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Abstract. We construct non-interactive zero-knowledge arguments for
circuit satisfiability with perfect completeness, perfect zero-knowledge
and computational soundness. The non-interactive zero-knowledge argu-
ments have sub-linear size and very efficient public verification. The size
of the non-interactive zero-knowledge arguments can even be reduced to
a constant number of group elements if we allow the common reference
string to be large. Our constructions rely on groups with pairings and
security is based on two new cryptographic assumptions; we do not use
the Fiat-Shamir heuristic or random oracles.

Keywords: Sub-linear size non-interactive zero-knowledge arguments,
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1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [24] are
fundamental building blocks in cryptography that are used in numerous proto-
cols. Zero-knowledge proofs enable a prover to convince a verifier of the truth of
a statement without leaking any other information. The central properties are
captured in the notions of completeness, soundness and zero-knowledge.

Completeness: The prover can convince the verifier if the prover knows a
witness testifying to the truth of the statement.

Soundness: A malicious prover cannot convince the verifier if the statement is
false. We distinguish between computational soundness that protects against
polynomial time cheating provers and statistical or perfect soundness where
even an unbounded prover cannot convince the verifier of a false statement.
We will call computationally sound proofs for arguments.

Zero-knowledge: A malicious verifier learns nothing except that the state-
ment is true. We distinguish between computational zero-knowledge, where
a polynomial time verifier learns nothing from the proof and statistical or
perfect zero-knowledge, where even a verifier with unlimited resources learns
nothing from the proof.
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The first zero-knowledge proofs relied on interaction between the prover and
the verifier. Many cryptographic tasks are carried out off-line though; for in-
stance signing or encrypting messages. For these tasks it is desirable to have
non-interactive zero-knowledge (NIZK) proofs, where there is no interaction
and a proof just consists of a single message from the prover to the verifier.
Unfortunately, only languages in BPP have NIZK proofs in the plain model
without any setup [22,21]. However, Blum, Feldman and Micali [6] introduced
NIZK proofs in the common reference string model, where both the prover and
verifier have access to a common reference string generated in a trusted way.
Such NIZK proofs have many applications, ranging from early chosen cipher-
text attack secure public-key cryptosystems [17,38] to recent advanced signature
schemes [11,7]. For this reason there has been a lot of research into the underly-
ing assumptions [19,2,28], the efficiency [13,15,33,27], and the security guarantees
offered by NIZK proofs [16,38,14].

NIZK proofs based on standard cryptographic assumptions used to be inef-
ficient and not useful in practice. To get around this inefficiency, applied cryp-
tographers have relied on the so-called Fiat-Shamir heuristic for transforming
public-coin interactive zero-knowledge proofs into NIZK arguments by using
a cryptographic hash-function to compute the verifier’s challenges. The Fiat-
Shamir heuristic can give very efficient NIZK arguments that are secure in the
random oracle model [5], where the cryptographic hash-function is modeled as
a random function. It is for instance possible to use the Fiat-Shamir heuristic
to transform sub-linear size interactive public-coin zero-knowledge arguments
[32] into sub-linear size non-interactive zero-knowledge arguments [35]. Unfor-
tunately, there are several examples of protocols that are secure in the ran-
dom oracle model, but do not have any secure standard model instantiation no
matter which hash-function is used [9,10,34,3,37]. Particularly relevant here is
Goldwasser and Kalai’s [23] demonstration of a signature scheme built from a
public-coin identification scheme that is secure in the random oracle model but
insecure in real life.

Recent works on NIZK proofs has used bilinear groups to improve efficiency.
Groth, Ostrovsky and Sahai [30,29] gave NIZK proofs for circuit satisfiability
where the proof consists of O(|C|) group elements, with |C| being the number of
gates in the circuit. Their NIZK proofs have the property that they can be set
up to give either perfect soundness and computational zero-knowledge, or alter-
natively computational soundness and perfect zero-knowledge. Works by Boyen,
Waters, Groth and Sahai [7,8,25,31] have explored how to build efficient NIZK
proofs that are directly applicable in bilinear groups instead of going through
circuit satisfiability. In some special cases, for instance in the ring signature of
Chandran, Groth and Sahai [11], these techniques lead to sub-linear size NIZK
proofs but in general the number of group elements in an NIZK proof grows
linearly in the size of the statement. Abe and Fehr [1] gave a construction based
on commitments instead of encryptions, but since there is a commitment for
each wire they also get a linear growth in the size of the circuit.
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Looking at the NP-complete problem of circuit satisfiability, the reason the
NIZK proofs grow linearly in the circuit size is that they encrypt the value of
each wire in the circuit. Gentry’s new fully homomorphic cryptosystem [20] can
reduce the NIZK proof to being linear in the size of the witness: The prover
encrypts the inputs to the circuit and uses the homomorphic properties of the
cryptosystem to compute the output of the circuit. The prover then gives NIZK
proofs for the input ciphertexts being valid and the output ciphertext containing
1. Fully homomorphic encryption only helps when the circuit has a small witness
though; if the circuit has a linear number of input wires the resulting NIZK proof
will also be linear in the circuit size.

