b8!bp2#S mr
]V

]r D J . ~24!

Again, using Eq.~22!, the right-hand side can be written i
terms of conserved quantities and functions ofr only:

df

dt
5

L

mr2 H @112m~b1b8!~E2V!#@112mb~E2V!#

1@~2b2b8!12mb~2b1b8!~E2V!#S mr
]V

]r D J .

~25!

From Eqs.~23! and ~25!, we find
df

dr
5

L

r 2

112mb~E2V!1
~2b2b8!12mb~2b1b8!~E2V!

112m~b1b8!~E2V!
S mr

]V

]r
D

A2m~E2V!2
L2@112mb~E2V!#2

r 2

. ~26!
In principle, this equation can be integrated to obtain thef
dependence ofr. We will solve Eq.~26! for the harmonic
oscillator and Coulomb potentials in the following two cas

~A! bÞ0, b850, in which Eq.~26! simplifies to

df

dr
5

L

r 2

112mbS E2V1r
]V

]r
D

A2m~E2V!2
L2@112mb~E2V!#2

r 2

,

~27!

~B! b50, b8Þ0, in which Eq.~26! simplifies to
. df

dr
5

L

r 2

12
1

~1/b8!12m~E2V!
S mr

]V

]r
D

A2m~E2V!2
L2

r 2

. ~28!

IV. THE HARMONIC OSCILLATOR POTENTIAL

We first consider the harmonic oscillator potential

V~r !5
1

2
mv2r 2. ~29!
3-3
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A. bÅ0, b8Ä0 case

For the harmonic oscillator, Eq.~27! can be cast into the
form

df

dr2
5

1

2 F r maxr min

r 2A~r max
2 2r 2!~r 22r min

2 !

1
sina

A~r max
2 2r 2!~r 22r min

2 !
G , ~30!

where

r max/min
2

[
E1bmv2L2~112mbE!6AE22v2L2~112mbE!

mv2~11b2m2v2L2!

5r 6
2 7S 2r 6r 7

3

r 1
2 2r 2

2 D «7H r 7
4 ~5r 6

4 22r 1
2 r 2

2 1r 7
4 !

~r 1
2 2r 2

2 !3 J «21O~«3!,

~31!

and

r 6
2 [S E6AE22v2L2

mv2 D , «[tana[bmvL. ~32!

r max/min are the turning points whenbÞ0 and r 6 are the
turning points whenb50. When «5bmvL satisfies the
condition

0,«,
~r 1

2 2r 2
2 !2

4r 1r 2~r 1
2 1r 2

2 !
, ~33!

it is possible to show that

r 2,r min,r max,r 1 . ~34!

When«5bmvL exceeds the upper bound of the region E
~33!, no solution exists.

Equation~30! can be integrated to yield
02600
.

f~r !5
1

2 FarcsinH ~r 22r min
2 ! r max

2 2~r max
2 2r 2! r min

2

~r max
2 2r min

2 ! r 2 J
1sina arcsinH ~r 22r min

2 !2~r max
2 2r 2!

~r max
2 2r min

2 !
J G . ~35!

In particular, we find

f~r max!2f~r min!5
p

2
~11sina!, ~36!

which shows that the orbit will not close on itself whenb
Þ0. It precesses by an angle of 2psina per revolution. For
b!1, the precession angle is

Dvb52psina'2p~bmvL !. ~37!

In Fig. 1, we plot the trajectory of the motion for a represe
tative set of parameters.

B. bÄ0, b8Å0 case

For the harmonic oscillator, Eq.~28! can be cast into the
form

df

dr2
5

r 1r 2

2 S 1

r 2
2

1

r b8
2

2r 2D 1

A~r 1
2 2r 2!~r 22r 2

2 !
~38!

where

r 6
2 [S E6AE22v2L2

mv2 D ,

r b8
2 [r 1

2 1r 2
2 1

1

m2v2b8
. ~39!

