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Abstract—Conventional ultrasound images are formed by 

delay-and-sum beamforming of the backscattered echoes re-

ceived by individual elements of the transducer aperture. Al-

though the delay-and-sum beamformer is well suited for ultra-

sound image formation, it is corrupted by speckle noise and 

challenged by acoustic clutter and phase aberration. We pro-

pose an alternative method of imaging utilizing the short-lag 

spatial coherence (SLSC) of the backscattered echoes. Com-

pared with matched B-mode images, SLSC images demon-

strate superior SNR and contrast-to-noise ratio in simulated 

and experimental speckle-generating phantom targets, but are 

shown to be challenged by limited point target conspicuity. 

Matched B-mode and SLSC images of a human thyroid are 

presented. The challenges and opportunities of real-time im-

plementation of SLSC imaging are discussed.

I. I

I ultrasound, spatial coherence is a measure of the sim-
ilarity of backscattered echoes received by individual 

transducer elements at a given time, as a function of ele-
ment separation. The spatial coherence of backscattered 
ultrasound waves is described by the van Cittert-Zernike 
(VCZ) theorem, a fundamental tenet of modern optics. 
The VCZ theorem predicts the mutual intensity (also 
termed spatial covariance or mutual coherence evaluated 
at zero delay) of a wave field produced by an incoherent 
source [1]. According to this theorem, the spatial covari-
ance in an observation region is the scaled Fourier trans-
form of the intensity distribution of an incoherent source.

Mallart and Fink [2] and Liu and Waag [3] discuss the 
VCZ theorem’s applicability to pulse-echo ultrasonic im-
aging, where diffuse scatterers in the isochronous volume 
insonified by a transmit beam represent an incoherent 
source. At the transmit focus, the spatial covariance of 
uniformly backscattered echoes can be modeled as the au-
tocorrelation of the transmit aperture. For a 1-D linear 
array with no apodization, spatial covariance is equal to a 
triangle function with a base that is twice the transmit ap-
erture width. This theoretical model of spatial covariance 
has been compared with simulation and experimental re-
sults with notable agreement [2], [4]–[6]. Walker and Tra-

hey [7] utilized a k-space representation to predict spatial 
covariance and arrived at a similar result.

Although the spatial coherence of backscattered echoes 
is independent of frequency and focal depth (for a focused 
transmit aperture and a uniform target), it is affected by 
other parameters, such as transmit beam shape, scatterer 
characteristics, receiver directivity, aberrations, gross ve-
locity errors, and element nonuniformities. These factors 
scale, alter, or invalidate theoretical predictions of spa-
tial coherence. For example, broad transmit beams, focal 
errors, aberrations, and element nonuniformities shorten 
coherence lengths [2], [4], [5], [8]. When the transmit aper-
ture is Gaussian apodized, coherence is increased between 
closely spaced elements and degraded at large element 
spacings [4]. Diffuse or coherent targets laterally displaced 
from the transmit beam will decrease coherence lengths.

Geiman et al. [9] used the inverse Fourier transform 
of measured spatial coherence functions to reconstruct in 

vivo fundamental and harmonic transmit beam patterns 
and to experimentally demonstrate the effect of phase ab-
erration on these beam patterns. Spatial coherence has 
also been used to derive analytical predictions of the per-
formance of adaptive imaging methods. Methods that im-
prove spatial coherence were shown to decrease aberration 
across an aperture, resulting in more accurate echo time-
delay estimation [4].

Mallart and Fink [8] describe a coherence-based met-
ric to analyze signals from scattering media. This metric, 
named the coherence factor by Hollman et al. [10], is a 
ratio of the coherent sum of signals across an aperture to 
the incoherent sum of these signals. The coherence factor 
describes focusing quality in the targeted medium. Li and 
Li [11] proposed an adaptive imaging technique based on 
a generalized version of the coherence factor. In this meth-
od, data containing high spatial frequencies across the re-
ceive array are excluded from the coherent sum. The ex-
clusion of high spatial frequencies suppresses signals from 
off-axis targets or signals corrupted by phase aberration. 
The generalized coherence factor (GCF) is then calculated 
as the ratio of the modified coherent sum to the incoher-
ent sum and is used to weight the beamsum before image 
formation. Variations of this method are described by Us-
tuner et al. [12]. Liu and Waag [13] describe a measure of 
waveform similarity that is similar to the coherence factor 
used by Li and Li [11]. Camacho et al. [14] utilized a phase 
coherence factor (PCF), which is based on the standard 
deviation of the phase of backscattered signals across the 
aperture, to weight the beamsum before image formation.

Bamber et al. [5] show a direct relationship between 
spatial coherence and receive beamformer gain. Gain is 

Manuscript received August 2, 2010; accepted April 21, 2011. This 
work is supported by NIH grants R01-CA114093-04S1 from the National 
Cancer Institute, R21-EB008481 and T32-EB001040 from the National 
Institute of Biomedical Imaging and Bioengineering, and the Duke En-
dowment Fellowship.

The authors are with the Department of Biomedical Engineering, 
Duke University, Durham, NC (e-mail: muyinatu.lediju@duke.edu).

