
CD ccop

N

SHORT ENCODINGS OF EVOLVING STRUCTURES

Daniel D. Sleator

Robert E. Tarjan

William P. Thurston

JUL0T 9 0 fl CS-TR-265-90

0 U
April 1990

App:oved foz public releaim

9 07 3/

Short Encodings of Evolving Structures Accesion For

NTIS CRA&

Daniel D. Sleator .oTIJC TAB 0

Robert E. Tarjan 2-Ad Usan

William P. Thurston And^

Dliz~.ibutlo n I

April 26, 1990 Availability Codes

Avail and I or
DISt Special

Abstract A-1 A
J A derivation in a transformational system such as a graph rammar may be redun-

dant in the sense that the exact order of the transformations , ay not affect the final

outcome; all that matters is that each transformation, when applied, is applied to the

correct substructure. By taking advantage of this redundancy, we are able to develop

an efficient encoding scheme for such derivations. This encoding scheme has a number

of diverse applications. It can be used in efficient enumeration of Combinatorial objects

or for compact representation of program and data structure traisformations. It can

also be used to derive lower bounds on lengths of derivations. We slow for example that

S "iT(n log n) applications of the associative and commutative laws are required in the worst

case to transform an n-variable expression over a binary associative, commutative o-"

._ tion into some other equivalent expression. Similarly, we show that 41(n log n) diagonal

ip's are required in the worst case to transform one n-vertex numbered triangulated

planar graph into some other one. Both of these lower bounds have matching upper

bounds. An O(n log n) upper bound for associative, commutative operations was known

previously, whereas we obtain here an O(n log n) upper bound for diagonal flips. , j)

'Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Research supported

in part by the National Science Foundation under grant CCR-8658139, by the Defense Advanced Research

Projects Agency, monitored by the Space and Naval Warfare Systems Command under contract N00039-87-

C-0251, and by DIMACS, a National Science Foundation Science and Technology Center, Grant No. NSF-

STC88-09648.
2 Computer Science Department, Princeton University, Princeton, NJ 08544 and NEC Research Institute,

Princeton, NJ 08540. Research at Princeton University partially supported by the National Science Foundation,

Grant No. DCR-8605962, the Office of Naval Research, Contract No. N00014-87-K-0467, and by DIMACS.

3 Mathematics Department, Princeton University, Princeton, NJ 08544. Research partially supported by

the National Science Foundation, Grant No. DMS-8806067.01.

EIL1

1. Introduction

The object of this paper is to study succinct representations of derivations in transforma-

tional systems. To model transformational systems, we use graph grammars [2]. Roughly

speaking', a graph grammar consists of a finite set of productions {Li -+ Ri}. Each produc-

tion Li -- R, consists of a connected graph Li, called the left side of the production, and

a graph R,, called the right side of the production. A production Li --+ R, is applicable to

a graph G if G contains a subgraph isomorphic to Li. The production is applied to G by

replacing an occurrence of Li in G by a copy of R,. (There may be more than one way of

applying a production to G, since G may contain more than one copy of the left side.) A

derivation is a sequence of graphs G = Go, G1, G2 ,. • -, Gm = G' such that each Gi is obtained

from G.-I by applying one production once. The derivation transforms graph G into graph

G'. A particular application of a production during a derivation is called an action.

Let r be a fixed graph grammar, and let G be a fixed starting graph of size n. Consider
the collection R(G, r, m) of all graphs obtainable from G by derivations of length m or less.

Our main result is an efficient method of encoding any graph in R(G, r, i). To encode any

such graph uses O(m + log (n)) bits. (In most cases of interest, m > n, and the second

term in this bound is zero.) This bound is an improvement by a logarithmic factor over the

obvious bound of O(m log s), where s > n is the size of the largest graph occurring in the

derivation [9]. This logarithmic improvement is crucial in obtaining the tight lower bounds

discussed below.

Our encoding represents an equivalence class of derivations obtained by permuting com-

mutative applications of the productions. The efficiency of such an encoding arises from

the fact that there may be many derivations equivalent to any given one, a fact that follows

from the localized nature of applications of the production rules. For simplicity we formulate

our result in the setting of labeled directed graphs; it holds for more general combinatorial

structures such as hypergraphs and simplicial complexes, however.

Our result has a number of general and specific applications, both theoretical and prac-
tical. Our main theoretical application is in demonstrating the existence of pairs of graphs

that are far apart, in the sense that any derivation of one graph of the pair from the other

must take many actions. If N(G) is a lower bound on the number of graphs derivable from a

graph G of size n, then there is a graph G' such that any derivation of G' from G has length

11(log N(G) - n). This is because our encoding scheme implies that the number of graphs

derivable from G' by derivations of length m or less is at most cn+m, for some constant c

that depends only on the grammar and not on m and n.

Our first application involves transformations of arithmetic expressions. Consider the

collection of fully parenthesized expressions of n variables over an associative, commutative

binary operation. A move consists of applying either the commutative law (exchanging

two subexpressions that are combined by the operation) or the associative law (erasing a

pair of matching parentheses to put three expressions at the same level, and adding a new

pair of parentheses to alternatively regroup this triple). We show that given any n-variable

'Section 2 gives a precise definition of the form of graph grammar that we use.

2

expression E, there is an equivalent expression whose distance from E in this metric is

Q(n log n). This solves an open problem of Culik and Wood [11, who obtained a matching

upper bound. Thus the worst-case distance between two equivalent expressions is 0(n log n).

This contrasts with the corresponding bound of 2n - 0(1) if commutativity is not allowed

[6].

As a second application of our lower bound, we consider the collection of numbered

triangulations of the plane, transformed by the "flip" operation. This operation removes

an edge, thereby creating a quadrilateral face, and replaces it with the other diagonal of

the face. A flip is only allowed if it does not create a multiple edge. Our encoding method

proves that there exist pairs of n-vertex triangulations that are SI(n log n) flips apart. We

show, furthermore, that this bound is tight by giving a method for converting any n-vertex

triangulation into any other in 0(n log n) flips. This improves the previous 0(n 2) upper

bound of Wagner [8].