Note that the turning points,r 6 , do not depend onb8. In the
limit b8→0, we haver b8

2 →`, and the equation for theb
5b850 case is recovered.

Equation~38! can be integrated to yield
f~r 2!5
1

2 FarcsinH ~r 22r 2
2 ! r 1

2 2~r 1
2 2r 2! r 2

2

~r 1
2 2r 2

2 ! r 2 J 2sina1sina2

3arcsinH ~r b8
2

2r 1
2 !~r 22r 2

2 !2~r b8
2

2r 2
2 !~r 1

2 2r 2!

~r b8
2

2r 2!~r 1
2 2r 2

2 !
J G , ~40!
le
where

tana6[r 6mvAb8. ~41!

Note thata6→0 in the limit b8→0. From Eq.~40!, we find
f~r 1!2f~r 2!5
p

2
~12sina1sina2!. ~42!

Compared to thebÞ0, b850 case, Eq.~36!, the precession
is in the opposite direction: for each revolution, the ang
3-4
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FIG. 1. The trajectory of a mass in a harmonic oscillator potential withr 1 /r 255, bmvL50.01, b850 ~left!, andb50, b8mvL
50.01 ~right!. The length scale is in units of (r 11r 2)/2. The dashed line indicates the orbit whenb5b850. The motion is counter
clockwise along the trajectory starting from the aphelion on the positivex axis. 25 complete revolutions are shown. The trajectory
precessing counter clockwise on the left, and clockwise on the right.
n

t

swept is smaller than 2p by 2psina1sina2 . Forb8!1, the
precession angle is

Dvb8522p sina1sina2'22p~ b8mvL !. ~43!

In Fig. 1, we plot the trajectory of the motion for a represe
tative set of parameters.

V. THE COULOMB POTENTIAL

Next, we consider the attractive Coulomb potential

V~r !52
k

r
~k.0!. ~44!

A. bÅ0, b8Ä0 case

For bound states,E52uEu, Eq. ~27! takes on the form

df

dr
5Ar 1r 2

12«H 12
2~r 11r 2!

r J
A~r 2d!~r 2d* !~r max2r !~r 2r min!

, ~45!

where

«[2muEub,

r 6[
k

2uEu
6A k2

4E2
2

L2

2muEu
, ~46!

and
02600
-

r max/min5r 62S 2r 7
2

r 62r 7
D «

2H r 7
3 ~r 11r 2!~5r 623r 7!

r 6~r 62r 7!3 J «2

1O~«3!,

d52« ~r 11r 2!F11H 12
3 ~r 11r 2!2

2 r 1r 2
J «

1O~«2!G1 i «3/2
~r 11r 2!2

Ar 1r 2

3F11
3

8 H 12
7 ~r 11r 2!2

8 r 1r 2
J «1O~«2!G . ~47!

The exact forms ofd and r max/min are rather lengthy and
non-illuminating, so we will not present them here.~See Ap-
pendix A.! r 6 are the turning points whenb50, and we can
see that whenb.0,

r 2,r min,r max,r 1 , ~48!

just as in the harmonic oscillator case. The condition tha«
52muEub must satisfy for the solution to exist is

r 1r 2

~r 11r 2!2
.

8~12«!4

1233«233«21«31~1114«1«2!3/2
.

~49!
3-5
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SÁNDOR BENCZIK et al. PHYSICAL REVIEW D 66, 026003 ~2002!
Equation~45! can be integrated and the solution expres
exactly in terms of elliptic integrals.~See Appendix B.!
However, the exact expression is not particularly informat
so we present the solution to linear order inb, in which case
we find

f~r !5F12
~r max1r min!

2

2 r maxr min
«

3 GarcsinH ~r 2r min!r max2~r max2r !r min

~r max2r min!r
J

1
~r max1r min!

r
A~r max2r !~r 2r min!

r maxr min
«1O~«2!,

~50!

and

f~r max!2f~r min!5pF12
~r max1r min!

2

2 r maxr min
«1O~«2!G .

~51!