G. E. Trahey is also with the Department of Radiology, Duke Univer-
sity Medical Center, Durham, NC.

Digital Object Identifier 10.1109/TUFFC.2011.1957



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, . 58, . 7, JULY 20111378

defined as the ratio between beamformer output power 
and the total power of echoes at each element. It may also 
be represented as the weighted area under Mallart and 
Fink’s normalized spatial coherence function [5].

In this paper, a new approach to extracting useful in-
formation from spatial coherence functions is demonstrat-
ed, yielding images that have the potential to compete 
with conventional ultrasound B-mode images, particularly 
in cases where there is corruption caused by noise artifacts 
like clutter. Clutter originates from acoustic interactions 
with surrounding tissue (e.g., reverberation, off-axis scat-
tering, phase aberration) [15]–[17], and it is a significant 
problem in numerous imaging environments, including 
vascular [18], cardiac [19], abdominal [20], and breast im-
aging [21], [22]. The proposed image processing method, 
described in Section II, is based on local measurements of 
the spatial coherence of backscattered echoes and is likely 
to have wide clinical utility in high-noise environments. 
Theory and simulation results obtained utilizing this 
method under various imaging conditions are explored. 
Experimental phantom and in vivo images based on this 
method are presented and compared with matched B-
mode images (i.e., B-mode images created with the same 
data that was used to form the coherence-based images).

II. S-L S C

For a receive aperture with N elements of equal spac-
ing, the time-delayed signal received by the ith element is 
defined as si(n), where n is the depth or time, in samples, 
and si(n) is a zero-mean signal. The signals arriving across 
the receive aperture are time-delayed to ensure that the 
signals at sample n correspond to the same location. After 
time delay of the element signals, the estimated spatial 
covariance across the receive aperture is calculated as
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where m is the distance, or lag, in number of elements 
between two points in the aperture. Normalizing the cova-
riance by the variance of the signals si(n) and si+m(n), the 
spatial correlation can be computed by
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The choice of the normalizing term differs from that used 
by Mallart and Fink [2], who normalized (1) by the es-
timated spatial covariance at zero lag. However, both 
normalization terms serve the same purpose, in that the 
relative strengths of the echo signals are removed from 
the spatial covariance terms. Eq. (2) is identical to the 
spatial coherence calculation used by Fedewa et al. [23]. 
Although spatial covariance (1) and spatial correlation (2) 

have different definitions, the term spatial coherence refers 
to both (i.e., both are a measure of the similarity of back-
scattered echoes as a function of element separation). The 
term spatial coherence will be used hereafter in reference 
to (2), and spatial covariance is used in reference to (1).

Fig. 1 illustrates the normalized theoretical spatial co-
variance across the receive aperture for a point target po-
sitioned at the transmit focus and uniformly-distributed 
diffuse scatterers, compared with the spatial coherence of 
in vivo echoes from a human thyroid. For a point target, 
the source function is modeled as an impulse, so the spa-
tial coherence is constant across the aperture. For diffuse 
scatterers, the source function is modeled as a constant, 
and the source intensity distribution (i.e., the square of 
the lateral transmit beam shape) is modeled as a squared 
sinc function. The corresponding expected spatial coher-
ence function is a triangle, or a line decreasing from 1 at 
zero lag to 0 at lag N − 1, where N refers to the number 
of elements in the transmit aperture, which is assumed 
to be identical to the receive aperture for simplicity. The 
spatial coherence of in vivo tissue from a human thyroid is 
expected to be similar to that of diffuse scatterers. How-
ever, the coherence demonstrated in Fig. 1 indicates that 
there is underlying corruption of the signals (e.g., rever-
beration clutter, strong off-axis targets, phase aberration, 
or electronic noise) that decreases spatial coherence across 
the aperture.

For a given transmit beam shape, the spatial coherence 
will vary depending on the lateral backscatter distribution 
and the amount of signal corruption. Although it is dif-
ficult to increase spatial coherence above the predicted co-
herence for diffuse scatterers without a strongly reflecting 
and/or a laterally compact target at the transmit focus, 
a decrease in spatial coherence below the expected value 
for diffuse targets is relatively easy to obtain via increased 

Fig. 1. Examples of coherence functions in a point target and speckle 
background, as well as an experimental coherence function from in vivo 
thyroid tissue. The abscissa represents the lag, or spacing between re-
ceive elements. The ordinate represents inter-element RF echo correla-
tion.
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noise or decreased on-axis source strength. In this case, 
the largest losses in spatial coherence will occur in the 
regions of low lags, or in the coherence between closely-
separated elements, as has been observed in the spatial 
coherence of backscattered signals with phase aberration 
[4]. We therefore describe a metric, called the short-lag 
spatial coherence (SLSC), as the integral of the spatial 
coherence function over the first M lags:

 R Rm m Rm
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Given that coherence functions scale with the size of the 
transmit aperture, a parameter Q is introduced to re-
port values of M as a percentage of the transmit aperture 
width, where

 Q
M

N
= 100%.×  (4)

Q ranges from 1 to 30% for our proposed realizations of 
SLSC imaging.

III. M

To evaluate the characteristics of images created using 
the short-lag spatial coherence, simulated images using 
Field II [24] were created. A numerical computation of the 
SLSC image at the focal depth, based on the theoretical 
spatial coherence, was compared with the simulated im-
ages. SLSC images of tissue-mimicking phantoms and in 

vivo human thyroid were also generated to demonstrate 
the potential application to clinical imaging.