1.1 Our Contribution

Micali’s CS proofs [35] indicated the possibility of sub-linear size NIZK argu-
ments, but despite more than a decade of research the Fiat-Shamir heuristic is
the only known strategy for constructing sub-linear size NIZK arguments. Our
goal is to introduce a new type of sub-linear size NIZK arguments where security
does not rely on the random oracle model.

We construct NIZK arguments for circuit satisfiability with perfect complete-
ness, computational soundness and perfect zero-knowledge (see Section 2 for
definitions). The NIZK arguments are short and very efficient to verify, but the
prover uses a super-linear number of group operations. We first give an NIZK
argument consisting of a constant number of group elements but having a long
common reference string. We then show that it is possible to reduce the size
of the common reference string at the cost of increasing the size of the NIZK
argument making them simultaneously sub-linear in the circuit size.

The soundness of our NIZK argument relies on the q-computational power
Diffie-Hellman and the q-power knowledge of exponent assumptions (see Section
3). The q-CPDH assumption is a normal computational intractability assump-
tion but the q-PKE is a so-called knowledge of exponent assumption. Knowledge
of exponent assumptions have been criticized for being unfalsifiable [36] but the
use of a non-standard assumption may be unavoidable since Abe and Fehr [1]
have demonstrated that no statistical zero-knowledge NIZK argument for an
NP-complete language has a “direct black-box” reduction to a standard crypto-
graphic assumption unless NP ⊆ P/poly.12

1 Abe and Fehr do not rule out the existence of statistical NIZK arguments with non-
adaptive soundness, where the adversary chooses the statement oblivously of the
common reference string. Since the common reference string is public it is more nat-
ural to define soundness adaptively though; indeed we do not know of any practical
applications of NIZK arguments with non-adaptive soundness.

2 The very assumption that an NIZK argument is sound seems to be unfalsifiable as
well since even if an adversary outputs a false statement and a convincing NIZK
argument it may be hard to verify that the statement is false. Groth, Ostrovsky
and Sahai [30] circumvented this problem by defining co-soundness for languages
in NP ∩ coNP, which is falsifiable since the adversary can produce a coNP-witness
certifying that the statement is false.
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Table 1. Comparison of NIZK proofs and arguments

CRS size Proof size Prov. comp. Ver. comp. Assumption

Groth [27] Õ(|C|) G Õ(|C|) G Õ(|C|) E Õ(|C|) M trapdoor perm.

Groth [27] Õ(|C|) bits Õ(|C|) bits Õ(|C|) M Õ(|C|) M Naccache-Stern

Gentry [20] O(1) G |w|kO(1) G |C|kO(1) M |C|kO(1) M lattice-based
G-Ostrovsky-Sahai O(1) G O(|C|) G O(|C|) E O(|C|) P pairing-
[30,29] O(1) G O(|C|) G O(|C|) E O(|C|) E based
Abe-Fehr [1] O(1) G O(|C|) G O(|C|) E O(|C|) E knowledge of expo.

Groth [26] O(|C| 12 ) G O(|C| 12 ) G O(|C|) M O(|C|) M random oracle

This paper O(|C|2) G O(1) G O(|C|2) M O(|C|) M PKE and CDHP

This paper O(|C| 23 ) G O(|C| 23 ) G O(|C| 43 ) M O(|C|) M PKE and CDHP

Table 1 gives a comparison to other NIZK proofs and arguments for circuit
satisfiability, where k is a security parameter, G stands for the size of a group ele-
ment, M and E are the costs of respectively multiplications and exponentiations,
and P is the cost of a pairing in a bilinear group (see Section 3).

Compared to other pairing-based NIZK arguments, our arguments are smaller
and faster to verify. The prover uses a super-linear number of multiplications and
the computational cost may grow beyond a linear number of exponentiations.
The public verifiability means that the NIZK arguments are transferable though;
they can be copied and distributed to many different entities that can do their
own independent verification. The prover only pays a one-time cost for comput-
ing the NIZK argument, while all verifiers enjoy the benefits of low transmission
bandwidth and efficient verification.
Perfect Zaps. The common reference string model assumes a trusted setup for
generating common reference strings and making them available to the prover
and verifier. In case no such setup is available3 we can still get a sub-linear size 2-
move publicly verifiable witness-indistinguishable argument where the verifiers
first message can be reused many times, a so-called Zap [18], as follows: The
verifier generates a common reference string. The prover verifies that the common
reference string is well-formed (our common reference string is not a random bit-
string, but it does have a certain structure that makes it possible to verify that it
is well-formed) and can now make arbitrarily many Zaps using the verifier initial
message as the common reference string. Since our NIZK argument is perfectly
zero-knowledge, the Zaps will be perfectly witness-indistinguishable.

1.2 Outline of Our NIZK Argument

We will construct NIZK arguments for the existence of an input to a binary
circuit C making it output 1. At a loss of a constant factor, we may assume C
consists of NAND-gates. Furthermore, if we label the output wire a we may add
3 We remark that even if the common reference string is adversarially chosen the sub-

linearity of our NIZK arguments impose an information theoretic upper bound on
how much information can be leaked.
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a self-loop to the circuit consisting of a NAND-gate a = ¬(a∧ b) forcing a to be
1. This reduces the challenge to prove that there is an assignment of truth-values
to the wires that respect all the N = |C| NAND-gates in the circuit.