Note that, in contrast to the harmonic oscillator, the prec
sion angle is negative:

Dvb'22pH ~r max1r min!
2

2 r maxr min
«J 522pS 4muEub

12e2 D ,

~52!
e

02600
d

e

s-

wheree is the eccentricity of the orbit. This means that t
perihelion of a planet in a gravitational Coulomb potent
will retard instead of advance. In Fig. 2, we plot the traje
tory of the motion for a representative set of parameters

B. bÄ0, b8Å0 case

For bound states,E52uEu, Eq. ~28! takes on the form

df

dr
5

Ar 1r 2

2 S 1

r
1

1

r 1r b8
D 1

A~r 12r !~r 2r 2!
, ~53!

where

r 6[
k

2uEu
6A k2

4E2
2

L2

2muEu
,

r b8[
~r 11r 2!

S 1

2muEub8
D 21

. ~54!

As in the harmonic oscillator case, the turning pointsr 6 do
not depend onb8. In the limit b8→0, we haver b8→0, and
the equation for theb5b850 case is recovered.

Equation~53! can be integrated to yield
f~r !5
1

2 FarcsinH ~r 2r 2! r 12~r 12r ! r 2

~r 12r 2! r J 1cosu1cosu2 arcsinH ~r 11r b8!~r 2r 2!2~r 21r b8!~r 12r !

~r 1r b8!~r 12r 2!
J G , ~55!
n-

ng
r-

ba-
where

tanu65Ar b8
r 6

. ~56!

Note thatu6→0 in the limit b8→0. From Eq.~55!, we find

f~r 1!2f~r 2!5
p

2
~11cosu1cosu2!

5pF12S 12cosu1cosu2

2 D G . ~57!

As in the harmonic oscillator case, the precession angl
negative whenb8 is positive. Forb8!1, the precession
angle is
is

Dvb8522pS 12cosu1cosu2

2 D
'22pH ~r 11r 2!2

4 r 1r 2
~2muEub8!J

522pS 2muEub8

12e2 D . ~58!

In Fig. 2, we plot the trajectory of the motion for a represe
tative set of parameters.

VI. COMPARISON WITH PLANETARY ORBITS

Using our results, we can place constraints onb andb8
from the precession of the perihelion of Mercury. Accordi
to Ref. @17#, the observed advance of the perihelion of Me
cury that is unexplained by Newtonian planetary pertur
tions or solar oblateness is
3-6
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Dvobs542.98060.002 arc sec per century

5
2p ~ 3.3163660.00015!31025 radians

415.2019 revolutions

52p ~ 7.9873460.00037!31028 rad/rev.
~59!

This advance is usually explained by general relativity wh
predicts

DvGR53pH 2 GM( /c2

a ~12e2!
J

56pH 2muEu

~12e2! \2J S \2

m2c2D
56pS |c

|d
D 2

, ~60!

where 2GM( /c2 is the Schwarzschild radius of the Sun,a
is the semi-major axis of the planet’s orbit,e is it’s eccen-
tricity, and we have defined

|d[\A~12e2!

2muEu
, |c[

\

mc
. ~61!

The lengths|d and |c are the de Broglie and Compto
wavelengths of the planet. For Mercury, the parameters
@18#

2 GM(

c2
52.953250083103 m,

m53.302231023 kg,

a5
r max1r min

2
55.790917531010 m,

e50.20563069. ~62!

Note that the productGM( is known to much better accu
racy than Newton’s gravitational constantG and the solar
massM ( separately. Using these parameters we find

|d56.5284310263 m,
~63!

|c51.0653310266 m,

and

DvGR52p~7.9874431028! rad/rev. ~64!

A comparison of Eqs.~64! and ~59! yields

Dvobs2DvGR52p~20.0001060.00037!31028 rad/rev,
~65!
02600
h

re

which is consistent with zero. As we can see, there is
much room left for possible extra contributions to the p
cession.

From Eq. ~52! and ~58!, the precession angle to linea
order inb andb8 is

Dvb1Dvb8522pH \2~2b1b8!

|d
2 J . ~66!