We envision several other applications of our technique. First, it can be used to efficiently

encode graphs or other combinatorial structures that are close to a given one (in the sense

of being obtainable by a small number of transformations). Such encodings may be useful in

situations that require the representation of multiple versions of a structure, as in program

transformation systems and other applications of persistent data structures [3]. Second, it

provides a way to enumerate graphs of various kinds that are generated by graph grammars

or other such transformational systems. By enumerating our encodings rather than enu-

merating sequences of productions, all of the desired graphs will be generated, but with far

fewer redundant copies of isomorphic graphs.

The remainder of this paper consists of five sections. In Section 2 we give a precise for-
mulation of graph grammars and graph grammar derivations, describe our encoding scheme

for derivations, and use this to prove upper bounds on the number of graphs obtainable

by short derivations. Section 3 gives several refinements and improvements of our method.
Sections 4 and 5 show how the encoding scheme applies to prove our lower bound results for

expressions and plane triangulations. Section 6 contains our upper bound on the distance

between plane triangulations; it is independent of the rest of the paper.

2. Encoding Graph Derivations

We shall be concerned with graphs that are undirected and of degree at most b (a fixed

constant independent of n). Each end of each edge is labeled with an integer called an

edge-end label. The edge-end labels incident on a vertex are distinct and between 1 and b

inclusive. It will be useful to be able to refer to half of an edge. Each such half-edge has

one end vertex from the original edge, and one edge-end label. We allow the graph to have

multiple edges between the same pair of vertices, and even to have self-loops. (It is easy to

modify our construction to disallow such structures, although doing so would only weaken

our lower bounds.)

A graph grammar (usually denoted by 1) is a finite set of productions {L, --+i Rli
1,2,... }. The ith production is comprised of three parts: Li, the left side of the production;

3

R, the right side of the production; and -i, the correspondence of the production. The

three parts of a production have the following characteristics:

Li: This is a connected, undirected, edge-end labeled graph, with degree bounded by

b. Strictly speaking, Li is not a graph, because it has a set of half-edges that have

only one end vertex. The one end vertex of each half-edge that is attached to a

vertex of Li has an edge-end label.

R : This is also a graph with edge-end labels, and half-edges, of which it has the same

number as Li.

-i: This is a one-to-one map between the half-edges of Li and those of Ri.

The production Li -"+i R applies to a graph G if G contains a set of vertices S such that

G(S) (the subgraph induced by S in G) is isomorphic (including edge-end labels) to Li. The

induced subgraph G(S) is most simply defined by retaining half of every edge incident to

a vertex in S. The half-edges of G(S) come from the edges of G with one end-point in S

and one not in S. The production is applied by replacing this occurrence of Li in G by R,
where each half-edge of R, is attached to a half-edge of G - G(S) just as the corresponding

half-edge of Li was attached. Sections 3 and 4 give examples of specific graph grammars.

Each vertex occurring in an Li has a unique position number from the set {1,2,... ,c},
where c is the total number of vertices in all left sides. The position numbers will be used to
uniquely specify a vertex in a production. The vertices of each R, are also numbered 1, 2,...

within each production. These numbers are the right position numbers.

A derivation is a sequence of graphs G = Go, G 1,... , Gn = G' such that each Gi is

obtained from Gi- by applying one production once. An action is a particular application

of a production during the derivation. The derivation transforms G into G'. The length of

such a derivation is m, the number of actions in it.

We shall construct a pair of functions ENCODEG,r and DECODEG,r. The function

ENCODEG,r takes a derivation D that transforms G into some other graph G', and returns

a string of symbols from the alphabet E = {0, 1, 2,..., c} of length n + r .m. Her. n is the

number of vertices of G, m is the length of the derivation D, c is the number of vertices in

left sides of r, and r is the number of vertices in the largest right side of r. This sequence

is called the encoding of the derivation. The function DECODEG,r takes as input such an

encoding and returns the graph G'. That is,

DECODEG,r(ENCODEG,r(D)) = G'.

For our purposes it is useful to think of the process of applying a production as destroying

vertices (the ones that are matched to the vertices of Li) and creating new and different

ones (the ones introduced by A). The actions of a derivation D of length m are numbered

1, 2,..., m in the order in which they occur. Each vertex that is created during the derivation

can be identified uniquely by specifying the number of the action that created it and the

4

position number of the vertex in R, that created it. This is the name of the vertex. The

required vertices of an action are the vertices that are destroyed by it. An action is said to

be ready at some time during a derivation if all of its required vertices exist at that time.
Readiness implies that the entire copy of Li that is to be replaced (including all of its edges

and half-edges) is present as well.

Lemma 1 Consider a derivation D that transforms G into G'. If the actions of D are
reordered in any way so that each production is ready when it is applied, then the new

derivation also transforms G into G'.

Proof. By induction it is sufficient to prove that if at and at+, (two consecutive actions of
D) are such that none of the required vertices of action at+, is created by at, then if these
actions are swapped the resulting derivation also transforms G into G'. Since either order is
allowed, we know that those vertices created by at are not used by at+, and those created

by at+, are not used by at. It follows that the actions commute, since they do not involve
any of the same vertices. 0

We can now give an explicit algorithm for computing the encoding of a derivation D.

First, the actions of D are numbered, the vertices of the derivation are named, and the

required vertices of each action are computed.

Our encoding algorithm will assign to each vertex of the derivation a unique number.
First, the vertices of G are numbered {1, 2,... n} in an arbitrary order. (The same ordering

must be used by the decoding procedure described below.) The remaining vertices are
numbered in conjunction with the constrtction of a canonical derivation D', which is a

reordering of the actions of D.