The NIZK argument relies on length-reducing commitments where we commit
to n values in a finite field Zp using only a constant number of group elements.
We will also use non-interactive arguments consisting of a constant number of
group elements for proving the following properties about committed values:

Entry-wise product: Commitments c, d, v contain values a1, . . . , an, b1, . . . , bn

and u1, . . . , un that satisfy ui = aibi for all i.
Permutation: Commitments c, d contain values a1, . . . , an and b1, . . . , bn that

satisfy bi = aρ(i) for all i, where ρ is a publicly known permutation of n
elements.

Let us sketch how commitments combined with these two types of non-interactive
arguments give us a constant size NIZK argument for circuit satisfiability when
n = 2N . The prover gets as a witness for the satisfiability of the circuit a1, . . . , aN

and b1, . . . , bN such that ai, bi are the inputs to gate i and all the values are
consistent with the wires and respect the NAND-gates. We use the convention
that −1 corresponds to false and +1 corresponds to true, so if ui is the output
of gate i we have ui = −aibi.

The prover makes commitments to the 2N -tuples

(a1, . . . , aN , b1, . . . , bN) (b1, . . . , bN , 0, . . . , 0) (−u1, . . . ,−uN , 0, . . . , 0).

The prover gives an entry-wise product argument on the commitment to
(a1, . . . , aN , b1, . . . , bN) with itself to show a2

i = 1 and b2
i = 1 for all i. This

shows that a1, . . . , aN , b1, . . . , bN ∈ {−1, 1} are appropriate truth values.
An output of one NAND-gate may be the input of other NAND-gates, which

means the corresponding values ai1 , . . . , ai�
, bj1 , . . . , bjm have to have the same

assignment. The prover picks a permutation ρ that contains cycles i1 → i2 →
. . .→ i� → j1+N → j2+N → . . .→ jm +N → i1 for all such sets of values that
have to be consistent and gives a permutation argument on the commitment to
(a1, . . . , aN , b1, . . . , bN). This shows for each set of values corresponding to the
same output wire that ai2 = ai1 , . . . , bj1 = ai�

, . . . , bjm = bjm−1 so the values
(a1, . . . , aN , b1, . . . , bN) are consistent with the wiring of the circuit.

The prover uses additional commitments, entry-wise product and permutation
arguments to show that the other committed values (b1, . . . , bN , 0, . . . , 0) and
(−u1, . . . ,−uN , 0, . . . , 0) are consistent with the wiring of the circuit and the
values (a1, . . . , aN , b1, . . . , bN ), we refer to Section 8 for the details.

Finally, the prover uses the entry-wise product argument to show that
the entry-wise product of (a1, . . . , aN , b1, . . . , bN ) and (b1, . . . , bN , 0, . . . , 0) is
(−u1, . . . ,−uN , 0, . . . , 0) so all the values respect the NAND gates.

This outline shows how to get a constant size NIZK argument for circuit sat-
isfiability, but to enable the entry-wise product arguments and the permutation
arguments the common reference string has size O(N2) group elements. In Sec-
tion 9 we reduce the common reference string size by using commitments to n



326 J. Groth

elements where n < N . With n smaller than 2N we need to give permutation
arguments that span accross multiple commitments though. Using permutation
network techniques [12] we manage to build such large permutations from many
smaller permutations.

The technical contribution of this paper is the construction of an appropriate
commitment scheme with corresponding non-interactive entry-wise product and
permutation arguments. The commitment scheme is a variant of the Pedersen
commitment scheme, where the commitment key is of the form (g, gx, . . . , gxq

). A
commitment to a1, . . . , aq is a single group element computed as gr

∏q
i=1(g

xi

)ai .
The nice thing about such a commitment is that the discrete logarithm is a

polynomial r +
∑q

i=1 aix
i. When we pair two commitments with each other we

get a product of two polynomials in the exponent. By taking appropriate linear
combinations over products of polynomials, we can express entry-wise products
and permutations as equations over the coefficients of these polynomials. The
q-CPDH assumption then allows us to conclude that these coefficients are iden-
tical and therefore the committed values satisfy an entry-wise multiplication
relationship or a permutation relationship to each other.

When pairing commitments (equivalent to multiplying polynomials in the
exponent) there will be various cross-terms. The role of the non-interactive ar-
guments will be to cancel out these terms. Usually, a single group element paired
with g suffices to cancel out all the cross-terms, so the non-interactive arguments
for entry-wise products and permutations are highly efficient themselves.

To prove that our NIZK argument is sound, we need to reason about the
coefficient of these polynomials. However, a cheating prover might create a com-
mitment without knowing an opening of it. This is where the q-PKE assumption
comes in handy: the prover gives non-interactive arguments demonstrating that
it “knows” the openings of the commitments. By this we mean that there is an
extractor that given the same input as the prover can reconstruct the commit-
ments together with the openings of the commitments.

