Short lists with short programs in short time
- a short proof™

Marius Zimand

January 22, 2013

Abstract

Bauwens, Mahklin, Vereshchagin and Zimand [1] and Teutsch [5] have shown that given a
string x it is possible to construct in polynomial time a list containg a short description of it. We
simplify their technique and present a shorter proof of this result.

1 Introduction

Given that the Kolmogorov complexity is not computable, it is natural to ask if given a string x it is
posible to construct a short list containing a minimal (+ small overhead) description of x. Bauwens,
Mahklin, Vereshchagin and Zimand [1] and Teutsch [5] show that, surprisingly, the answer is YES.
Even more, in fact the short list can be computed in polynomial time. More precisely, [1] showed that
one can effectively compute lists of quadratic size guaranteed to contain a description of x whose size
is additively O(1) from a minimal one (it is also shown that it is impossible to have such lists shorter
than quadratic), and that one can compute in polynomial-time lists guaranteed to contain a description
that is additively O(logn) from minimal. Finally, [5] improved the latter result by reducing O(logn) to
o(1).

Theorem 1 ([5]). For every standard machine U there is a constant ¢ and a polynomial-time algorithm
f such that for every x, f(x) outputs a list of programs that contains a c-short program for x.!

Let us explain the formal terms. Given a Turing machine U, a c-short program for x is a string
p such that U(p) = x and the length of p is bounded by c+ (length of a shortest program for x). A
machine U is optimal if Cy(x|y) < Cy(x|y)+ O(1) for all machines V (where C is the Kolmogorov
complexity and the constant O(1) may depend on V). An optimal machine U is standard if for every
machine V there is an efficient translator from any machine V to U, i.e., a polynomial-time computable
function 7 such that for all p,y, U(¢t(p),y) = V(p,y) and |t(p)| = |p| +O(1).

Both [1] and [5] prove their results regarding polynomial-time computable lists as corollaries of
somewhat more general theorems. We present in this note a direct proof of Theorem 1, which is simpler
and shorter than the one in [5]. We emphasize that there is no technical innovation in the proof that
we present below. We use the same general approach and the same ingredients as in [1] and [5], but,
because we go straight to the target, we can take some shortcuts that render the proof simpler.”

Proof overview. Essentially we want to compress in polynomial time to (close to) minimal length,
such that decompression is computable (not necessarily in poynomial time). This is of course impos-
sible in absolute terms, but here we compress in a weaker sense, because we obtain not a single com-
pressed string, but a list guaranteed to contain the (close to) optimally compressed string. It is natural

*(©Marius Zimand. Document can be distributed but not used otherwise without permission

+Department of Computer and Information Sciences, Towson University, Baltimore, MD.; email: mzimand @towson.edu;
http://triton.towson.edu/"mzimand. This work has been supported by NSF grant CCF 1016158.

Ut can be shown that the list size is O(n®*%) for any arbitrarily small constant &.

2The proof given here also produces a smaller value for the constant in the theorem.

to think to use seeded extractors, because an extractor’s output is close to being optimally compressed
in the Shannon entropy sense. The problem is that we need an extractor with logarithmic seed (because
we want a list of polynomial size) and no entropy loss (because we want to decompress). Unfortunately,
such extractors have not yet been shown to exist. The key observation from [1], also used in [5], is that
in fact a disperser is good enough, and then one can use the disperser from [4], which has the needed pa-
rameters. Now, why are dispersers sufficient? The answer, inspired by [3], stems from the idea from [1]
to use for this kind of compression graphs that allow on-line matching. These are unbalanced bipartite
graphs, which, in their simplest form, have LEFT = {0, 1}", RIGHT = {0, 1}k+small overhead ,nq
left degree = poly(n), and which permit on-line matching up to size K = 2. This means that any set
A of K left nodes, each one requesting to be matched to some adjacent right node, can be satisfied in
the on-line manner(i.e., the requests arrive one by one and each request is satisfied before seeing the
next one; in our proof we will allow a small number of requests to be discarded, but this should also
happen before the next request arrives). The correspondence to our problem is roughly that strings in
LEFT are the strings that we want to compress, and the strings in RIGHT are their compressed forms.
We need on-line matching because we are going to enumerate left strings as they are produced by the
universal machine and each time a string is enumerated we want to find it a match, i.e., to compress
it. In order for a graph to allow matching, it needs to have good expansion properties. It turns out that
it is enough if left subsets of a given size K/O(1) expand to size K, and a disperser has this property.
When we decompress, given the right node (the compressed string), we run the matching algorithm
and see which left node has been matched to it. For this the decompressor needs to have n to be able
to construct the graph, and this produces the O(logn) overhead. Thus this approach is good enough to
obtain the result with O(logn)-short programs from [1]. To reduce O(logn) to O(1), we need the new
ideas from [S5]. The point is that this time we want LEFT to have strings not of a single length n, but of
all lengths n > k (because we can no longer afford to give n to the decompressor). In fact, it is not hard
to see, that it is enough to restrict to lengths k < n < 2*. This time we need expansion for all sets of
size < K (not just equal to a fixed K/O(1), because we need each subset (of the match-requesting set
A) of strings of a given length to expand. For this, the unbalanced lossless expander from [2] is good,
except for one problem: The size of RIGHT in this expander is poly(K) and not the desired K + O(1).
This problem is fixed by compressing using again the disperser from [4] to a set of size K - poly(k),
and, finally, using a simple trick, to size K+ O(1), which implies the O(1) overhead we aim for.