A. Theoretical Prediction of Short-Lag Spatial Coherence

The spatial covariance of wavefronts across an aperture 
can be predicted by the Fourier transform of the square of 
the product of the lateral transmit beam pressure and the 
lateral backscatter, or source, function [2]. In mathemati-
cal notation, spatial covariance is given by

 C u v x y H x y x yj xu yv( , ) = ( , ) ( , ) ,
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where x and y are the spatial dimensions in the source 
plane, χ(x, y) is the source (or scattering) function, H(x, y) 
is the transmit beam amplitude, and u and v are spatial 
frequencies evaluated at u = x′/λz and v = y′/λz. The 
variable x′ is the spatial difference between two points 
in the x dimension of the aperture plane, y′ is the spatial 
difference between two points in the y dimension of the 
aperture plane, z is the distance between the source and 
the aperture planes, and λ is the ultrasonic wavelength.

To predict the lateral profiles of SLSC images at the 
focal depth, the lateral transmit beam amplitude, H(x), 
was modeled as a sinc function based on the parameters in 

Table I. For a lesion, the source function χ(x) was modeled 
as a constant minus a rectangular pulse, where the ratio 
of the pulse amplitude to the constant was equal to the 
contrast of the lesion and the width of the pulse was equal 
to the diameter of the lesion. Note that χ or H may be 
modified to arbitrary geometries, enabling theoretical pre-
dictions for other target types or transmit beam shapes.

The spatial covariance in the lateral dimension was nu-
merically computed using the fast Fourier transform of 
|H(x)χ(x)|2. The spatial covariance was then normalized 
at zero lag and resampled at the spacing of the array 
elements to create a spatial coherence function. The theo-
retical short-lag spatial coherence was then calculated by 
integrating the resulting spatial coherence function over 
the first M lags, as described by (3). Noise was not con-
sidered in this numerical computation. Note that this de-
scription of short-lag spatial coherence is valid only at the 
focal depth of the transmit beam. Computation at other 
depths requires incorporation of the lateral intensity of 
the defocused transmit beam. There is no variance in pre-
dicted values because the theoretical model of the spatial 
coherence does not account for the randomness of diffuse 
scatterers.

B. Field II Simulations

Field II was used to simulate the received, individual-
channel, echo signals from a variety of imaging targets. 
Three-dimensional phantoms containing a 3-mm spherical 
lesion and three point targets were utilized, where the 
contrast of the lesion was varied from anechoic to 6 dB. 
The point target brightness in each phantom was varied 
from 6 to 24 dB relative to the rms value of the diffuse 
scatterer strength. Each phantom measured 6 mm axially 
by 10 mm laterally by 10 mm in elevation and contained 
20 scatterers per resolution volume. The simulated trans-
ducer was a linear array with a 5.7 MHz center frequency 
and 60% fractional bandwidth. The array had a lens fo-
cused at 3.75 cm in elevation, and the lateral focus was 
positioned at the same depth. An F/2 transmit aperture 
was employed and dynamic-receive beamformer delays 
were applied to the channel signals. No apodization was 
applied to the transmit aperture. The parameters of the 
simulated transducer are listed in Table I.

In Field II, regions that do not contain scatterers 
have low amplitude echoes in the received channel sig-
nals. These echoes are a few orders of magnitude below 
backscattered and off-axis echoes and often reside below 

TABLE I. S T P. 

Parameter Value

Number of elements 96
Element height 7.5 mm
Element width 0.176 mm
Kerf 0.025 mm
Center frequency 5.71 MHz
Sampling frequency 160 MHz
Fractional bandwidth 60%
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the noise floor seen in experimentally-obtained ultrasonic 
data. Because coherence calculations do not depend on 
signal magnitude, these low-amplitude echoes yield coher-
ence estimates unlikely to be observed in experimental 
measurements. Therefore, uniform white noise was band-
pass filtered and added to the channel signals to suppress 
coherence from low-amplitude echoes created by Field II; 
the resulting SNR of the channel signals was 10 dB, com-
parable to that measured in in vivo data [25]. The cutoff 
frequencies used in the band-pass filter were equal to the 
−6-dB bandlimits of the transducer to simulate acoustic 
noise received by the transducer. Introducing incoherent 
noise with amplitudes greater than the spurious echoes 
suppresses artifacts in the simulated images and adds a 
degree of realism to the echo signals.

To analyze the lateral resolution of SLSC images, a 
numerical differentiation technique described in [26] is 
employed because conventional techniques, such as the 
autocorrelation of speckle or the width of a point target, 
are not practical because of the spurious echoes described 
previously. In this method, two phantoms, each contain-
ing two adjacent vertical regions of differing contrast, 
were used to compute a spatial step function. For B-mode 
resolution calculations, one of the vertical regions was an-
echoic. For SLSC resolution calculations, the backscatter 
difference between the two regions was 12 dB. To deter-
mine lateral resolution, an estimated lateral point spread 
function (PSF) was created by numerical differentiation of 
the step function, and the width of the resulting PSFs was 
measured at −6 and −10 dB.