The actions of the canonical derivation D' are computed one by one. At any time it
is easy to determine which actions are ready; these are the ones whose required vertices

exist. Let q be the ready action that destroys the lowest numbered vertex among all ready

actions. This action is the one chosen to be the next action of D'. This action is applied to

the graph, and the vertices created by it are now numbered consecutively starting after the
largest vertex number used thus far. (If several vertices are created by q, they are numbered
in the order of the right position numbers in the right side of the production that created

them.)

After computing the canonical derivation D', the algorithm proceeds to compute a label
for every vertex that occurs in the derivation. The label of a vertex v is zero if v is not

destroyed by any action in the derivation. Otherwise it is the position number of the role

played by v in the production that destroys it.

The desired encoding is a list of at most n + r • m labels of all the vertices in increasing

order by vertex number.

We can now describe the decoding procedure. This algorithm takes the graph G (with
vertex numbers that agree with those of the encoding procedure), the grammar r, and

5

the encoding (the list of labels), and determines G'. The procedure works by constructing
the canonical derivation D', from which it is easy to get G'. As in most data compres-
sion/decompression methods, the decoding algorithm mimics the behavior of the encoding

algorithm step-by-step.

The crucial fact about the labels of the vertices existing at any time during the canonical
derivation is that from these it is possible to determine exactly which actions were ready
at the corresponding stage of the encoding process. This is accomplished by the following

matching procedure:

If a vertex v has a non-zero label, the label determines i, the production that

eventually destroys v, and also the role v plays in this production. For each such
vertex, check its neighborhood to see if it is isomorphic to Li (including edge-end
labels). This check is easy to do since we know which vertex of Li must match v,

Li is connected, and there are edge-end labels to follow. (Recall that the edge-
end labels incident to a vertex are disjoint.) If such a subgraph is found, then

the labels of these vertices are checked to see if they match the position numbers
of the roles that they are supposed to play in the proposed action. If all of these

tests are passed, then the action is ready.

Lemma 2 The matching procedure determines the ready productions that existed at the
corresponding stage of the encoding process.

Proof. If an action is ready, then the matching procedure will certainly find it, because the

vertices corresponding to the left side of the ready action will exist and will be labeled in a

way consistent with all the conditions checked above.

On the other hand, suppose that the check described above is satisfied starting from
some vertex v. Let i be the production indicated by the label of v, and let S be the set of
vertices that form the subgraph isomorphic to Li. We claim that in any continuation of this
derivation all vertices of S must be destroyed simultaneously by a single action. Since all
these vertices are destroyed by one action, this action must be ready now.

It remains to show that all vertices of S must be destroyed simultaneously. Consider the
first action a in some continuation of the derivation that destroys some vertex w of S. Since

a is the first action involving the vertices of S, at the moment action a is applied, all of
the vertices of S will exist (and have the same labels). From the vertex w the matching
algorithm described above will construct the set S. There is no other possible matching

pattern involving w. Therefore the action a destroys all the vertices of S simultaneously. 03

Now, given that we know the ready productions and the numbering of the vertices of the

current graph, it is easy to find q (the next production of D') because it is the ready action
that destroys the lowest numbered vertex. This action is applied to the graph. The vertices

created by it are numbered sequentially (as in the encoding procedure) and are labeled as
specified by the encoding. This step is repeated to determine all of the productions of D'.

The process terminates when there are no ready productions.

6

The following theorem, which bounds the number of graphs obtainable from a given one

as a function of the length of a derivation, is a consequence of our encoding scheme.

Theorem 1 Let G be a graph of n vertices, r be a graph grammar, c be the number of

vertices in left sides of r, and r be the mazimum number of vertices in any right side of a

production of r. Let R(G, r, m) be the set of graphs obtainable from G by derivations in r

of length at most m. Then IR(G, r, m)j < (c + 1)n+' "T
.

Proof. Encode the derivation using the scheme described above. The length of the encoding is
at most n+r -m symbols. This encoding can be padded with zeros so that its length is exactly

n + r • m. (This will not interfere with the decoding process, since it is self-terminating.)

The alphabet is of size c + 1, so the number of such encodings is (c + 1)n+ r '". Each graph

reachable by m or fewer actions is the outcome of applying the decoding procedure to one

of these encodings. Therefore the number of such graphs is at most the number of such

encodings. 0

3. Generalizations and Improvements

This section describes various extensions and improvements to our encoding scheme, most

of which will be used later in this paper.

3.1. Encoding short derivations

Our encoding scheme can be modified to make it more efficient when the length of the
derivation is short compared to the size of the starting graph. In this case most of the labels

of the vertices of the initial graph are zero. The more efficient encoding specifies which
vertex labels are non-zero, and only includes labels for these in the vertex label list. Let k

be the number of vertices that have non-zero label in the initial labeling of G, and let m, n,

r and c be defined as above. Then the size of this encoding (in bits) is:

log 2 nl + [log2 () 1 + (k + mr) log2(c + I)1.

The first term is for bits to encode k, and the second term encodes the subset of vertices

with non-zero) labels.

Theorem 2

log IR(G, r, m), = O(log (n) + m),

where R(G, r, m) is the number of graphs obtainable by derivations of length at most m. in

grammar r starting from a graph G of n vertices. (If m > n then log (n) is interpreted as

zero).

7

Proof. Theorem 1 shows that log IR(G, r, m)l = O(n + m). If c. m > n then O(n + m)=

O(m) = O(log (n) + M).

If c. m < In then we use the encoding scheme described above. Since each action causes

at most r vertices of G to have non-zero labels we know that

1
k < r . m < _n.

It follows that

(k + mr) [og2(c + 1)1 = O(m),

and that

log 2 () log 2 (n _log 2 () = r log2 .