2 The proof

We use bipartite graphs G = (L,R,E C L X R). We denote LEFT(G) =L, RIGHT(G) = R. For integers
n,m,k,d we denote N = 28 M = 2" K = 2K D = 29, We denote [n] = {1,2,...,n}. A bipartite graph
is explicit if there exists a polynomial-time algorithm that given x € LEFT(G) and i, outputs the i-th
neighbor of x.

Definition 1. A bipartite graph G is a (K,K')-expander if every subset of left nodes having size K, has
at least K' right neighbors.

Theorem 2 (Guruswami, Umans, Vadhan [2]). For every constant Q, every n, every k < n, and € > 0,
there exists am explicit (K', (1 —€)DK') expander for every K' < K, in which every left node has degree
D= O0((nk/€)'*V/®), L=|N],R= [M], M < D* . K'*%,

Definition 2. A bipartite graph G = (L,R,E) is a (K, d)-disperser, if every subset B C L with |B| > K
has at least (1 — 8)|R| distinct neighbors.

Theorem 3 (Ta-Shma, Umans, Zuckerman [4]). For every K,n and constant 8, there exists explicit
(K,0)-dispersers G = (L = {0,1}",R = {0,1}",E C L x R) in which every node in L has degree

2
D = n20(Uegloen)) g |R| = “ng,for some constant o.

3[4] only indicates that D = poly(n). The value D = n20((loglogn)?) i obtained by reworking the proof in [4] using the
extractor with constant loss from Theorem 4.21 in [2].

The key combinatorial object that we use is provided in the following lemma.

Lemma 4. For every constant ¢ and every sufficiently large k, there exists an explicit bipartite graph
Hj, with the following properties:

1. LEFT(Hy) = {0,1}<U{0, 1} U...u{0,1}%, RIGHT(Hy) = {0,1}*+!,
))

2. Each left node x has degree poly(|x
3. Hyisa (K/c? K)-expander.

We defer the proof of this lemma for later.

We show how the lemma implies Theorem 1. We start with the following lemma about on-line
matching (recall that this means that one receives a sequence of requests to match left nodes with one
of their adjacent right nodes and each request must be satisfied, or discarded, before seeing the next
one).

Lemma 5. If K on-line matching requests are made in a (K /c?,K)-expander all but less than K /c?
can be satisfied.

Proof. Suppose there are K requests for matching left nodes and we attempt to satisfy them in the
obvious greedy manner. Suppose that K /c? requests cannot be satisfied (because all their neighbors
have been used to match previous requests). The K/c? left nodes that are not satisfied have K right
neighbors and all of them have satisfied matching requests. This would imply that all the K requests
have been satisfied, contradiction. O

Proof of Theorem 1.

We define the following machine V (“the decompressor”).

(1) On inputs of the form 00p, V outputs p.

(2) On inputs of the form 01p, V simulates U (p) and if U(p) = x and |x| > 2/7|, outputs x.

(3) On inputs of the form 1p, V works as follows:

V calculates its value on all inputs of the form 1p’ with |p’| = |p| as follows. Let k = |p|— 1.
Enumerate the elements of the set {x | 3g of length k,U(g) = x}. When an element x is enumerated
and |x| is between k and 2%, pass x to the online matching algorithm for Hy. If x is matched to p/,
then V(p') outputs x. If x is rejected because all its right neighbors in Hj have already been used to
match other elements during the computation of V(1p’) for strings p’ of length k — 1, continue the
enumeration.

Observe that during computations of the form (3), at most K matching requests are made and
therefore, by the property of Hy, there are fewer than K /c? rejections. It follows that if v is a rejected
node then Cy (v) < k—2logc+logc+2logloge+ O(1) < k, for ¢ a large enough constant. Indeed a
rejected string can be described by its index in the set of rejected strings written on exactly k — 2logc
bits, and ¢ (which is needed in order to reconstruct k and next enumerate the set of rejected strings). The
additional 2loglogc term is required for concatenating the index and c. It follows that if x is a string
such that Cy(x) = k and k € {log|x|,...,|x|}, then there exists p of length k+ 1 such that V(1p) = x.
Moreover, p is one of the right neighbors of x in H.

Now, for each x, let /ist(x) be the list containing the following strings: 00x, all strings of length <
log | x| prefixed with 01, and all the neighbors of x in Hy prefixed with a 1, for k = [x|, |x| —1,...,log(|x]).
Note that for every x, list(x) can be computed in polynomial time, and there exists v € list(x), |v| <
Cy(x) + O(1) such that Cy(v) = x. Finally, using the “translator” ¢ from V programs to U programs,
take f(x) = {¢t(v) | v € list(x)}. Since is computable in polynomial time, U(¢(v)) =V (v) and |t(v)| =
[v|+O(1), we are done. O

It remains to prove Lemma 4. We use two types of graphs given in the following two lemmas.