To study SLSC imaging characteristics of expanded tar-
gets, six independent speckle realizations of a 1-cm spheri-
cal lesion phantom were simulated, using the transducer 
parameters listed in Table I. The contrast of the lesion was 
−9.8 dB, which was chosen to match the phantom experi-
ment described in Section III-C. Each phantom measured 
15 mm axially by 30 mm laterally by 1 mm in elevation 
and contained 20 scatterers per resolution volume. The 
simulated transducer array had a lens focused at 3.75 cm 
in elevation, and the lateral focus was positioned at the 
same depth. An F/2 transmit aperture was employed and 
dynamic-receive beamformer delays were applied to the 
channel signals. No apodization was applied to the trans-
mit aperture. Simulations were performed with and with-
out noise that was 10 dB down from the channel signals.

C. Tissue-Mimicking Phantoms and In Vivo Experiments

An RMI 408 Spherical Lesion Phantom (Gammex 
RMI, Middleton, WI) containing 4-mm anechoic lesions 
spaced 1 cm apart was used as an imaging target to com-
pare B-mode and SLSC imaging. Individual channel sig-
nals were acquired on a VF10–5 linear array transducer 
(Siemens Medical Solutions USA Inc., Issaquah, WA) at-
tached to a Siemens Antares ultrasound scanner (Siemens 
Medical Solutions USA Inc.). The transmit frequency was 
8.0 MHz, and the number of transmit elements was ad-
justed to maintain a constant F/2 transmit. Individual 

channel signals were acquired using the Axius Direct Di-
agnostic User Interface (Siemens Medical Solutions USA 
Inc.) [27] in conjunction with a synthetic receive aperture 
technique [25]. Signals were acquired with a transmit fo-
cus of 2.0 cm. The total number of receive elements in the 
array was 192, however only echoes from the 64 elements 
centered about the transmit aperture for that beam were 
acquired. Individual channel signals were acquired for 54 
A-lines. Dynamic-receive beamforming delays were ap-
plied to the channel signals.

A contrast-detail phantom (ATS Laboratories, Bridge-
port, CT), described by Smith and Lopez [28], was uti-
lized to image a 1-cm cross-section of a conical lesion. An 
identical setup to the RMI phantom experiments was em-
ployed, except that a VF7–3 linear array transducer was 
used with a center frequency of 5.7 MHz and a transmit 
focus of 3.75 cm. Echoes from 64 elements were acquired 
for 108 A-lines.

In vivo individual channel data from the thyroid of a 
34-year-old male volunteer were acquired in addition to 
phantom data. An identical setup to the RMI phantom 
experiments was employed, except that 48 receive ele-
ments centered about the transmit aperture were used to 
acquire three sets of individual channel signals, each with 
a unique transmit focus of 0.5, 1.5, or 2.5 cm.

D. Coherence Image Processing

The short-lag spatial coherence was computed for simu-
lated, phantom, and in vivo data using (2) and (3). SLSC 
images were formed by computing the short-lag spatial 
coherence at each depth n of each A-line, using a correla-
tion kernel size (i.e., n2 − n1) of one wavelength. The size 
of the correlation kernel impacts the quality of the corre-
lation calculation as well as the axial resolution of SLSC 
images. A kernel size of one wavelength was chosen to 
maintain an axial resolution that is comparable to B-mode 
images, yet produce stable coherence functions. B-mode 
images were constructed with the same individual chan-
nel data using conventional delay-and-sum methods. The 
contrast (C), contrast-to-noise ratio (CNR), and speckle 
signal-to-noise ratio (SNR) in the B-mode and SLSC im-
ages were calculated using the following equations:

 C 10
i
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= 20 ,log

S

S
( )  (6)

where So and Si are the mean signals at the same depth 
outside and inside a lesion, respectively.
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where σo and σi are the standard deviations of signals at 
the same depth outside and inside a lesion, respectively.
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Point target conspicuity in simulated images was calcu-
lated using
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where Smax is the peak brightness of the point target and 
So and σo are the mean brightness and standard deviation, 
respectively, of a background region at the same depth 
as the point target. All image processing and data anal-
ysis was performed with Matlab (The MathWorks Inc., 
Natick, MA) software.

IV. R

A. Field II Simulations

Matched B-mode and SLSC images are displayed in 
Fig. 2. The first row shows B-mode images with anechoic, 
−24-dB-contrast, and −18-dB-contrast lesions, from left 
to right. The second row shows B-mode images with lesion 
contrasts of −12, −6, and 6 dB, from left to right. Corre-
sponding SLSC images created with Q equal to 20.8% are 
shown in rows three and four. The B-mode and SLSC im-
ages show 40 dB of dynamic range. Identical regions from 
all images (indicated by the white boxes in the upper-left 
image) were used to calculate contrast, CNR, SNR, and 
point target conspicuity. Visual inspection of the SLSC 
images reveals similarity to the corresponding B-mode im-
ages, however there is a significant loss in visualization of 
the point targets. The variance in the background region 
appears to be reduced as well.