The existence of a minimal length requires

b.0, b1b8.0, ~67!

so we can assume that

Dvb1Dvb8,22pS \Ab

|d
D 2

,0. ~68!

Equation~65! places a lower bound onDvb1Dvb8 which
at 3s is

22p~1.2310211! rad/rev,~Dvb1Dvb8!

,22pS \Ab

|d
D 2

. ~69!

Thus,

S \Ab

|d
D 2

,1.2310211, ~70!

or

\Ab,~3.531026! |d52.3310268 m. ~71!

Note that this limit is 33 orders of magnitude below th
Planck length!

VII. DISCUSSION AND CONCLUSION

In this paper we have considered the effects of the m
mal length uncertainty relation on the classical orbits of p
ticles in a central force potential. Comparison with the o
served precession of the perihelion of Mercury places
strong constraint on the value of the minimum length.

The minimal length uncertainty relation was implement
through the deformed commutation relation Eq.~5!. Note
that even thoughb andb8 appear to only linear order on th
right-hand side of Eq.~5!, our expressions for the precessio
angle, Eqs.~36!, ~42!, ~51!, and~57!, contain all orders inb
andb8. In that sense, our results are non-perturbative. On
other hand, the right-hand side of Eq.~5! itself can be con-
sidered a linear approximation to a more general expres
which leads to the minimal length uncertainty relation
discussed by Kempf@13#. This suggests that our constrain
Eq. ~71!, could be fairly robust. All other possible implemen
tation of the minimal length uncertainty relation can be e
pected to lead to the same precession of the perihelion as
~5! to linear order inb andb8, and result in the same con
straint on the minimal length.
3-7
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FIG. 2. The trajectory of a mass in a Coulomb potential withr 1 /r 255, 2muEub50.01,b850 ~left!, andb50, 2muEub850.01~right!.
The length scale is in units of (r 11r 2)/2. The dashed line indicates the orbit whenb5b850. The motion is counter clockwise along th
trajectory starting from the perihelion on the positivex axis. 25 complete revolutions are shown. For both cases, the trajectory is prece
clockwise.
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The analysis of this paper based on the deformed com
tation relations can be viewed as providing a toy model fo
full string theoretic consideration of the implications of th
minimal length uncertainty relation. The natural question
ask is whether our constraint, Eq.~71!, applies to string
theory proper or not. This is a difficult question to answ
since the minimal length uncertainty relation is but one
pect of string theory, and it is not clear whether deformi
the quantum mechanical commutation relations is the cor
way to implement it.

Looking at previous works, we note that Ref.@2# has dis-
cussed departures from general relativity as implied by st
theory. These were implied both by the string theoretic mo
fication of Einstein’s equations@19#

Rmn1
a8

2
RmkltRn

klt1•••50, ~72!

as well as the crucial distinctions between particles a
strings: strings as extended objects do not fall freely alo
geodesics. As fundamentally extended objects~at least from
the point of view of string perturbation theory! they are sub-
ject to tidal forces. This leads, for example, to an ener
dependent deflection angle for the bending of light—in cl
distinction to general relativity in which the deflection ang
is energy independent. We have not included in our anal
any of these effects. In particular, we have not conside
possible deviations in the background metric due to the e
terms in Eq.~72!. Though the corrections to particle traje
tories due to such deviations are expected to be small, it
02600
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ct
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d
g

-
r

is
d

ra

ay

be worthwhile to study the problem in more detail in light
the strong constraint we have obtained for the minim
length.

