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Short Frequency Fourier Transform for Fault

Diagnosis of Induction Machines Working in

Transient Regime
Jordi Burriel-Valencia, Ruben Puche-Panadero, Member, IEEE, Javier Martinez-Roman, Angel Sapena-Bano and

Manuel Pineda-Sanchez, Member, IEEE

Abstract—Transient-based methods for fault diagnosis of
induction machines are attracting a rising interest, due to their
reliability and ability to adapt to a wide range of induction
machine (IM)’s working conditions. These methods compute
the time-frequency (TF) distribution of the stator current, where
the patterns of the related fault components can be detected.
A significant amount of recent proposals in this field have
focused on improving the resolution of the TF distributions,
allowing a better discrimination and identification of fault
harmonic components. Nevertheless, as the resolution improves,
computational requirements (power computing and memory)
greatly increases, restricting its implementation in low cost
devices for performing on-line fault diagnosis. To address these
drawbacks, in this paper the use of the short frequency Fourier
transform (SFFT) for fault diagnosis of IMs working under
transient regimes is proposed. The SFFT not only keeps the
resolution of traditional techniques, such as the short time
Fourier transform (STFT), but also achieves a drastic reduction
of computation time and memory resources, making this proposal
suitable for on-line diagnosis. This method is theoretically
introduced and experimentally validated using a laboratory test
bench.

Index Terms—Induction machines, fault diagnosis, short time
Fourier transform, short frequency Fourier transform, time-
frequency distributions, on-line diagnosis

I. INTRODUCTION

C
AGE IMs are the keystone of electromechanical energy

conversion in industrial installations, due to their

reliability, robustness and low maintenance requirements.

Despite these features, IMs are not free from having failures.

Unexpected breakdowns can cause extremely heavy economic

loses, ranging well beyond the self IM’s cost. So, there is a

growing interest in on-line condition monitoring methods [1],

[2], whose main goal is to detect a fault at its early state

without disturbing the IM’s normal operation, allowing for

taking an appropriate action plan.

Fault diagnosis of IMs via the current analysis is widely

used because it is a non invasive method, has low hardware

requirements (just one current must be sampled) and can

identify a great variety of machine faults through the analysis
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of the current in the frequency domain, using the current

spectrum for steady state regime [3], or the current TF

distribution for transient regimes [4]. The frequencies of

the fault harmonics that appear in the stator current have

been theoretically introduced in the technical literature. For

instance, a rotor broken bar fault induces or amplifies a set of

harmonic components of frequencies fbb [5],

fbb = fsupply(1 + 2ks) k = ±1,±2,±3 . . . , (1)

where fsupply is the frequency of the power supply and s is the

slip. Other faults generate different, characteristic frequencies

similar to (1).

From an industrial point of view, on-line fault diagnostic

methods face practical difficulties. The spectral resolution

must be high enough to detect the fault harmonics among a

myriad of spectral lines that appear in the current spectrum

[6], even in the case of a healthy machine [7]. Besides,

the sampling rate must be high enough to reduce aliasing

distortions. Modern hardware devices can operate at sampling

rates well above 100 kHz [8], so that the use of high sampling

rates is common: 20 kHz in [9], 50 kHz in [10] and 100 kHz

in [11]. Additionally, the diagnostic procedure must be simple,

compact and fast, to be executed on-line by embedded devices

[6], [7], [12], or even by the same devices that control the IM,

such as variable speed drives (VSDs). However, some of these

requirements are conflicting ones. For example, to achieve a

high spectral resolution, a long acquisition time is needed,

which combined with high sampling rates implies that a huge

amount of data must be stored and processed. This requires

large size memory and high computing power, that is, costly

devices and off-line diagnostic methods.

These drawbacks have a major impact in transient-

based fault diagnosis methods, which require advanced and

complex signal processing tools such as the STFT [13],

[14], the wavelet transform [15], [16], the empirical mode

decomposition [17], [18], the Wigner Ville distribution (WVD)

[19], among many others. Wavelet-based transforms require

a proper mother wavelet choice and a precise adjustment

of the bands of decomposition to perform fault diagnosis.