Measured contrast and CNR of the simulated lesions, 
as a function of lesion contrast, are displayed in Fig. 3. 
Contrast of the lesions in the B-mode images has excellent 
agreement with ideal values (i.e., the intrinsic contrast of 
the lesions). At Q = 5.2%, contrast is reduced in SLSC 
images compared with B-mode images. However when Q 
was increased to 20.8%, the contrast in the SLSC and B-
mode images is similar. CNR increased significantly in the 
SLSC images compared with B-mode images as a result 
of a large increase in SNR. The average SNR at the focal 
depth in the B-mode images is 2.1 ± 0.3 and in the SLSC 
images formed with Q equal to 5.2% and 20.8% is 11.3 ± 
2.2 and 5.7 ± 0.9, respectively. Point target conspicuity as 
a function of point target brightness is displayed in Fig. 
4. Conspicuity increases with target brightness in B-mode 
images, but remains flat and significantly lower in SLSC 
images. SLSC results are shown for Q = 20.8%, but are 
nearly identical for Q = 5.2%.

In Fig. 5, simulated B-mode and SLSC images without 
added noise are compared with a numerical computation of 
the theoretical SLSC image. Six independent realizations 
of simulated B-mode and SLSC images were averaged to 
reduce background variance for a better comparison with 
theory. The averaged B-mode image was normalized to 
the same scale as the theoretical SLSC image. There is 
good agreement between simulated and theoretical SLSC 
images.

Figs. 6(a) and 6(b) , respectively, show the contrast and 
CNR of the −24-dB lesion in SLSC and B-mode images as 
a function of Q, where Q refers to the percent of the trans-
mit aperture for SLSC and B-mode images. Contrast in 
SLSC images is optimal for Q greater than 20%. Contrast 
in B-mode images improves with an increasing number of 
receive elements. The CNR of SLSC images peaks at Q = 
10.4%, however CNR is relatively flat for B-mode images. 
Fig. 6(c) shows SNR as a function of Q. Predictably, the 
SNR in B-mode images is unchanged as a function ap-
erture size, but SNR in the SLSC images decreases with 
increasing Q and is up to an order of magnitude higher 
than that of B-mode images.

Fig. 6(d) shows lateral resolution at −6 and −10 dB 
as a function of Q, as measured with the numerical dif-
ferentiation technique. Compared with resolution values 
measured using the lateral width of a simulated point tar-
get (not shown), the reported B-mode image resolution 
values reflect better resolution by an average of 0.13 and 
0.18 mm at −6 and −10 dB, respectively. Although simi-
lar biases are suspected in SLSC resolution calculations, 
the trends observed using this method are expected to 
be valid. These trends include a general improvement in 
lateral resolution with increasing Q and slightly better 
resolution in SLSC images compared with B-mode images 
of equivalent-sized apertures, particularly at −6 dB.

The lateral resolution of SLSC images at Q = 20.8% 
(i.e., the same Q used to make the SLSC images in Fig. 
2) is 0.47 and 0.63 mm at −6 and −10 dB, respectively, 
as reported in Fig. 6(d). The lateral resolution of the B-
mode images in Fig. 2, which were created with the entire 
transmit aperture, measured 0.43 and 0.55 mm at −6 and 
−10 dB, respectively, using the numerical differentiation 
technique. Using the lateral width of a simulated point 
target, lateral resolution measured 0.50 and 0.65 mm at 
−6 and −10 dB, respectively.

The axial resolution of the coherence images is approxi-
mately equal to the correlation kernel length convolved 
with half the pulse length, as in correlation-based imaging 
techniques such as ARFI [29], [30] and elastography [31], 
[32]. In all SLSC images, the correlation kernel length was 
equal to λ.

B. Experiments in Tissue-Mimicking Phantom

Matched B-mode and SLSC images (Q equal to 7.8%, 
15.6%, and 23.4%) of the RMI spherical lesion phantom 
are shown in Fig. 7 and demonstrate changes in image 
characteristics with increasing Q. SLSC images have in-
creased focal gain with increasing Q, but lesions are still 
easily visualized, with the exception of the shallower le-
sions. In addition, lesion boundaries appear sharper with 
increasing Q, an indication of increased resolution.

Contrast and CNR of the focal lesion and SNR at the 
focus of B-mode and SLSC images in Fig. 7 are reported 
in Table II. The differences in contrast are marginal for 
the three SLSC images, but CNR and SNR decrease with 
increasing Q.
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Fig. 2. Simulated B-mode images of 3-mm lesions with contrasts of anechoic, −24, −18 dB from left to right in the first row, and −12, −6, and 
6 dB from left to right in the second row. The corresponding SLSC images created with Q = 20.8% are shown in rows 3 and 4. B-mode and SLSC 
images are shown with 40 dB of dynamic range. The boxes in the upper-left image indicate ROIs used to calculate the contrast, CNR, SNR, and 
point target conspicuity.

Fig. 3. Mean (a) contrast and (b) CNR observed in the lesions of the simulated B-mode and SLSC images, as a function of the intrinsic lesion con-
trast. Contrasts of the B-mode images are a close match to ideal values. SLSC imaging suffers a significant decrease in contrast when Q = 5.2%, 
but is more similar to B-mode imaging when Q = 20.8%. SLSC imaging with Q = 5.2% and 20.8% shows considerably higher CNR for hypoechoic 
lesions than B-mode imaging. Error bars indicate one standard deviation.
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Fig. 4. Point target conspicuity increases as a function of target bright-
ness for B-mode imaging, but remains flat for SLSC imaging regardless 
of brightness or Q. Error bars indicate one standard deviation.