2 Definitions

Let R be an efficiently computable binary relation. For pairs (C, w) ∈ R we call
C the statement and w the witness. Let L be the NP-language consisting of
statements with witnesses in R. When we restrict ourselves to statements of size
N , we write respectively LN and RN .

A non-interactive argument for a relation R consists of a common reference
string generator algorithm K, a prover algorithm P and a verifier algorithm V
that run in probabilistic polynomial time. The common reference string genera-
tor takes as input a security parameter k and the statement size N and produces
a common reference string σ. The prover on input (σ, C, w) produces an argu-
ment π. The verifier on input (σ, C, π) outputs 1 if the argument is acceptable
and 0 if rejecting the argument. We call (K, P, V ) an argument for R if it has
the completeness and soundness property described below.
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Perfect completeness. Completeness captures the notion that an honest
prover should be able to convince an honest verifier if the statement is true. For
N = kO(1) and all adversaries A outputting (C, w) ∈ RN :

Pr
[
σ ← K(1k, N); (C, w)← A(σ); π ← P (σ, C, w) : V (σ, C, π) = 1

]
= 1.

Computational soundness. Soundness captures the notion that it should be
infeasible for an adversary to come up with an accepting argument for a false
statement. For N = kO(1) and all non-uniform polynomial time adversaries A:

Pr
[
σ ← K(1k, N); (C, π)← A(σ) : C /∈ L and V (σ, C, π) = 1

]
≈ 0.

Perfect witness-indistinguishability. We say a non-interactive argument
(K, P, V ) is perfectly witness-indistinguishable if it is impossible to tell which
witness the prover when there are many possible witnesses. For N = kO(1) and
all stateful interactive adversaries A outputting (C, w0), (C, w1) ∈ RN :

Pr
[
σ ← K(1k, N); (C, w0, w1)← A(σ); π ← P (σ, C, w0) : A(π) = 1

]

= Pr
[
σ ← K(1k, N); (C, w0, w1)← A(σ); π ← P (σ, C, w1) : A(π) = 1

]
.

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak
any information besides the truth of the statement. We say a non-interactive
argument (K, P, V ) is perfect zero-knowledge if there exists a polynomial time
simulator S = (S1, S2) with the following zero-knowledge property. S1 outputs
a simulated common reference string and a simulation trapdoor. S2 takes the
common reference string, the simulation trapdoor and a statement as input
and produces a simulated argument. For N = kO(1) and all stateful interactive
adversaries A outputting (C, w) ∈ RN :

Pr
[
σ ← K(1k, N); (C, w)← A(σ); π ← P (σ, C, w) : A(π) = 1

]

= Pr
[
(σ, τ)← S1(1k, N); (C, w)← A(σ); π ← S2(σ, τ, C) : A(π) = 1

]
.

3 Bilinear Groups

Notation. Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when
|f(k) − g(k)| = O(k−c) for every constant c > 0. We say that f is negligible
when f(k) ≈ 0 and that it is overwhelming when f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness
r, outputs y. We write y ← A(x) for the process of picking randomness r at
random and setting y = A(x; r). We also write y ← S for sampling y uniformly
at random from the set S. We will assume it is possible to sample uniformly at
random from sets such as Zp. We define [n] to be the set {1, 2, . . . , n}.
Bilinear groups. Let G take a security parameter k written in unary as input
and output a description of a bilinear group (p, G, GT , e)← G(1k) such that
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1. p is a k-bit prime.
2. G, GT are cyclic groups of order p.
3. e : G×G is a bilinear map (pairing) such that ∀a, b : e(ga, gb) = e(g, g)ab.
4. If g generates G then e(g, g) generates GT .
5. Membership in G, GT can be efficiently decided, group operations and the

pairing e are efficiently computable, generators are efficiently sampleable,
and the descriptions of the groups and group elements each have size O(k)
bits.

The security of our NIZK arguments will be based on two new assumptions,
which we call respectively the q-power knowledge of exponent assumption and
the q-computational power Diffie-Hellman assumption.
The q-power knowledge of exponent assumption. The knowledge of ex-
ponent (KEA) assumption says that given g, gα it is infeasible to create c, ĉ so
ĉ = cα without knowing a so c = ga and ĉ = (gα)a. Bellare and Palacio [4]
extended this to the KEA3 assumption, which says that given g, gx, gα, gαx it is
infeasible to create c, ĉ so ĉ = cα without knowing a0, a1 so c = ga0(gx)a1 and
ĉ = (gα)a0(gαx)a1 .

The q-power knowledge of exponent assumption is a generalization of KEA
and KEA3. It says that given (g, gx, . . . , gxq

, gα, gαx, . . . , gαxq

) it is infeasible
to create c, ĉ so ĉ = cα without knowing a0, . . . , aq so c =

∏q
i=0(g

xi

)ai and
ĉ =

∏q
i=0(g

αxi

)ai .
We will now give the formal definition of the q-power knowledge of exponent

assumption. Following Abe and Fehr [1] we write (y; z)← (A ‖ XA)(x) when A
on input x outputs y and XA on the same input (including the random tape of
A) outputs z.