Quadratic-based TF transforms, such as the WVD, generate

cross-terms effects that can difficult the evaluation of the

spectrogram, and their minimization has been widely discussed

in the technical literature [20]–[22]. On the contrary, these

problems do not appear if the linear-based TF transforms,

such as the STFT, are used, so the STFT has been selected
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in this paper to carry out the fault diagnosis in transient

regime. All these TF transforms generate three dimensional

(time-frequency-amplitude) representations, instead of the

two dimensional representation (frequency-amplitude) used

in steady state, which increases substantially the computing

power and memory requirements of any diagnostic system.

Hence the complexity of these signal processing-based

condition monitoring techniques have limited their use in real-

time applications [23], specially in field programmable gate

array (FPGA) [13], [24], digital signal processor (DSP) [25] or

even in general-purpose graphics processing units (GPGPUs)

[23].

To sum up, high sampling rates combined with long

acquisition times generate a large amount of data which must

be stored and processed, specially when using TF transforms.

But there is an important fact in the field of the fault

diagnosis of IMs that can alleviate these problems: the relevant

information about the main fault harmonics is limited to a

very small range of frequencies ([0, 100] Hz in case of rotor

broken bars or mixed eccentricity, for example). So, filtering

the current signal in the frequency domain only in this reduced

range of frequencies, instead of filtering the current signal in

the time domain and discarding afterwards all the frequency

data outside the band of interest, as is usually done, can

reduce drastically the required resources. This approach has

been recently proposed in the discrete case [4] using the fast

Fourier transform (FFT), and is extended in this paper to the

continuous domain, using the SFFT.

The structure of this paper is as follows: the theoretical

basis of the STFT and the SFFT are presented in Section II.

The election of the proposed method is justified in Section

III, and illustrated in Section IV using a fault component

extracted from the current of a simulated machine with a

rotor broken bar. In Section V the experimental validation is

carried out using a laboratory test bench. In both sections,

(Section IV and Section V) there is a comparative analysis in

terms of computation power and memory requirement between

the traditional method, based on the STFT, and the proposed

method, based on the SFFT. Finally, in Section VI the main

conclusions of this work are presented.

II. THEORETICAL BACKGROUND

This section compares theoretically the continuous

transform used traditionally for fault diagnosis of IMs,

the STFT (which uses filters in the time domain), and the

proposed technique based on the use of the SFFT (which

uses filters in the frequency domain).

A. Filtering in the time-domain: the short time Fourier
transform (STFT)

The STFT is a well-known technique used for studying

non-stationary signals in industrial applications. The STFT of

currents and vibrations has been extensively used for detecting,

in transient regime, different types of IM’s faults such as rotor

broken bars or damaged bearings [26], among others.

Given a time-domain current signal i(τ), the STFT uses a

window function h(τ) (assuming unitary amplitude) centred at

time t to obtain a modified signal it(τ), which emphasizes the

original signal i(τ) at that time t, and suppresses the signal at

other times. In other words, the non-stationary signal can be

considered as locally stationary, and then can be transformed

into the time-frequency domain [27],

it(τ) = i(τ)h(τ − t). (2)

Hence, the modified signal is a function of two times, t and

τ , as:

it(τ) ≃
{

i(τ) if τ is near to t

0 if τ is far away from t.
(3)

The Fourier transform of the windowed signal reflects the

frequency distribution around time t,

It(ω) =
1√
2π

∫

e−jωτ i(τ)h(τ − t)dt, (4)

and the energy density spectrum at time t is

PSP (t, ω) = |It(ω)|2 =

∣

∣

∣

∣

1√
2π

∫

e−jωτ i(τ)h(τ − t)dτ

∣

∣

∣

∣

2

.

(5)

For each different time the STFT generates a different

spectrum, and the totality of these spectra is the spectrogram.