Finally, we know that log2 n < log2 (a). The theorem follows from these inequalities and

the bound on the number of bits used by the efficient encoding scheme. 0

3.2. Leaders and followers

The labels on the set of vertices destroyed by an action contain redundant information. For

example, each label of this set has sufficient information to determine which production is

the one that destroys all of them. There is a way to eliminate this redundancy and thereby

reduce the size of the encoding in most cases.

The new encoding algorithm begins by computing the standard encoding described above.

It then applies a map f to each symbol of the encoded string, giving the new encoding. It

remains to define the map f.

Let one vertex of each Li be chosen to be the leader, and let all the other vertices be

followers. For each Li choose a spanning tree. (This can be done, since each left side is

connected.) For each follower vertex v, let DIR(v) be the value of the edge-end label of the

v end of the first edge on the path (in the spanning tree) from v to the leader of Li. (In

other words, starting from any vertex in Li, following the DIR(.) direction repeatedly will

lead to the leader.)

The map f is defined as follows (Irl is the number of productions of F, and v(x) is the
vertex of a left side with position number x.):

0O if X = 0

f = R if v(x) is the leader of Li

Irl + DIR(v(x)) if v(x) is a follower

The decoding algorithm must be modified to accommodate this new encoding. The only

difference is in the matching step, which is revised as follows:

8

For each vertex v that is a leader, check its neighborhood to see if it is isomorphic

to Li. If such an isomorphic subgraph is found, then the labels of these vertices

are checked to see if they are all followers, and that if a directed edge is drawn

from each follower w in the direction of DIR(w) (which is the label of w minus

FIr) then the result is a directed spanning tree rooted at v. If all of these tests

are passed, then the action is ready.

We now need to verify that Lemma 2 still holds; that is, that the sets of vertices satisfying

the new matching procedure above exactly correspond to the ready actions. The first part

of the proof remains easy; any ready action of the original derivation gives rise to a match

in the above procedure. On the other hand, a match also indicates that the corresponding

action is ready. Let S be the set of matched vertices. Starting from any follower vertex

w E S, the entire set S can be constructed uniquely. Similarly, from the leader vertex v of

S the set S can be uniquely constructed. This is a sufficient condition to guarantee that all

vertices of S are destroyed simultaneously, which (as shown above) is the condition that we

need in order to prove that the action is ready.

It may be possible to further reduce the alphabet size by making use of the flexibility

that exists in choosing which spanning tree to use on each left side. The number of labels

can be reduced from IFI + d + 1 to I rI + d' + 1, where d' is the number of different directions

used in the directed spanning trees of the left sides.

The leader-follower technique applies in any situation in which there is a production with

more than one vertex on the left side. It may decrease the size of the label alphabet, but it

can never increase it. If the technique applies, then it can be used in conjunction with the

next technique to further reduce the alphabet size.

3.3. Eliminating the zero label

Suppose that for any graph occurring in a derivation using r, there exists a way of labeling it

with non-zero labels so that no production is ready. Then the zero label can be eliminated.

The encoding procedure must be modified slightly to eliminate the zero labels, while the

decoding procedure will remain the same.

Here is how the encoding procedure is revised. First compute the labeling of all the

vertices as before. The vertices with zero labels are exactly those that end up in G', the

final graph of the derivation. These are called the terminal vertices. Compute the labeling

of G' with non-zero labels so that no production is ready. For each terminal vertex, replace

its label with that terminal label just computed in G'.

It is easy to see that this works by reviewing the proof of Lemma 2. The proof only differs

at the point where it is shown that if the labels match the pattern of some left side Li, then

the production i applied to that set of vertices S is ready. The crucial statement is that if

this situation occurs, then all the vertices of S must be destroyed simultaneously. This is

still true. All of the vertices cannot be terminal ones, since their labels admit the application

of a production. The set cannot be comprised of both non-terminals and terminals, because

9

then the non-terminals would never be allowed to change. Therefore all the vertices of S
must be non-terminals, and the previous argument shows that the production is ready.

Notice that in any situation in which the leader-follower technique applies, we can elimi-

nate the zero label. This is done by labeling all the terminal vertices to be followers.

3.4. Tags

It is sometimes useful to carry extra information along during a derivation. (Sections 4 and 5

give examples of this.) To accommodate this, we allow each vertex to have a tag associated
with it. Each production also supplies an arbitrary function that is used to define the values

of the tags of the vertices created in terms of the tags of the vertices destroyed. Because the
tags are computed locally (as a function only of tags of the vertices on the left side of the

production) the commutativity that we have exploited in constructing our encoding is still

present. Therefore our encoding method and theorems apply to tagged graphs without any

changes.

4. Expressions over an Associative, Commutative Operation

Let X = {x, x 2,... ,I} be a fixed set of variables, let E) be a binary operation, and let En

be the set of fully parenthesized expressions over D in which each variable xi occurs exactly
once. We consider the problem of estimating how many applications of the associative and

commutative laws are required to transform any expression in En into any other.

To make this problem somewhat more concrete, we restate it as a problem on bi-

nary trees. Our binary tree terminology is that of Knuth [5.] Let Tn be the set
of full binary trees with n external nodes, numbered 1,2,...,n. Any permutation of
1,2,... ,n2 is allowed; thus IT=I = . (n - 1)!(2-) [4]. We permit two trans-

formations of a tree T E T,: a twist, in which the left and right subtrees of a spec-

ified internal node are exchanged, and a rotation, in which an internal node changes
places with one of its children while symmetric order in the tree is preserved. (See

Figure 1.) The problem is to estimate the minimum number of twists and rotations

needed to transform any tree in Tn into any other. We denote this number by Rn.

10

twist

x4 - x4

X1 Xl

X2 X3 X2 X3

((X 1 e (X2 eX 3)) (X 4) (X4 o (X I (X 2 ex 3)))

.0

X1

X 4

X2 X 3

(x1 e(X2 X3)eX4))

Figure 1: Illustrating a twist and a rotation.