Definition 1 (q-PKE). The q(k)-power knowledge of exponent assumption
holds for G if for every non-uniform probabilistic polynomial time adversary A
there exists a non-uniform probabilistic polynomial time extractor XA so

Pr
[
(p, G, GT , e)← G(1k) ; g ← G \ {1} ; α, x← Z

∗
p ;

σ = (p, G, GT , e, g, gx, . . . , gxq

, gα, gαx, . . . , gαxq

) ;

(c, ĉ ; a0, . . . , aq)← (A ‖ XA)(σ) : ĉ = cα ∧ c 
=
n∏

i=0

gaix
i
]
≈ 0.

The q-computational power Diffie-Hellman assumption. The com-
putational Diffie-Hellman (CDH) assumption says that given g, gβ, gx it
is infeasible to compute gβx. The q-computational power Diffie-Hellman
assumption is a generalization of the CDH assumption that says given
(g, gx, . . . , gxq

, gβ, gβx, . . . , gβxq

) except for one missing elements gβxj

, it is hard
to compute the missing element.

Definition 2 (q-CPDH). The q(k)-computational power Diffie-Hellman as-
sumption holds for G if for all j ∈ {0, . . . , q} and all non-uniform probabilistic
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polynomial time adversaries A we have

Pr
[
(p, G, GT , e)← G(1k) ; g ← G \ {1} ; β, x← Z

∗
p ;

y ← (A,XA)(p, G, GT , e, g, gx, . . . , gxq

, gβ, gβx, . . . ,

gβxj−1
, gβxj+1

, . . . , gβxq

) : y = gβxj
]
≈ 0.

In the full paper we give heuristic arguments for believing in the q-PKE and
q-CPDH assumptions by proving that they hold in the generic group model.

4 Knowledge Commitment

We will use a variant of the Pedersen commitment scheme in our NIZK proof
where we commit to a1, . . . , aq as c = gr

∏
i∈[q] g

ai

i . In the security proof of
our NIZK argument for 3SAT we will need to extract the committed values
a1, . . . , aq; but the commitment scheme itself is perfectly hiding and does not
reveal the committed values. For this reason, we will require the prover to create
a related commitment ĉ = ĝ

∏
i∈[q] ĝ

ai

i and will rely on the q-PKE assumption for
extracting the committed values. We call (c, ĉ) a knowledge commitment, since
the prover cannot make a valid commitment without “knowing” the committed
values.

Key generation: Pick gk = (p, G, GT , e) ← G(1k) g ← G \ {1} ; x, α ←
Z
∗
p. The commitment key is ck = (gk, g, g1, . . . , gq, ĝ, ĝ1 . . . , ĝq) =

(gk, g, gx, . . . , gxq

, gα, gαx, . . . , gαxq

) and the trapdoor key is tk = x.
Commitment: To commit to a1, . . . , aq pick r ← Zp and compute the knowl-

edge commitment (c, ĉ) as

c = gr
∏

i∈[q]

gai

i ĉ = ĝr
∏

i∈[q]

ĝai

i .

Given (c, ĉ) ∈ G2 we can verify that it is well-formed by checking e(g, ĉ) =
e(c, ĝ).

Trapdoor commitment: To make a trapdoor commitment sample trapdoor
randomness t ← Zp and compute the knowledge commitment (c, ĉ) as c =
gt ; ĉ = ĝt.

Trapdoor opening: The trapdoor opening algorithm on messages a1, . . . , aq ∈
Zp returns the randomizer r = t−∑

i∈[q] aix
i. The trapdoor opening satisfies

c = gr
∏

i∈[q] g
ai

i and ĉ = ĝr
∏

i∈[q] ĝ
ai

i .

The commitment scheme has properties similar to those of standard Pedersen
commitments as the following theorem shows. We refer to the full paper for the
proof of the following theorem.

Theorem 1. The commitment scheme is perfectly trapdoor and computation-
ally binding. Assuming the q-PKE assumption holds, there exists for any non-
uniform probabilistic polynomial time committer A a non-uniform probabilistic
polynomial time extractor XA that computes the contents of the commitment
when given the input of A (including any random coins).
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4.1 Restriction Argument

Consider a subset S ⊂ [q] and a commitment c. We will need an argument for the
opening r, a1, . . . , aq being such that the indices of non-zero values are restricted
to S. In other words, we need an argument for the commitment being of the
form c = gr

∏
i∈S gai

i . The argument will take the form π = hr
∏

i∈S hai

i , which
intuitively corresponds to an additional argument of knowledge with respect to
a small base (h, {hi}i∈S).

Setup: gk← G(1k) ; ck ← Kcommit(gk).
Common reference string: Given (ck, S) as input pick at random β ←

Z
∗
p and compute the common reference string as σ = (h, {hi}i∈S) =

(gβ , {gβ
i }i∈S).

Statement: A valid knowledge commitment (c, ĉ).
Prover’s witness: Opening r, {ai}i∈S so c = gr

∏
i∈S gai

i and ĉ = ĝr
∏

i∈S ĝai

i .
Argument: Compute the argument as π = hr

∏
i∈S hai

i .
Verification: Output 1 if and only if e(c, h) = e(g, π).