B. Filtering in the frequency-domain: the short frequency
Fourier transform (SFFT)

As the STFT emphasizes the study of frequency properties

at specific time t, the SFFT allows to study the time properties

at a particular frequency ω, being the relation of the current

signal in time i(t) with the current signal in frequency I(ω)
the Fourier transform

I(ω) =

∫

i(t)e−jωtdt. (6)

Similarly to the STFT, the SFFT uses a window H(ω′)
centred at frequency ω to obtain a modified current signal Iω,

which emphasizes the original signal I(ω′) at that frequency

ω, and suppresses the signal at other frequencies,

Iω(ω
′) = I(ω′)H(ω′ − ω). (7)

Hence, the modified signal is a function of two frequencies,

ω and ω′:

Iω(ω
′) ≃

{

I(ω′) if ω′ is near to ω

0 if ω′ is far away from ω.
(8)

The inverse Fourier transform of the windowed signal

reflects the time distribution around the frequency ω

iω(t) =
1√
2π

∫

ejω
′tI(ω′)H(ω′ − ω)dω′, (9)

and the energy density spectrum at frequency ω is

PSP (t, ω) = |iω(t)|2 =

∣

∣

∣

∣

1√
2π

∫

ejω
′tI(ω′)H(ω′ − ω)dω′

∣

∣

∣

∣

2

(10)

Applying (6) to (9) [28]

It(ω) = e−jωtiω(t), (11)
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Fig. 1. Steps to obtain the spectrogram (bottom) of a synthetic chirp signal
y(t) = cos(0.8πt2) via the STFT (top, left) or via the SFFT (top, right).
The results are exactly the same.

so the STFT and the SFFT obtain the same result except for

the phase factor e−jωt. Since the energy density spectrum is

an absolute square, the phase factor e−jωt does not affect it

and either the STFT or the SFFT can be used to generate the

joint distribution, PSP (t, ω), (5) and (10)

PSP (t, ω) = |It(ω)|2 = |iω(t)|2, (12)

as depicted in Fig. 1. This figure shows the spectrogram of

a synthetic chirp signal y(t) = cos(0.8πt2) obtained using

either the STFT or the SFFT. The results are exactly the same,

as expected.

III. PROPOSED METHOD: FAULT DIAGNOSIS OF ROTATING

ELECTRICAL MACHINES VIA THE SFFT

As can be deduced from Section II-A and Section II-B, the

same spectrogram can be obtained via the STFT and the SFFT.

So, why is interesting the use of the SFFT as a method for
fault diagnosis? As can be seen in Fig. 1, both methods use

a window which is moved either along the time axis (STFT)

or along the frequency axis (SFFT) to obtain the spectrogram

of the current signal. Nevertheless, if the STFT is used, the

window must be shifted along the full-length of the signal,

which has been sampled at a frequency Fsampling . Besides,

although in any step (window translation) a spectrum from

[−Fsampling/2, Fsampling/2] is obtained, for fault diagnosis

the related main fault components appear in a very limited

frequency band (for example [0, 50] Hz for components due

to rotor broken bar or mixed eccentricity during the start-

up transient of an IM). Hence, in any step of the STFT, a

large amount of data, which is not relevant for fault diagnosis,

must be discarded, because the spectrum stores frequencies far

beyond the needs of diagnostic data. This drawback is more

pronounced with the higher sampling frequencies currently

used for fault diagnosis.

These problems can be greatly reduced with the use of the

SFFT. The translation of the window in the frequency domain

can be limited to the band covered by the expected fault

frequencies. For example, in case of a rotor broken bar, the left

sideband harmonic (LSH), k = −1 in (1), is one of the most

widely studied in fault diagnosis of IMs working in transient

regime. Its frequency during the start-up of the machine varies

from the frequency of the power supply fsupply (usually

50− 60 Hz) to 0 Hz and then grows up to its value in steady

state (close to fsupply). In this case, the SFFT can be limited to

study the frequency band [0, fsupply], improving the diagnostic

procedure in two ways. First, this reduces the number of

translations of the window and, therefore, the computational

resources and the time to obtain the spectrogram. On the

other hand, in any step the time properties at a particular

frequency of interest are obtained, so the full data obtained

is useful for fault diagnosis. This procedure is valid for any

type of fault. Therefore the current spectrogram obtained using

the SFFT in a limited frequency band contains the same

information, in terms of fault diagnosis, as the one obtained

by the STFT, but using far less resources. This allows for

computing spectrograms on-line using low cost digital signal

devices such as DSPs or FPGAs.