This problem is equivalent to the expression transformation problem. The isomorphism

(also shown in Figure 1) between expressions and trees is the standard one - an external node

labeled i corresponds to the expression "xi"; an internal node corresponds to the expression

(El D Er), where E and E, are the expressions corresponding to the left and right children

of the node. A twist corresponds to the application of the commutative law; a rotation, to

an application of the associative law.

Culik and Wood [1] derived an O(n log n) bound on &,. We shall derive a matching

Q(n log n) bound. (Culik and Wood actually worked with a slightly different transforma-

tional system, but their result applies to our system, and our result applies to theirs.)

These transformations can be represented as productions in a graph grammar. The graphs

we consider differ slightly from the binary trees described above. To transform a tree into

the corresponding graph, add an extra node of degree one, called the superroot, and connect

it to the root of the tree. The edge-end labels of the three edges incident to an internal

node are 1, 2, and 3, for the edges connecting the node to its left child, right child, and

parent, respectively. (The superroot is the parent of the root.) The n + 1 edge-ends that

are incident on vertices of degree one are irrelevant, since these will never be involved in any

production. The vertices of degree one are tagged with a name that will be carried along

during the derivation. The following figure shows an expression tree and the corresponding

graph.

11

superroot

3

X
4

Xl

3 X4

X2 X X 1
2

X2 X3

Figure 2: A tree and its corresponding graph.

The grammar to represent this process has three productions, one for a twist, one for a
left rotation, and one for a right rotation. These productions are shown in Figure 3.

3 3

3 3

3 3

22

Figure 3: The productions for a twist and rotations. The correspondence between the half

edges is obtained by pairing the topmost edges, and walking clockwise simultaneously around

the left and right diagrams.

From Theorem 1 it immediately follows that starting from a tree with n external nodes,
the number of trees reachable in m or fewer twists and rotations is at most 6 2n+2m+1. The

leader-follower technique can be used to prove a tighter bound. By choosing the upper vertex

12

of the left side of each rotation to be the leader, and the other to be the follower, the label

alphabet size is reduced to five. The zero elimination technique now applies. This reduces

the alphabet size to four, and the bound to 4
" +2"+1.

This can be further improved by specializing the encoding and decoding procedures for

this application. We do not need to encode the labels for the n leaves or the superroot,
because these are not involved in any actions. This improves the bound to 4

"+2"1'- . The

total number of bits needed to encode any tree derivable in m or fewer moves is at most

2n + 4m - 2.

We summarize this result in the following theorem:

Theorem 3 For any expression E of n variables:

1. The number of different arithmetic expressions obtainable by m applications of the

commutative and associative laws starting from E is at most 2 2n+4m-2 .

2. There exists an expression E' such that the number of operations required to trans-

form E into E' is Q(n log n).

Proof. Part 1 follows from the prior discussion. Part 2 follows from the fact that there are

(n - 1)! (2n.,2) expressions obtainable starting from E. In order to obtain all of them in m

moves we must have

22n+4m-2 > (n - 1)!(n)- 2

2n + 4m - 2 = S(n log n)

m = f2(n log n).

0

5. Numbered Plane Triangulations: A Lower Bound

A numbered plane triangulation (henceforth just called a triangulation) is an undirected

graph embedded in the plane all of whose faces are triangles and whose vertices are numbered

sequentially from 1. We denote by P, the set of all n-vertex triangulations. A flip of an

edge in a triangulation is the operation of removing an edge, thereby forming a quadrilateral

face, and adding the other diagonal of the face. (See Figure 4.) A flip is allowed only if it

13

does not introduce a multiple edge.

It

Figure 4: A flip in a triangulated graph, and the corresponding operation in the dual graph.

Let F,. be the minimum number of flips needed to convert any n-vertex triangulation into
any other. We wish to estimate F,. It is not hard to establish that F,, is 0(n2); Wagner [8]

gave a construction. We shall show in Section 6 that F,, is 0(n log n); in this section, we use

our succinct encoding approach to prove that F, is Q(n log n).

There is no upper bound on the degree of a vertex in a plane triangulation. Therefore,
in order to apply our technique, we shall work in the space of planar graphs that are dual

to plane triangulations. In such a graph, every vertex has degree three. (Each vertex of the

dual graph (a face in the original graph) maintains as a tag the set of vertex numbers of the

vertices in the original graph to which it is incident. These tags along with the dual graph
are sufficient to reconstruct the original numbered plane triangulation. This observation is

required in order to get a reliable upper bound on the number of reachable numbered plane

triangulations.) The edge-end labels of the initial graph are chosen arbitrarily, subject to the

constraint that walking one step clockwise around a vertex increases the label by 1 (modulo
3) This ordering of the edge-end labels encodes the embedding of the plane triangulation.

There are several different ways to represent sequences of diagonal flips as derivations in

a graph grammar. One way is shown in Figure 5 below.

X3X

>
__---------

Figure 5: Two productions for representing flip sequences as graph grammar derivations.

14

This method uses two productions, one for doing the flip, and the other one for preparing

the edge-end labels to allow the flip. Each flip in the original derivation may correspond to
as many as five actions: two to cycle the edge-end labels on one end, two for the other end,

and one for the actual flip. A sequence of m flips turns into a sequence of as many as 5m

actions. A plane triangulation of n vertices has 2n - 4 faces. Therefore the dual graphs in

which the derivations take place have 2n - 4 vertices. The number of vertices in left sides

of productions (c) is three, and the number of vertices in the largest right side (r) is two.

We can now apply Theorem 1 to bound the number of n node numbered plane trian-
gulations reachable in m flips by 4 2n+1

°
,

4
1

. This implies that, for any triangulation P, at

most 42n+10m-
4 distinct triangulations can be obtained by doing m or fewer flips. Since Pn

contains at least (n - 3)! triangulations (there are this many different sorted wheels, see Sec-

tion 6), there must be at least two triangulations, and indeed many pairs of triangulations,

that are QI(nlogn) flips apart; that is, Fn = Q2(n log n).