Theorem 2. The restriction argument is perfectly complete and perfectly
witness-indistinguishable. If the q-CPDH assumption holds, all non-uniform
probabilistic polynomial time adversaries have negligible probability of outputting
(r, a1, . . . , aq, π) so ai 
= 0 for some i /∈ S and π is an acceptable restriction
argument for the commitment corresponding to the opening.

We refer to the full paper for the proof. Observe that we phrase the soundness of
the restriction argument as the inability to find an opening of the commitment
that violates the restriction. Since the commitment scheme is perfectly hiding we
cannot exclude the existence of openings that violate the restriction. However, if
it holds that it is a knowledge commitment (Theorem 1) we see that the opening
we extract from the committer must respect the restriction.

5 Common Reference String

We will now describe how to generate the common reference string for our NIZK
argument. The common reference string will consist of a knowledge commitment
key ck for q = n2 + 3n− 2 values together with three common reference strings
for restriction to the sets

S̃ = {1, . . . , n} , S̄ = {(n + 1), . . . , n(n + 1)} , Ṡ = {� ∈ [q] | � 
= 0 mod n + 2}.
The zero-knowledge simulation of the argument will use the same type of com-
mon reference string, and the simulation trapdoor for our NIZK argument will
be the trapdoor for the knowledge commitment.

Common Reference String Generation:
On input 1k and n do
1. Generate (p, G, GT , e)← G(1k) and set gk = (p, G, GT , e).
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2. Pick g ← G \ {1} ; x, α← Z
∗
p and compute

ck = (gk, g, . . . , gq, ĝ, . . . , ĝq) = (gk, g, . . . , gxn2+3n−2
, gα, . . . , gαxn2+3n−2

).

3. Generate σ̃ ← Krestrict(ck, S̃) where S̃ = {1, 2, . . . , n}.
4. Generate σ̄ ← Krestrict(ck, S̄) where S̄ = {(n+1), 2(n+1), . . . , n(n+1)}.
5. Generate σ̇ ← Krestrict(ck, Ṡ) where Ṡ = {� ∈ [q] | � 
= 0 mod n + 2}.

The common reference string is σ = (ck, σ̃, σ̄, σ̇) and the simulation trapdoor
is tk = x.

Given a common reference string, it is hard to find a non-trivial linear combina-
tion of 1, x, . . . , xq because we could run a polynomial factorization algorithm in
Zp[X ] to compute the root x. We will repeatedly use this fact, so we prove the
following Lemma in the full paper.

Lemma 1. If the q-CPDH assumption holds for G with q = n2 +3n− 2, a non-
uniform probabilistic polynomial time adversary has negligible chance of finding
a non-trivial linear combination (a0, . . . , aq) such that

∑q
i=0 aix

i = 0 given a
random common reference string σ.

6 Product Argument

Consider three commitments

c = gr
∏

i∈[n]

gai

i d = gs
∏

j∈[n]

g
bj

j(n+1) v = gt
∏

i∈[n]

gui

i ∀i ∈ [n] : ui = aibi.

With the corresponding restriction arguments, ĉ, c̃, d̂, d̄, v̂, ṽ we can assume the
committer knows openings to values a1, . . . , an, b1, . . . , bn and u1, . . . , un. We will
give an argument (π, π̂, π̇) consisting of three group elements for the committed
values satisfying u1 = a1b1, . . . , un = anbn.

In order to explain the intuition in the argument, let us consider the following
toy example c =

∏
i∈[n] g

ai

i and d =
∏

j∈[n] g
bj

j(n+1), where we want to show
a1b1 = 0, . . . , anbn = 0. The discrete logarithms of the two commitments are∑

i∈[n] aix
i and

∑
j∈[n] bjx

j(n+1) and the discrete logarithm of e(c, d) is

⎛

⎝
∑

i∈[n]

aix
i

⎞

⎠ ·
⎛

⎝
∑

j∈[n]

bjx
j(n+1)

⎞

⎠ =
∑

i∈[n]

aibix
i(n+2) +

∑

i∈[n]

∑

j∈[n]\{i}
aibjx

j(n+1)+i.

In the final sum, the left term contains the coefficients a1b1, . . . , anbn that are
supposed to be 0, however, the right term complicates matters. The argument
π will be constructed such that it can be used to cancel out the latter term.

Notice that the left term isolates the coefficients of xn+2, . . . , xn(n+2), while
the right term does not contain any such coefficients. By giving an appropriate
restriction argument, the prover can guarantee that she only cancels out the
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right term without interfering with the left term containing xn+2, . . . , xn(n+2).
The prover computes π =

∏
i∈[n]

∏
j∈[n]\{i} g

aibj

j(n+1)+i and gives corresponding
π̂, π̇ values demonstrating that it knows an opening (z, {z�}�∈Ṡ) of π restricted
to Ṡ. The verifier will check

e(c, d) = e(g, π).

Let us now argue that we have soundness: given π, π̂, π̇ such that e(c, d) =
e(g, π) the verifier can be assured that a1b1 = 0, . . . , anbn = 0. Taking discrete
logarithms, the verification equation tells us that

∑

i∈[n]

aibix
i(n+2) +

∑

i∈[n]

∑

j∈[n]\{i}
aibjx

j(n+1)+i = z +
∑

�∈Ṡ

z�x
�.