IV. CASE OF STUDY: LSH DUE TO A ROTOR BROKEN BAR

DURING THE START-UP OF A INDUCTION MACHINE

Prior to the experimental validation, the proposed method

and its advantages are illustrated in this section using the

evolution of the LSH due to a rotor broken bar during the

start-up of an IM. This harmonic component was extracted

in [29] from a simulated machine (whose characteristics are

presented in Appendix A), considering only the fundamental

space harmonics of its windings, sampled during T = 2 s

at Fsampling = 5 kHz, giving a total of N = 104 samples.

Basically, the LSH is a sinusoidal wave whose amplitude and

frequency vary continuously depending on the slip s. The

amplitude pattern of the LSH is shown in Fig. 2. First, the

amplitude decreases until it becomes null (s = 0.5, t = 0.92 s

). From this point, the amplitude increases until it reaches a

maximum. Finally, the amplitude decreases toward its steady

state value.

Similarly, the frequency of the LSH (Fig. 3) decreases from

50 Hz (s = 1) until it becomes null (s = 0.5, t = 0.92 s).

In the second half of the transient (s > 0.5, t > 0.92 s) the

frequency increases, keeping a constant value when the steady

state is reached.

To obtain the spectrogram of the LSH a Gaussian window

h(t) has been used to compute both the STFT and the SFFT

h(t) = (α/π)1/4e−αt2/2, (13)
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Fig. 2. Amplitude of the LSH (top), motor speed (middle), and motor slip
(bottom) during the start-up transient of a simulated induction machine with
a rotor broken bar. The vertical line corresponds to the time when the slip
s = 0.5 is reached.

Fig. 3. Evolution of the frequency of the LSH as a function of the rotor slip.

, where α is selected so that the Heisenberg box of the

window achieves the maximum overlap with the trajectory of

the fault harmonic component in the spectrogram, as in [29].

The optimum value of α for this fault harmonic component

is αopt = 341.5. This function is represented in the time and

frequency domains in Fig. 4.

Fig. 4. Gaussian window optimized for representing the LSH in the time
domain (top) and frequency domain (bottom).

This window is applied to the LSH (Fig. 2, top) to obtain

the spectrogram using both the STFT and the SFFT. As can

be seen in Fig. 3, the fault harmonic component evolves in

the the frequency band [0, 50] Hz. Hence, the frequency band

where the window is moved using the proposed method, the

SFFT, has been limited to [0, 60] Hz.

Fig. 5 shows the time-frequency-amplitude pattern

generated by the LSH using the STFT, and with the proposed

method, using the SFFT. As indicated in section II, the

spectrogram are identical, regardless the method used. If the

STFT is used, in any time step a window is applied to the

signal, the spectrum of the windowed signal is obtained, and a

huge amount of data irrelevant for fault diagnosis is removed

to keep just the useful data (in the frequency band [0, 60] Hz)

which is stored in each step of the transform. In contrast, if

the SFFT is used, the irrelevant data outside the [0, 60] Hz

band is removed only in the first step. Moreover the number

of steps to compute the time frequency distribution is lower if

the SFFT, NF , is used instead of the STFT, NT , keeping the

same results. In fact, not only the number of steps is reduced,

but also the power computing, the computation time, and the

memory requirements are downsized.

Considering the total number of bins of the full-length signal

of Fig. 2, M , as

M = Fsampling · T = 5 · 103 · 2 = 104 bins, (14)

when moving the window every single bin, the number

of window translations, or steps, in case of the STFT is

N = M = 104 bins. On the contrary, if the SFFT is used,

the window is just moved between [0, 60] Hz in the frequency

axis. Considering Kf the bin number corresponding to a given

frequency f

Kf = f
N

Fsampling
→

{

Kf = 0 if f = 0

Kf = 120 if f = 60,
(15)

then the proposed procedure involves moving the window

between the bins range [0, 120], and therefore just NF = 121
steps are needed to obtain the spectrogram in the frequency

band where the fault component is expected to appear.