The bound on the number of reachable configurations can be tightened significantly by

the use of a different graph grammar. This grammar is shown in Figure 6.

15

- If

Figure 6: Six productions give a more efficient bound on flip distance.

15

Because this grammar includes each of the six ways that the ends of the edge to be

flipped can be labeled, there is a one-to-one correspondence between diagonal flips in the

plane triangulation and applications of one of the productions to the dual graph. Using the

leader-follower trick and eliminating the zero label reduces the number of different labels to

nine. Each production creates two new labels, so our improved encoding scheme proves that

the number of graphs reachable in m moves is at most 9 2n+2--4.

It turns out that leader vertices are not necessary at all. An encoding without leaders

can be made to work by using the convention that a production involving a pair of adjacent

vertices is ready if and only if their labels mutually point at each other. To verify that

the zero label (indicating a terminal vertex) is not necessary, we need to show that there

exists a labeling of any planar graph of degree three with follower labels such that no pair

of adjacent vertices point to each other. This can be done as follows. If the graph is a tree,

choose a place in the middle of some edge, and make all the vertices point away from this.

If the graph has a cycle, choose the labels of the vertices on the cycle to point consistently

around it. Now choose a subset of the remaining edges so that these edges plus the cycle

form a subgraph with all of the vertices and exactly one cycle. (This is a spanning tree with

one extra edge.) The follower label on a non-cycle vertex points toward the cycle along the

path in the tree. This gives the required match-free labeling. This argument bounds the

number of reachable configurations by 3 n+2m-4 .

The set of configurations reachable in m or fewer flips is not changed if we do not allow

a sequence to make a flip then immediately make another flip that cancels it out. This

observation means that of the nine possible labelings of the pair of vertices resulting after a

move, we can restrict our attention to eight of them. This improves the bound to 3 2n-4 8 m.

We summarize the results of this section in the following theorem.

Theorem 4 For any plane triangulation T of n vertices:

1. The number of different plane triangulations obtainable by m or fewer flips starting

from T is at most 3 2n-4 8 m.

2. There exists a plane triangulation T' such that the number of flips required to trans-

form T into T' is fl(n log n).

6. Numbered Plane Triangulations: An Upper Bound

Theorem 5 Let G1 and G2 be two n-vertex numbered plane triangulations (with no multiple

edges). If n > 5 then there is a sequence of O(n log n) diagonal flips that transforms G1 into

G 2 in such a way that there are no multiple edges in any intermediate state.

Proof. We shall show that any such triangulation G can be transformed into a particular

canonical form called a sorted wheel in O(n log n) diagonal flips. Using this transformation

16

we can transform G, into the sorted wheel, then transform the sorted wheel into G2 (using

the transformation in reverse).

A wheel of n > 5 vertices is a planar graph that has two special vertices called hubs, and

n - 2 other vertices called rim vertices. There is an edge from each hub to each rim vertex

(these are the spokes). There are n - 2 other edges in the graph, and these form a simple

cycle through all of the rim vertices. There is a unique way of embedding the wheel in a

sphere.

A sorted wheel of n vertices is a wheel with labeled vertices embedded in the sphere. The

hubs are labeled 1 and n, and the vertices of the rim are labeled 2,3,.-., n - 1 in clockwise

order when viewed from hub 1.

We first consider the special case of n = 5. Any graph G of five vertices satisfying the

hypotheses of the theorem is a wheel. We show this by first applying Euler's formula, which

implies that G must have six triangular faces and nine edges, and that the sum of the

degrees of the vertices is 18. No vertex can have degree two, because then its two neighbors
would be connected by two different edges, which violates the assumption that G has no

multiple edges. Furthermore, no vertex can have degree greater than four. It follows that

the multiset of the degrees of the vertices is {3, 3,4,4, 4}. The three vertices of degree four

must be attached to all the other vertices in the graph. This accounts for all of the edges

incident on the vertices of degree three, which therefore must not be neighbors. It follows

that the graph is a wheel in which the vertices of degree three are the hubs, and the vertices

of degree four are the rim.

We finish the proof for n = 5 in two stages. First we show that we can make vertices 1

and 5 the hubs of the wheel. Second we show that if the resulting structure is not the sorted
wheel (it must be its mirror image), then it can be transformed into the sorted wheel.

If vertices 1 and 5 are on the rim, then a diagonal flip of the edge between them makes

them the two hubs. If 1 is a hub and 5 is on the rim, then we flip the edge between the

other two rim vertices creating a configuration where both 1 and 5 are on the rim, which we

handle as above. A similar technique suffices if 5 is a hub and 1 is on the rim.

The following diagram shows how the mirror image of the sorted wheel of five vertices is

transformed into the sorted wheel by the application of five diagonal flips.

17

3 I

3 I

3 1 3

We are now ready to consider the case n > 6. The transformation of the graph G into a

sorted wheel is broken up into three phases: constructing a Hamiltonian circuit, transforming

the Hamiltonian circuit into a wheel with hubs 1 and n, and sorting the rim of the wheel.

These three steps are described in the following three sections.

6.1. Constructing a Hamiltonian circuit

By Tutte's Theorem on planar graphs [7] (and by a theorem of Hassler Whitney [10]), any

4-connected planar graph has a Hamiltonian circuit. The graph G under consideration is

3-connected, since it is planar, triangulated, and has no multiple edges. Unfortunately, it

may not be 4-connected. If it is not 4-connected, then it must have a separating triangle;

that is, a triangle whose removal separates the graph. We shall show how to transform the

given graph G into one that has no separating triangles by making O(n) diagonal flips. This

will complete our construction of the Hamiltonian circuit.