Fig. 5. Theoretical calculations of the short-lag spatial coherence image 
compared with the simulated B-mode and SLSC images for a lateral 
slice through the center of a spherical 3-mm anechoic lesion with −24 
dB contrast.

Fig. 6. (a) Contrast and (b) CNR for the −24 dB lesion, (c) SNR, and (d) lateral resolution as a function of Q. Q indicates the size of the receive 
aperture, expressed as a percentage of the transmit aperture used to create the SLSC and B-mode images. Error bars indicate one standard devia-
tion for six simulations.
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C. SLSC of Expanded Targets

Matched B-mode and SLSC images of the simulated 
and experimental 1-cm lesion are shown in Fig. 8. In the 
simulated SLSC image [Fig. 8(b)], the lesion is well vi-
sualized but has lower contrast compared with the cor-
responding B-mode image [Fig. 8(a)]. Although the lesion 
borders are well defined, the center of the lesion shows 
more coherence than the borders, resulting in lower con-
trast and CNR when compared with the matched B-mode 
image. This image characteristic will be referred to as 
recorrelation. The experimental SLSC image [Fig. 8(d)] 
does not appear to have the recorrelation characteristic. 
The contrast, CNR, and SNR of lesions in Fig. 8 were 
calculated using the ROIs shown, and the values are listed 
in Table II.

Averaged lateral profiles about the focus of the simu-
lated B-mode and SLSC images from Fig. 8 are compared 
with the theoretical computation of the SLSC profile in 
Fig. 9(a). Six independent realizations of simulated B-
mode and SLSC images were averaged to reduce back-
ground variance for a better comparison with theory. The 
simulated SLSC and B-mode profiles were normalized by 
the mean of the background. There is good agreement 
between simulated and theoretical SLSC images, as the 
lesion center in both images has more coherence than its 
borders (i.e., they both have the recorrelation effect).

Fig. 9(b) shows lateral profiles about the focus for the 
experimental 1-cm lesion displayed in Figs. 8(c) and 8(d). 
The experimental SLSC profiles do not show recorrelation 
at the lesion center and are more similar to the SLSC 
simulation results with added noise. Note that the addi-
tion of noise to the simulation eliminates the recorrelation 
effect and increases the contrast and CNR of the lesion. 
Contrast, CNR, and SNR at the focus of the simulated 
images with noise are reported in Table II.

Fig. 7. Matched (a) B-mode and (b)–(d) SLSC images of 4-mm spherical 
anechoic lesions in a tissue-mimicking phantom. The SLSC images were 
created with Q equal to 7.8, 15.6, and 23.4%, from left to right, respec-
tively. The SLSC images show improved CNR and SNR and increased 
depth-of-field effects for smaller Q. Resolution differences are observable 
with increasing Q.

TABLE II. C, CNR,  SNR  F  E 
P, S,  I V T D. 

Contrast (dB) CNR SNR

Experimental phantom images, 3-mm lesions
 B-mode −17.3 1.6 1.7
 SLSC, Q = 7.8% −13.6 6.4 15.8
 SLSC, Q = 15.6% −14.3 6.9 9.0
 SLSC, Q = 23.4% −14.3 6.0 6.2
Simulation images with no noise, 1-cm lesions (mean ± s.d.)
 B-mode −10.0 ± 0.6 1.2 ± 0.1 1.9 ± 0.0
 SLSC, Q = 6.3% −0.5 ± 0.1 1.2 ± 0.1 128.9 ± 8.7
 SLSC, Q = 10.4% −1.1 ± 0.1 1.2 ± 0.1 45.6 ± 2.6
 SLSC, Q = 20.8% −1.2 ± 0.2 0.9 ± 0.1 16.0 ± 0.8
Simulation images with noise, 1-cm lesions (mean ± s.d.)
 B-mode −9.9 ± 0.7 1.2 ± 0.1 1.9 ± 0.0
 SLSC, Q = 6.3% −5.0 ± 0.5 2.2 ± 0.2 11.7 ± 1.0
 SLSC, Q = 10.4% −5.0 ± 0.5 2.2 ± 0.2 11.6 ± 1.0
 SLSC, Q = 20.8% −4.9 ± 0.5 2.1 ± 0.2 10.5 ± 0.8
Experimental phantom images, 1-cm lesion
 B-mode −9.8 1.1 1.9
 SLSC, Q = 12.5% −8.4 2.1 9.9
 SLSC, Q = 21.9% −7.5 2.1 10.8
 SLSC, Q = 31.3% −6.7 2.1 10.2
In vivo thyroid images
 B-mode −20.3 1.9 2.1
 SLSC, Q = 10.4% −37.7 5.3 5.8
 SLSC, Q = 20.8% −56.7 4.0 4.2
 SLSC, Q = 31.2% −44.8 3.1 3.2
Spatial-compounded −14.4 2.8 3.5

Fig. 8. Matched B-mode (left) and SLSC (right) images of 1-cm lesions, 
formed from simulated data without noise (top) and experimental data 
(bottom). Q is equal to 20.8% and 20.3% in simulated and experimental 
data, respectively. The boxes indicate ROIs used to calculate the con-
trast, CNR, and SNR. B-mode and SLSC images are shown with 50 dB 
dynamic range.
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Fig. 9(c) illustrates theoretical predictions for various 
lesion sizes with the same −12-dB contrast, normalized by 
maximum values. Recorrelation is not apparent in small 
lesions. In larger lesions, the recorrelation effect increases 
with lesion size.