Lemma 6. For every n, and k < n, there exists a bipartite graph GUV,,; with each left node having
degree D = A(nk)? (for some fixed constant 1), LEFT(GUV,x) = {0,1}", RIGHT(GUV,x) = [M]
with M < D*K? , which is a (K',(1/2)DK")-expander for every K' < K.

Proof. This is the Guruswami, Umans, Vadhan expander with parameters @ = 1,€ = 1/2. O

Lemma 7. For every k, there exists a bipartite graph F, with each left node having degree D = O(k?),
LEFT(Fy) = {0, 1}%, RIGHT(Fy) = {0, 1}*"!, which is a (K, K)-expander.

Proof. Consider the Ta-Shma, Umans, Zuckerman (K, 1/2)-disperser G, with LEFT(G) = {0, 1}8K,

2
RIGHT(G) = {0,1}™, left degree D = O(k20((°¢10¢k))) and |RIGHT(G)| = 503

To increase the size of the right set to be at least 2K, we make RIGHT consist of 2(%] copies
of RIGHT(G) connected to LEFT(G) in the same way as the original nodes. Thus each right node is
labelled by a string of length > k -+ 1 and the left degree is O(k?).

By merging the nodes whose labels have the same prefix of length k4 1, we obtain the graph F;,
which as desired has RIGHT(Fy) = {0, 1}*"! and is a (K, 1/2)-disperser (because the merge operation
can only improve the dispersion property).

Thus, every left subset of size K has at least (1/2)-2K right neighbors, i.e., Fy is a (K, K)-expander.

O

We are now prepared to prove Lemma 4.
Proof of Lemma 4

Let us fix ¢ and a sufficiently large k.

We first construct the graph Gy as the union GU V)t UGU Vi1 U...UGU Vo .

Note that LEFT(Gy) consists of all strings having length between k and 2¢. For RIGHT(Gy), we
shift the numerical labels of the right nodes in each set in the obvious way before taking the union, so
that the sets that we union are pairwise disjoint. We have

2k 2k
IRIGHT(Gy)| < ¥ A*(nk)*K* = 2°%k*K*)" n* < 2°k* K’ <K®,
n=k n=k
for k sufficiently large. By padding each right node in G; with 100...0, we label each right node by a
string of length 8%.

Note that, provided & is sufficiently large, Gy is a (K /c?, K)-expander. Indeed take B C LEFT(Gy),
|B| = K/c?. B has strings of different lengths. If we partition B into subsets of strings corresponding to
the different lengths, each subset with strings of length say n expands according to GUV,, ; by a factor
of (1/2)A(nk)* > c? (if k is large enough). Since different subsets of the partition map into disjoint
right subsets, the above assertion follows.

The degree of every left node x in Gy is bounded by poly(|x|) because the edges originating in x are
those from the graph GUV/,| x. So Gy is almost what we need except that the right nodes have length 8k
instead of k4 1. We fix this issue by compressing strings of length 8k to length £+ 1 using the graph
Fj, from Lemma 7.

More precisely, we build the graph Hj by taking the product of the above graph G with the graph
Fj. Thus LEFT(Hk) = LEFT(Gy), RIGHT (Hy) = RIGHT (Fx) and (x,y) is an edge in Hj if there exists
z € RIGHT(Gyx) C LEFT(Fy) such that (x,z) is an edge in Gy and (z,y) is an edge in F;. As desired,
LEFT(Hy) consists of all strings x having length between k and 2¥, RIGHT(Hy) = {0, 1}¥*!, the degree
of every left node x is bounded by poly(|x|)poly (k) = poly(|x|) and Hy is a (K /c?, K)-expander, because
each left subset of size K /c* expands to size at least K in Gy and then it keeps its size at least K when
passing through Fy. O

Note. The above construction yields in Theorem 1 a list of size O(n®). If in Lemma 6 we take a
small o (instead of & = 1), we obtain list size O(n®+9), for arbitrarily small constant §.

3 Acknowledgements

We are grateful to Alexander Shen for his comments and for signalling an error in an earlier version.
We thank Jason Teutsch for useful conversations that lead to a more precise estimation of the list size
in Theorem 1.

References

[1] B. Bauwens, A. Makhlin, N. Vereshchagin, and M. Zimand. Short lists with short programs in
short time. ECCC, TR13-007, 2013.

[2] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders and
randomness extractors from parvaresh—vardy codes. J. ACM, 56(4), 2009.

[3] D. Musatov, A. E. Romashchenko, and A. Shen. Variations on Muchnik’s conditional complexity
theorem. Theory Comput. Syst., 49(2):227-245, 2011.

[4] A. Ta-Shma, C. Umans, and D. Zuckerman. Lossless condensers, unbalanced expanders, and
extractors. Combinatorica, 27(2):213-240, 2007.

[5] J. Teutsch. Short lists for shorter programs in short time, 2012. CORR Technical Report
arXiv:1212.6104.