The graph G is given to us embedded on a sphere. We choose a face arbitrarily and map
the embedding on the sphere to an embedding on the plane such that the chosen face is

infinite. Each separating triangle of G partitions the faces and remaining vertices of G into

two components. The interior component is the one not containing the infinite face. Let I,

be the set of faces interior to a separating triangle T1, and let 12 be the set of faces interior to

a separating triangle T2. Either I, and I2 are disjoint, or satisfy I C '2 or 12 C I,. It follows

18

from these relations that there must always be a set of innermost separating triangles, i.e.,
those that do not contain another separating triangle in their interior.

Our algorithm for eliminating separating triangles works from innermost separating tri-

angles outward. A diagonal flip operation is applied to an edge of one of the innermost

separating triangles. The chosen edge will be any one that does not introduce a new sep-

arating triangle. We shall prove below that there always exists such an edge. It follows

immediately that this algorithm eliminates all of the separating triangles in 0(n) diagonal

flips, because each flip reduces by at least one the number of edges that are in separating

triangles.

It remains to show that there is always an edge of an innermost separating triangle such

that if that edge is flipped then no new separating triangle is created. The following case

analysis shows this. Consider an innermost separating triangle with vertices a, b, and c. Let

d be the vertex inside the triangle such that triangle (a, b, d) is empty. (There must be such

a vertex since triangle (a, b, c) is a separating triangle, and there must be something inside

of it.) Similarly, there must be a vertex e outside of triangle (a, b, c) such that (a, b, e) is an

empty triangle. The figure below shows the situation.

e

ab

We shall assume that flipping edge (a, b) creates a new separating triangle, and show that

flipping one of the other edges does not create one. We know that the separating triangle

that was created by flipping (a, b) must be (d, c, e), and that (d, c) and (c, e) are edges of

the original graph. Triangles (a, d, c) and (b, d, c) must be empty, otherwise (a, b, c) would

not be an innermost separating triangle. We now know that the structure of the graph near

triangle (a, b, c) is:

e

b

d

Since the graph has at least six vertices, we know that there must be another vertex f

outside of triangle (e, b, c) such that (b, f, c) is an empty triangle. Now it is clear that flipping

edge (b, c) cannot create a separating triangle.

19

This completes our construction of a Hamiltonian circuit.

6.2. Transforming the Hamiltonian circuit into a wheel with hubs 1 and n.

Given that there is a Hamiltonian circuit, we can regard the graph as consisting of a cycle and
two triangulations of an n-gon, one on each side of the cycle. By definition, a triangulation

of a polygon has no interior vertices. A coning triangulation of a polygon is one in which

all of the interior edges of the polygon are incident to the same vertex. We shall make use
of several facts about diagonal flips in triangulations of a polygon [6]:

Fact 1: Any triangulation of an n-gon can be transformed into the coning triangulation
with all edges incident on a vertex v by making at most n - 2 diagonal flips,

each of which increases the degree of v by one.

Fact 2: Any triangulation of an n-gon can be transformed into any other in at most

2n - 4 diagonal flips.

Fact 3: In any triangulation of an n-gon, there is a vertex v such that v is incident to

only two edges, and those are the boundary edges that connect v to its two

neighbors around the polygon.

Call the two triangulations of the n-gon that comprise the current version of G the top
triangulation and the bottom triangulation. Let v be a vertex such that Fact 3 holds for v

in the top triangulation. Now we can apply Fact 1 to vertex v in the bottom triangulation,

to transform that triangulation into a coning triangulation to vertex v. This process will
never introduce a multiple edge, because all the new edges added to the bottom side of the
triangulation are incident to vertex v, which has no edges on the top side. The situation is

represented by the following picture:

We now change our definition of the top and bottom sides. We view vertex v as belonging
to the interior of the bottom side, which is a hub with n - 1 spokes connecting v to all other
vertices. The top side becomes a triangulation of an (n - 1)-gon. At least one of vertices 1

or n is on this (n - 1)-gon. Without loss of generality, assume that 1 is on this (n - 1)-gon.

(If 1 is not on this polygon, then the following construction can be fixed by swapping the

roles of n and 1.) Now we transform the triangulation of the (n - 1)-gon (the top side) into

20

a coning triangulation to vertex 1. The result is shown below.

V

We now flip edge (v, 1) and move 1 into the top side. The result is a wheel with hubs 1

and v, as shown below.

V

It remains to transform this wheel into one with vertices 1 and n as the hubs. If v = n

then we're done, otherwise it only remains to replace v by n. We begin by flipping any edge

around the rim of the wheel. The result looks like:

Now we retriangulate the bottom (n - 1)-gon so that it is a coning to n. Then we flip

edge (n, 1), and move n into the bottom half to give the following triangulation:

21

n

This construction works without creating multiple edges as long as the rim of the wheel

is always at least of size four. This is certainly the case since n > 6.

6.3. Sorting the rim of the wheel.

We first give a sequence of four flips that can transpose the order of any pair of adjacent
vertices around the rim of the wheel. The following diagram shows this sequence. This will

work as long as the number of vertices on the rim is at least four.

21109

2f1ls

22

If 6 < n < 15 we can use repeated transpositions to sort the wheel. From now on we

assume that n > 16.

A double wheel is a wheel with two rims, as shown below:

n

The number of vertices in the top rim differs from the number in the bottom rim by at

most one. Furthermore, all the edges in the region bounded by the two rims cross from one

rim to the other.

We shall now show how to use 0(n) diagonal flips to transform a double wheel into a

single wheel. We call this transformation a merge step. The merge allows us to form any

ordering of the vertices around the rim of the wheel subject to the constraint that the order

is consistent with that defined by the orderings on the two rims of the double wheel. That is,
if we traverse the rim of the wheel in clockwise order (from the point of view of, say, vertex

1), then the traversal will encounter all the vertices that came from the bottom rim (top

rim) of the double wheel in the same cyclic order in which they occurred in the bottom rim

(top rim) of the double wheel. A more intuitive way to think of this process is to imagine

two decks of cards (the double wheel) which are shuffled into one (the rim of the wheel).