We conclude by listing a few more caveats: Even thou
our analysis is purely classical, the general formulation
classical systems which incorporates the classical limit of
minimal length uncertainty relation is not fully understoo
How one can define the ‘‘canonical transformations’’ whi
relate dynamical variables at different scales while prese
ing the Poisson bracket remains an open problem. Also,
systems we considered have only a finite number of deg
of freedom. It is not clear how to incorporate the effects
the classical limit of the minimal length uncertainty relatio
to field theory. The classical limit of the minimal length un
certainty relation provides a natural generalization of
non-commutative relation between spatial coordinates
countered in non-commutative field theory@5#. What is not
clear is whether the usual Weyl-Wigner-Moyal technolo
@20# could apply even in our more complicated setup, th
providing a way to analyze systems with an infinite numb
of degrees of freedom.
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APPENDIX A: THE TURNING POINTS FOR THE
COULOMB POTENTIAL

The turning points for the Coulomb potential, Eq.~44!,
are provided by the real solutions to
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2mS 2uEu1
k

r D2
L2

r 2 F112mbS 2uEu1
k

r D G
2

50.

~A1!

Defining

A[
k

uEu
, B[

L2

2muEu
, «[2muEub, ~A2!

Eq. ~A1! can be cast into the form

r 42A r31B~12«!2r 212AB«~12«! r 1A2B«250.
~A3!

Since this is a quartic equation, the solutions can be obta
algebraically~usingMATHEMATICA ! and they are
02600
ed

d5
1

4
~A2W12iX !,

d* 5
1

4
~A2W22iX !,

~A4!

r max5
1

4
~A1W12Y!,

r min5
1

4
~A1W22Y!,

where
W[
1

A3
A3A228B~12«!214Z1

4B$B~12«!416A2«~11«!%

Z

5A14A «1S 4A2
6A3

B D «21•••,

X[
1

2
A23A218B~12«!21W21

2A$A224B~12«!~113«!%

W

5
2A2

AB
«3/21

3A2~8B27A2!

4AB3
«5/21•••,

Y[
1

2
A3A228B~12«!22W21

2A$A224B~12«!~113«!%

W

5AA224B2
2~A222B!

AA224B
«1

A2~3A4220A2B130B2!

BA~A224B!3
«21•••,

Z[F1

2
$2B3~12«!6118A2B2«~11«!~12«!2127A4B«2

13A3A2B«3/2A27A4«14A2B~11«!~1234«1«2!216B2~12«!4%G1/3

5B1~3A222B! «1
A2A3B~A224B!

B
«3/21S 9A21B2

9A4

2B D «21•••. ~A5!

In the limit «→0, we recover the turning points for theb50 case:

d,d* →0, r max/min→r 65
A6AA224B

2
. ~A6!

APPENDIX B: THE SOLUTION TO THE COULOMB PROBLEM IN TERMS OF ELLIPTIC INTEGRALS

Integration of Eq.~45! yields

f~r !5Ar 1r 2~12«! I 012Ar 1r 2~r 11r 2! « I 1 , ~B1!
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where

I 05E dr

A~r 2d!~r 2d* !~r max2r !~r 2r min!
, I 15E dr

rA~r 2d!~r 2d* !~r max2r !~r 2r min!
. ~B2!

These integrals can be expressed in terms of the Legendre-Jacobi elliptic integrals@21#:

F~c,k2!5E
0

c dh

A12k2sin2h
, P~c,r,k2!5E

0

c dh

~11r sin2h!A12k2sin2h
. ~B3!

Define

cosc[
U2~r max2r !2U1~r 2r min!

U2~r max2r !1U1~r 2r min!
, ~B4!

with

U6[AX21~Y6W!2, ~B5!

and

k2[
1

2
2

W21X22Y2

2 U1 U2
, ~B6!

whereW, X, andY are given in Eq.~A5!. The explicit expressions for the integrals are

I 0~r !5
2

AU1U2

F~c,k2!,

I 1~r !5
2

AU1U2

U12U2

U1r min2U2r max
F~c, k2!

2
Y

r maxr minAU1U2

U1r min1U2r max

U1r min2U2r max
PS c,

~U1r min2U2r max!
2

4U1U2r maxr min
,k2D

1
1

Ar maxr mindd*
arctanS Y

AU1U2

A dd*

r maxr min

sinc

A12k2sin2c
D . ~B7!
s.
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