Fig. 9(d) demonstrates theoretical predictions for 12-mm 
lesions with differing contrasts. The amount of recorrelation 
changes as a function of the intrinsic lesion contrast.

D. In Vivo Human Thyroid Images

In vivo B-mode, SLSC (Q equal to 10.4%, 20.8%, and 
31.2%), and spatial-compounded images of a human thy-
roid are shown in Fig. 10. Each image was created from 
data acquired at three transmit foci and blended to form a 
single image. The spatial-compounded image was created 
from 43 B-mode images with coherent receive apertures 
equal to 10.4% of the transmit aperture and spaced 2.1% 
of the transmit aperture apart. A cyst is visible in the thy-
roid at 1.5 cm depth. The B-mode, SLSC, and spatial-com-
pounded images are shown with 50 dB of dynamic range.

Contrast and CNR of the cyst and SNR of the thyroid 
tissue at 1.5 cm are reported in Table II. Contrast is im-

proved by 17, 36, and 25 dB in the SLSC images formed 
with Q = 10.4, 20.8, and 31.2%, respectively, when com-
pared with the B-mode image. Contrast in the spatial-
compounded image is reduced by 6 dB compared with 
the B-mode image. CNR and SNR are greatest in SLSC 
images, particularly when Q = 10.4%, and decrease with 
increasing Q.

V. D

The short lags of the spatial coherence function allow 
discrimination of imaging targets without direct utiliza-
tion of echo brightness. Generally, bright diffuse scat-
terers have higher spatial coherence at short lags, when 
compared with adjacent anechoic regions. The source of 
contrast in SLSC images when two adjacent regions of 
diffuse scatterers only differ in magnitude is counterintui-
tive because the spatial coherence calculated by (2) has 
no dependence on echo brightness. Intuition might predict 
that the two backscattered echoes should have the same 
spatial coherence and therefore produce a uniform SLSC 
image. However, we hypothesize that off-axis echoes from 

Fig. 9. Theoretical calculations of the short-lag spatial coherence image. A lateral slice through the center of a spherical 1-cm lesion with −12 dB 
contrast is compared with simulated data with no noise (a), simulated data with noise, and experimental data (b). (c) Theoretical −12 dB contrast 
lesions of varying sizes. (d) Theoretical 12-mm lesions of varying contrasts, with the vertical lines denoting lesion boundaries. Q is equal to 20.8% in 
theory and simulations and 20.3% in experimental data.
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nearby higher-amplitude regions are added out of phase to 
echoes received from hypoechoic regions, thereby decreas-
ing spatial coherence in hypoechoic regions, and thus gen-
erating contrast in SLSC images. As the distance between 
the main lobe of the transmit beam and the interface of 
the two regions increases, the contribution from interfer-
ing echoes diminishes and the coherence of on-axis signals 
in the hypoechoic region is increased. This recovery of 
the coherence is responsible for the recorrelation demon-
strated in Figs. 8(b) and 9(a). Figs. 5 and 9 demonstrate 
that theoretical predictions and simulation results without 
noise are consistent with these hypotheses. Simulations 
with added noise and experimental results with intrinsic 
noise show mitigation of the recorrelation effect observed 
in noise-free environments. Moreover, the appearance of 
the recorrelation effect is dependent on the amount of 
noise added to simulated data. For this simulation, noise 
in the range of 6 dB down from the channel signals will 
show minimal recorrelation reduction, whereas noise as 
great as 20 dB eliminates the recorrelation effect.

There are four notable features of SLSC imaging. First, 
the SNR for regions of diffuse scatterers is markedly high-
er in SLSC images compared with B-mode images. This is 
due to the low variance at short lags of the spatial coher-
ence function for diffuse scattering regions. The variance 
in the spatial coherence function is not easily modeled, 
however empirical determination of the variance shows 
that it typically increases with decreasing correlation for 
a diffuse scattering region. In addition, the variance is not 
evenly distributed about the mean and is skewed toward 
unity for the higher correlation coefficients.

Second, resolution is improved by increasing Q, as 
shown in Fig. 6(d) and evident in Figs. 7 and 10. The 
improved resolution is due to the addition of higher spa-
tial frequency content from the larger lags of the receive 

beamformer. Furthermore, SLSC images appear to have 
better lateral resolution than B-mode images formed with 
equivalent aperture sizes, as shown in Fig. 6(d) for simu-
lated data and illustrated in Figs. 10(b) and 10(e) for 
experimental data.

Third, although the contrast of SLSC images generally 
improves with an increase in the number of lags summed, 
SNR improves with decreasing Q. There appears to be a 
trade-off among contrast, CNR, and SNR when selecting a 
value for Q. Nevertheless, the SNR of SLSC images is larger 
than that of B-mode images, and the large gain in CNR is 
due to the increased SNR of the background.