This is also analogous to the way a merge sorting algorithm combines two sorted subfiles

into a sorted file.

One can also apply the merge step in reverse (an unmerge) to split a wheel into a double

wheel. A wheel can be sorted by applying a sequence of log02 (n - 2)1 unmerge-merge pairs.

(Observe that a merge sort can be implemented using these primitives. Each pass of the

sorting algorithm through all of the data corresponds to one of the unmerge-merge pairs.)

It remains to show how to implement the merge step (never introducing multiple edges)

in 0(n) diagonal flips. An edge (i,j) is called an amicable edge if (1) i is on one side of the

rim of a double wheel and j is on the other side, (2) the quadrilateral obtained by removing

edge (i,j) has one edge on each rim of the wheel and two edges crossing from one side of the

rim to the other, and (3) the other vertex of the quadrilateral on the same side of the rim as

i is counterclockwise from i (with respect to 1). The following diagram shows an amicable

edge (i,.1).

23

n

In any double wheel there must be an amicable edge. By flipping three edges in the

vicinity of an amicable edge we can create an (n - 2)-gon such that the edges on the outside

of the polygon do not connect any pair of vertices of the polygon. When this operation is

applied to the diagram above the result is shown below.

n

It is now the case that we can apply any algorithm for retriangulating the (r, - 2)-gon

between the two rims without fear of creating multiple edges.

We can apply this technique three times to transform a double wheel with one triangu-

lation between the rims into a double wheel with any other triangulation between the two

rims. Let (i,j) be an amicable edge of the initial double wheel. Let (k, 1) be an amicable

edge of the desired final triangulation. (These pairs of vertices may or may not be disjoint.)

Let x and x, be two neighbors on the top rim of the wheel such that x, is a counterclockwise

neighbor of x, and neither x nor x, is i, or k, or a counterclockwise neighbor of either i or j.
Since the length of the rim is at least 7, there must be such a pair. Define y and yc similarly

on the bottom rim.

To transform the triangulation between the rims from any one to any other, we first cut

the double rim at amicable edge (i,j) as shown in the figure above. We then re-triangulate
the region between the two rims such that (x, y) is an amicable edge. Then we close up

the cut of amicable pair (i,j) and open up the one for amicable edge (x, y). We then

24

retriangulate the polygon between the rims so that the pair (k, 1) becomes an amicable edge.
We then close up the cut at amicable edge (x, y), and open up the cut at pair (k, 1). Now

we triangulate the (n - 2)-gon as specified by the desired final triangulation between the

rims. Closing up the cut at amicable pair (k, 1) completes the construction of the desired
triangulation between the rims. This process can never introduce any multiple edges, and it

uses O(n) diagonal flips.

As the desired triangulation between the rims, we choose any on- such that there is an
edge joining each pair of vertices that are adjacent on the rim of the desired wheel. It is

easy to see that there must be such a triangulation between the rims.

The last step of the process is to convert such a double wheel into a single wheel. The

figure below illustrates how this is done. The highlighted edges are those of the rim of the

wheel.

This step does at most one flip for each vertex of the rim of the wheel, and completes the

merging process. This also completes the proof of the theorem. 0

Corollary 1 Let G1 and G2 be two n-vertex numbered plane triangulations (possibly with

multiple edges). There exists a sequence of O(n log n) diagonal flips that transforms G1 into

G2 in such a way that no flip ever creates a self-loop.

Proof. An easy case analysis proves the result for n = 4. We will show that multiple edges

can be eliminated by flipping them one at a time. This takes only a linear number of flips,

since each edge is flipped at most once. The corollary result follows by applying Theorem 5

to the graphs obtained by eliminating the multiple edges from G, and G 2 .

We now prove our claim that if any multiple edge in a plane triangulation is flipped, the

number of multiple edges is reduced. Let el and e2 be a pair of edges between vertices v and

w in a plane triangulation. The cycle (el, e2) divides the vertices (except v and u,) into two

disjoint sets, those on one side of the cycle, and those on the other side. Neither of these

two sets can be empty, since every face of the graph is a triangle. If either edge el or e2 is
flipped, it is replaced by an edge that connects a vertex on one side of the cycle to one on

25

the other side. Since before the flip there were no edges between vertices in these two sets

(they are separated by a cycle) the edge created by the flip cannot be a multiple edge. -

References

[1] Culik, K., D. Wood, A note on some tree similarity measures, Inform. Process. Lett.

15(1982):39-42.

[2] Ehrig, H., M. Nagl, G. Rozenberg, A. Rosenfeld (Eds.) Graph-grammars and their

application to computer science, Lecture Notes in Computer Science 291, Springer-

Verlag, 1987.

[3) Driscoll, J. R., N. Sarnak, D. D. Sleator, R. E. Tarjan, Making data structures persistent,

J. Computer and System Sci. 38(1989):86-124.

[41 Knuth, D. E., The art of computer programming, Vol 1: Fundamental Algorithms,

Addison-Wesley, Reading, MA, 1968.

[5] Knuth, D. E., The art of computer programming, Vol 3: Sorting and Searching, Addison-

Wesley, Reading, MA, 1973.

[6] Sleator, D. D., R. E. Tarjan, W. P. Thurston, Rotation distance, triangulations, and

hyperbolic geometry, J. Amer. Math. Society 1(1988):647-681.

[7] Tutte, W. T., A theorem on planar graphs, Trans. Amer. Math. Soc. 82(1956):99-116.

(8] Wagner, K., Bemerkungen zum Vierfarbenproblem, J. Deutschen Math.-verein.

46(1936):26-32.

[9] Welzl, E., Encoding graph derivations and implications for the theory of graph gram-

mars. Lecture notes in computer science 172 pp. 503-513, Springer-Verlag, 1984.

(10] Whitney, H., A theorem on graphs, Ann. of Math. 32(1931):378-390.

26