This diagnostic spectrogram has the same information about

the main fault components as the one obtained with the

STFT. However, there is a substantial difference regarding the

computational cost and memory requirements. Table I shows a

comparative analysis between the STFT and the SFFT in terms

of number of steps, computation time and data processed.

These results have been obtained using a personal computer

whose main characteristics are exposed in the Appendix C.

As can be seen in Table I, the requirements to obtain the

diagnostic spectrogram have been drastically reduced if the

proposed method, based on the SFFT, is used, instead of using

the STFT. In fact, the use of the SFFT reduces in almost 99%
the resources required to perform the diagnosis.

V. EXPERIMENTAL VALIDATION

The experimental validation has been performed under

laboratory conditions, using a commercial motor, whose main

characteristics are given in the Appendix B, with an artificially
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Fig. 5. Steps to obtain the diagnostic spectrogram of the LSH (case of study section IV) using the STFT and the proposed method based on the use of the
SFFT. If the STFT is used, at each step the full spectrum of the windowed signal is obtained, and a huge amount of data, irrelevant for fault diagnosis, is
removed. In contrast, if the SFFT is applied, the irrelevant data are removed only at the first step. Besides, the number of the window displacements is far
smaller. Hence, the proposed method reduces drastically the resources required.

TABLE I
COMPARATIVE ANALYSIS OF THE DIAGNOSTIC COMPUTATIONAL COST

USING THE STFT AND THE PROPOSED METHOD BASED ON SFFT

Comparative analysis Reduction

(A) STFT (B) SFFT (A-B)/A (%)

Steps 10000 121 98.79

Computation time (ms) 4230 49.44 98.83

Data processed (kB) 726232 7543 98.96

rotor broken bar (Fig. 6), mounted in the test bench depicted

in Fig. 7.

The IM under test is fed through a VSD model ABB

ACS800-01-0005-3 (Fig. 7, left). As a mechanical load a

permanent magnet synchronous machine (PMSM) has been

used (Fig. 7, bottom). It is fed through a servo drive

model ABB ACSM1-04AS-024A-4 (Fig. 7, right). The control

method of the VSD has been established in open-loop constant

voltage per frequency (CV/F). Three tests, whose main

characteristics are shown in Table II, have been performed.

During the tests the output frequency of the VSD has been

changed linearly between two levels fmin and fmax each

tramp seconds. The value of α to build the window (13) has
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been computed according to [29] as

α =
2π(fmax − fmin)

tramp
. (16)

Fig. 6. Rotor with an artificially broken bar used in the experimental tests.

TABLE II
LABORATORY TESTS PERFORMED

Properties of the tests

case 1 case 2 case 3

Time test, T (s) 10 10 10

Sampling frequency, Fsampling (kHz) 5 5 5

N = F · T (bins) 5 · 104 5 · 104 5 · 104

Load % 70 50 100

fmin (Hz) 20 45 40

fmax (Hz) 25 50 50

tramp (s) 10 10 10

α eq. (16) π π 2π

The level of load of each test has been adjusted using the

torque control of the servo drive which supplies the PMSM.

This level has been established as a percentage of the rated

load of the tested IM. Additionally, the speed has been sampled

through the resolver sensor coupled to the PMSM rotor. The

tests have been performed during 10 s at a sampling frequency

of 5 kHz, as shown in Table II. Both signals allow to obtain

the spectrogram of the current and to compute the trajectories

that the fault components follow in the time-frequency plane.

TABLE III
COMPARISON OF THE STEPS NEEDED TO OBTAIN THE DIAGNOSTIC

SPECTROGRAM USING THE STFT AND THE SFFT

Number of steps Reduction

(A) STFT (B) SFFT (A-B)/A (%)

Case 1 50000 351 99.30

Case 2 50000 251 99.50

Case 3 50000 341 99.32

The results of applying both the STFT and the SFFT to

these tests are shown in Fig. 8. The diagnostic spectrograms

are the same regardless the method used. The four black lines

in each spectrogram are the theoretical patterns of the fault

components corresponding to the orders k = ±1,±2 in (1)

for each test. They appear in the spectrogram overlapping

harmonic components, so the presence of faults in the machine

is confirmed.