Recall, Ṡ = {� ∈ [n2 + 3n − 2] | � 
= 0 mod n + 2} so the argument π will not
contain any coefficients of the form xn+2, . . . , xn(n+2). This means the coefficients
of xn+2, . . . , xn(n+2) are a1b1, . . . , anbn. If there is an i such that aibi 
= 0, then
we have a non-trivial polynomial equation in x. By Lemma 1 this would allow
us to recover x and breaking the q-PKE assumption.

In the general case we want to give an argument for aibi = ui instead of just
aibi = 0. However, if we evaluate e(v,

∏
j∈[n] gj(n+1)) we can view the latter as a

commitment to (1, 1, . . . , 1) and we will get their products u1 ·1, . . . , un ·1 as coef-
ficients of xn+2, . . . , xn(n+2). If u1 = a1b1, . . . , un = anbn the two pairings e(c, d)
and e(v,

∏
j∈[n] gj(n+1)) therefore have the same coefficients of xn+2, . . . , xn(n+2)

and otherwise the coefficients are different. As in the toy example above, we may
choose π such that it cancels out all the other terms. Due to the restriction to
Ṡ the argument will not have any xn+2, . . . , xn(n+2) terms and we therefore get
soundness. In the general case, the commitments also have randomizers and we
will choose π such that it also cancels out these terms.

Statement: Commitments c, d, v ∈ G.
Prover’s witness: Openings r, a1, . . . , an and s, b1, . . . , bn and t, u1, . . . , un so

c = gr
∏

i∈[n]

gai

i , d = gs
∏

j∈[n]

g
bj

j(n+1) , v = gt
∏

i∈[n]

gui

i , ∀i ∈ [n] : ui = aibi.

Argument: Compute the argument (π, π̂, π̇) as

π = grs
∏

i∈[n]

gais
i

∏

j∈[n]

g
bjr−t

j(n+1)

∏

i∈[n]

∏

j∈[n]\{i}
g

aibj−ui

j(n+1)+i

π̂ = ĝrs
∏

i∈[n]

ĝais
i

∏

j∈[n]

ĝ
bjr−t

j(n+1)

∏

i∈[n]

∏

j∈[n]\{i}
ĝ

aibj−ui

j(n+1)+i

π̇ = ḣrs
∏

i∈[n]

ḣais
i

∏

j∈[n]

ḣ
bjr−t

j(n+1)

∏

i∈[n]

∏

j∈[n]\{i}
ḣ

aibj−ui

j(n+1)+i
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Verification: Output 1 if and only if

e(g, π̂) = e(π, ĝ) ∧ e(g, π̇) = e(π, ḣ) ∧ e(c, d) = e(v,
∏

j∈[n]

gj(n+1))e(g, π).

Theorem 3. The product argument has perfect completeness and perfect
witness-indistinguishability. If the q-CPDH assumption holds, then a non-
uniform probabilistic polynomial time adversary has negligible chance of out-
putting commitments (c, d, v) and an accepting argument π with corresponding
openings of the commitments and the argument such that for some i ∈ [n] we
have aibi 
= ui.

The proof can be found in the full paper.
The product argument has two commitments with restriction to S̃ and one

commitment restricted to S̄. It is quite easy to translate commitments back and
forth between S̃ and S̄ though. If we have two commitments v and d restricted
to respectively S̃ and S̄, we can give a product argument for the values in v
being the product of the values in c =

∏
i∈[n] gi and d. Since c is a commitment

to (1, . . . , 1) this proves that v and d contain the same values.
The product argument makes it possible to prove that the committed values

in a commitment c are bits encoded as ±1. If we give a product argument for∏
i∈[n] gi (a commitment to (1, . . . , 1)) being the product of the values in c and

in d, where d contains the same values as c, then we have that the values satisfy
a2

i = 1, which implies ai = ±1.

7 Permutation Argument

Consider two commitments and a permutation

c = gr
∏

i∈[n]

gai

i d = gs
∏

i∈[n]

gbi

i ρ ∈ Sn ∀i ∈ [n] : bi = aρ(i).

We will now give an argument for the committed values satisfying bi = aρ(i),
where ρ ∈ Sn is a publicly known permutation.

The idea behind the permutation argument is to show
∑

i∈[n]

aix
i(n+2) =

∑

i∈[n]

bix
ρ(i)(n+2).

By Lemma 1 this implies bi = aρ(i) for all i ∈ [n].
To get the desired linear combination we compute e(c,

∏
j∈[n] gj(n+1)) and

e(d,
∏

j∈[n] gρ(j)(n+2)−j). They have discrete logarithms

r
∑

j∈[n]

xj(n+1) +
∑

i∈[n]

aix
i(n+2) +

∑

i∈[n]

∑

j∈[n]\{i}
aix

j(n+1)+i

s
∑

j∈[n]

xρ(j)(n+2)−j +
∑

i∈[n]

bix
ρ(i)(n+2) +

∑

i∈[n]

∑

j∈[n]\{i}
bix

ρ(j)(n+2)+i−j
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We have the desired sums
∑

i∈[n] aix
i(n+2) and

∑
i∈[n] bix

ρ(i)(n+2) but due to the
extra terms it is not the case that e(c,

∏
j∈[n] gj(n+1)) = e(d,

∏
j∈[n] gρ(j)(n+2)−j).