Fourth, there is an apparent decrease in focal gain with 
increasing Q, as depicted in Fig. 7. This decrease is at-
tributed to a relatively broad transmit beam proximal and 
distal to the focal zone. The challenges associated with 
the short coherence lengths produced by a broad transmit 
beam outside of the focal region may be overcome by us-
ing a larger number of emission focal points, as demon-
strated in Fig. 10, or by applying depth-dependent gain to 
the SLSC image.

Spatial compounding is a favored method for reducing 
speckle variance in ultrasound images, often performed 
at the expense of lateral resolution. Figs. 10(b) and 10(e) 
may be used to compare equivalent-sized receive apertures 
in SLSC and spatial-compounded images, respectively, 
and demonstrates a distinct difference between the two 
imaging modalities. The SNR of a homogeneous region 
in the thyroid improved by a factor of 2 in the spatial-
compounded image compared with the B-mode image, 
whereas a factor of 3 improvement was achieved in the 
SLSC image. In addition, the apparent detail of the cyst is 
worse in the spatial-compounded image than in the com-
parable SLSC image, even though resolution is expected 
to differ by less than 0.2 mm, as estimated with Fig. 6(d).

Fig. 10. (a) In vivo B-mode image of a cyst at 1.5 cm depth in a human thyroid. SLSC images of the thyroid formed with (b) Q = 10.4% (c) Q = 
20.8%, and (d) Q = 31.2%. (e) A spatial-compounded image of the thyroid. The SLSC images show improved CNR of the cyst and improved SNR 
of the thyroid tissue compared with the B-mode and spatial-compounded images. The SLSC images also show improved resolution compared with 
the spatial-compounded image.
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The SLSC metric differs from other coherence metrics 
in its calculation and in its direct application to image 
formation. However, it can be utilized like other coher-
ence metrics. The primary proposed use of the GCF and 
PCF coherence metrics developed by Li and Li [11] and 
Camacho et al. [14] was to weight B-mode data. Like these 
metrics, the SLSC value can be used to weight the B-mode 
image rather than form a direct image of SLSC values. In 
this case, speckle will be present in the weighted image 
and the anticipated benefits in CNR and SNR would be 
lost in favor of improved contrast.

One notable limitation of SLSC imaging is its inability 
to detect point-like targets in speckle-based background. 
The point targets in SLSC images of Fig. 2 are not present 
because the coherence of speckle is similar to that of the 
point target for short lags. Clinical tasks that depend on 
point target conspicuity, such as microcalcification detec-
tion, will be difficult with SLSC imaging.

A potential application of SLSC imaging is to reduce 
clutter, particularly in cardiovascular or abdominal imag-
ing. Fig. 10 demonstrates that SLSC imaging is the pre-
ferred technique in the presence of clutter or other noise 
sources that corrupt diagnostic information. The SLSC im-
ages of Fig. 10 have 20 to 30 dB more contrast than corre-
sponding B-mode images because of reduced clutter inside 
the anechoic cyst. Such large contrast improvements are 
not observed in simulated data when the simulated noise 
level is lower than the magnitude of noise present in the 
thyroid images. Although the simulation analysis does not 
include the influence of clutter on B-mode and SLSC im-
ages, the experimental thyroid data reveal that SLSC imag-
ing yields greater clutter suppression than B-mode imaging.

As mentioned in Section I, the shape of a transmit 
beam influences the spatial coherence of backscattered 
echoes. For example, a change in the transmit aperture 
apodization alters the transmit beam shape and thus al-
ters the expected spatial coherence function [as predicted 
by (5)] and the resulting SLSC image. It is likely that 
optimal apodization for SLSC imaging differs from the 
typical apodization used in B-mode imaging.

The challenges for real-time implementation of SLSC 
imaging are similar to the challenges associated with phase 
aberration correction and adaptive (or data-dependent) 
beamforming methods. For example, access to the channel 
signals is required in these approaches and is influenced 
by the ultrasound system’s ability to provide such sig-
nals. In addition, the computational complexity of SLSC 
imaging is far greater than delay-and-sum beamforming. 
SLSC imaging uses many more cross correlations than 
phase aberration correction techniques, but is on par with 
the amount used in more advanced adaptive beamform-
ing methods [33]. SLSC would likely be easily realized on 
software-based beamformers.

VI. C

We have developed an imaging technique based on the 
spatial coherence of ultrasound signals, with potential 

applications to clutter reduction. The spatial coherence 
between closely-spaced elements may be used to create 
images having the potential to compete with conventional 
B-mode images. SLSC images demonstrate inferior point 
target conspicuity compared with B-mode imaging, but 
show superior SNR and CNR as demonstrated in simu-
lation, tissue-mimicking phantom, and in vivo human 
thyroid experiments. In expanded targets, a recorrela-
tion effect is observed in theoretical and simulated results 
without noise. However, when noise is present, this recor-
relation effect is mitigated, as demonstrated in experimen-
tal results and simulations with added noise.

SLSC images demonstrate a trade-off among contrast, 
CNR, and SNR with increasing short-lag values. SLSC 
imaging shows improved resolution with increasing lag 
and demonstrates better resolution than B-mode imaging 
for comparatively same-sized transmit apertures. The in 

vivo application of SLSC imaging to human thyroid tissue 
shows images that are substantially better than conven-
tional speckle-reduction techniques, in addition to having 
better contrast, CNR, and SNR than B-mode images.
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