Fig. 7. Laboratory test bench. Top, ABB VSD (left), digital oscilloscope
(center) and servo drive (right). Bottom, cage induction machine coupled to
a permanent magnet synchronous machine.

TABLE IV
COMPARISON OF THE COMPUTATION TIME NEEDED TO OBTAIN THE

DIAGNOSTIC SPECTROGRAM USING THE STFT AND THE SFFT

Computation time (s) Reduction

(A) STFT (B) SFFT (A-B)/A (%)

Case 1 121.05 1.13 99.07

Case 2 118.60 0.79 99.33

Case 3 117.37 1.10 99.06

Moreover, a comparative analysis between the application of

the STFT and the SFFT has been performed using the three test

cases of Table II. This comparison has been developed using

the computer whose main features are shown in Appendix C.

Tables III and IV show reduction rates of several orders of

magnitude both in the number of steps and in the computing

time using the SFFT, where the window is moved in the

frequency domain, but just in the frequency bands of interest:

[0, 35] Hz case 1, [35, 60] Hz case 2 and [28, 62] Hz case3.

Besides, as can be seen in Table V, a huge reduction on

the amount of memory required to compute the spectrogram

has been achieved. Despite this reduction on computation

resources, both methods achieve the same diagnostic results,

making the proposed method, based on the use of the SFFT,

suitable to be implemented in low costs devices.

VI. CONCLUSION

In this paper a novel method for fault diagnosis of IM has

been introduced. The proposed method reduces considerably

the computational cost and the amount of memory required

to obtain the diagnostic spectrogram of the stator current,

while keeping the results obtained using traditional diagnostic
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Fig. 8. Diagnostic spectrogram generated by the currents of the three tests using the STFT: (a) case 1, (c) case 2, (e) case 3. And using the proposed method
based on the SFFT: (b) case 1, (d) case 2 and (f) case 3. In black, four lines are drawn which are the theoretical pattern of the harmonic fault components
of orders k = ±1,±2 obtained from (1).

TABLE V
COMPARISON OF THE AMOUNT OF MEMORY NEEDED TO STORE THE

DIAGNOSTIC SPECTROGRAM USING THE STFT AND THE SFFT

Data processed (kB) Reduction

(A) STFT (B) SFFT (A-B)/A (%)

Case 1 1.76 · 107 124013 99.3

Case 2 1.75 · 107 88214 99.50

Case 3 1.78 · 107 121867 99.32

method based on the STFT. The proposed method, based on

the SFFT, relies on filtering in the frequency domain, but

just in the frequency band of interest for fault diagnosis,

instead of filtering in the time-domaing along the full-length

of the signal, as using the STFT. This results in a huge

reduction of computational resources, more than 99% of

reduction in number of steps, computing time and memory

resources, allowing its implementation using low cost devices.

The proposed method has been theoretically introduced and

illustrated using the LSH signal of a simulated machine.

Finally, it has been validated using three tests performed at

different levels of load and speed using a commercial IM with

a rotor broken bar.

APPENDIX A

SIMULATED MACHINE

Three-phase induction machine. Rated characteristics: P =
1.1 kW, f = 50 Hz, U = 230/400 V, I = 2.7/4.6 A, n =
1410 r.p.m., cosϕ = 0.8. Load inertia 0.25 kg · m2.

APPENDIX B

CAGE INDUCTION MACHINE MOUNTED IN THE

LABORATORY TEST BENCH

Three-phase induction machine, star connection. Rated

characteristics: P = 1.5 kW, f = 50 Hz, U = 400 V,

I = 3.25 A , n = 2860 rpm, and cosϕ = 0.85.

APPENDIX C

COMPUTER FEATURES

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM

memory: 16 GB, Matlab Version: 8.0.0.783 (R2012b).
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is a Ph.D. student, working in the Department of Electrical Engineering
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