The prover will construct an argument π that cancels out the extra terms and
the verifier will check that

e(c,
∏

j∈[n]

gj(n+1)) = e(d,
∏

j∈[n]

gρ(j)(n+2)−j)e(g, π).

The prover also gives a restriction argument π̂, π̇ such that the verifier is guaran-
teed that π does not contain any xn+2, . . . , xn(n+2) terms. Soundness now follows
from the verification equation giving us

∑
i∈[n] aix

i(n+2) =
∑

i∈[n] bix
ρ(i)(n+2)

when π is free of xn+2, . . . , xn(n+2) terms.

Statement: Commitments c, d ∈ G and permutation ρ ∈ Sn.
Prover’s witness: Openings r, a1, . . . , an ∈ Zp and s, b1, . . . , bn ∈ Zp so

c = gr
∏

i∈[n]

gai

i and d = gs
∏

i∈[n]

gbi

i and ∀i ∈ [n] : bi = aρ(i).

Argument: Compute the argument as

π =
∏

j∈[n]

gr
j(n+1)g

−s
ρ(j)(n+2)−j

∏

i∈[n]

∏

j∈[n]\{i}
gai

j(n+1)+ig
−bi

ρ(j)(n+2)+i−j

π̂ =
∏

j∈[n]

ĝr
j(n+1)ĝ

−s
ρ(j)(n+2)−j

∏

i∈[n]

∏

j∈[n]\{i}
ĝai

j(n+1)+iĝ
−bi

ρ(j)(n+2)+i−j

π̇ =
∏

j∈[n]

ḣr
j(n+1)ḣ

−s
ρ(j)(n+2)−j

∏

i∈[n]

∏

j∈[n]\{i}
ḣai

j(n+1)+iḣ
−bi

ρ(j)(n+2)+i−j

Verification: Output 1 if and only if e(g, π̂) = e(π, ĝ) , e(g, π̇) = e(π, ḣ) and
e(c,

∏
j∈[n] gj(n+1)) = e(d,

∏
j∈[n] gρ(j)(n+2)−j)e(g, π).

Theorem 4. The permutation argument has perfect completeness and perfect
witness-indistinguishability. If the q-CPDH assumption holds, a non-uniform
probabilistic polynomial time adversary has negligible chance of outputting a per-
mutation ρ, commitments (c, d) and an acceptable argument (π, π̂, π̇) with cor-
responding openings of the commitments and the argument such that for some
i ∈ [n] we have bi 
= aρ(i).

The proof can be found in the full paper.

8 Constant Size NIZK Argument for Circuit Satisfiability

We will now give an NIZK argument for the satisfiability of a NAND-gate circuit
C, which consists of a constant number of group elements but has a large com-
mon reference string. Let a be the output wire of the circuit and add an extra
self-looping NAND gate a = ¬(a ∧ b) to force a to be true. This reduces the
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satisfiability problem to demonstrating that there is a truth-value assignment to
the wires such that C is internally consistent with all the NAND-gates. In the
following let the value −1 correspond to false and +1 correspond to true. We
now give the full NIZK argument outlined in the introduction.

CRS: Generate common reference string σ = (ck, σ̃, σ̄, σ̇) with n = 2N .
Statement: A circuit C with N NAND-gates, where we want to prove the wires

can be assigned values such that the circuit is internally consistent.
Witness: 2N input values a1, . . . , aN , b1, . . . , bN ∈ {−1, 1} for the N gates that

are consistent with the wires in the circuit and respect the NAND-gates.
Define u1, . . . , uN to be values of the output wires and let r1, . . . , rN be the
remaining values in (a1, . . . , aN , b1, . . . , bN ) (either inputs to the circuit or
duplicates of NAND-gate output wires appearing multiple times as inputs
to other NAND-gates).

Argument:
1. Make restricted commitment (ca‖b, ĉa‖b, c̃a‖b) to (a1, . . . , aN , b1, . . . , bN).
2. Make restricted commitment (da‖b, d̂a‖b, d̄a‖b) to (a1, . . . , aN , b1, . . . , bN).
3. Make restricted commitment (cb‖a, ĉb‖a, c̃b‖a) to (b1, . . . , bN , a1, . . . , aN).
4. Make restricted commitment (cb‖0, ĉb‖0, c̃b‖0) to (b1, . . . , bN , 0, . . . , 0).
5. Make restricted commitment (cu‖r, ĉu‖r, c̃u‖r) to (u1, . . . , uN , r1, . . . , rN ).
6. Make restricted comm. (c−u‖0, ĉ−u‖0, c̃−u‖0) to (−u1, . . . ,−uN , 0, . . . , 0).
7. Show that ca‖b and da‖b contain the same values by giving a product

argument for ca‖b containing the entry-wise product of the values in
∏2N

i=1 gi (a commitment to (1, . . . , 1, 1, . . . , 1)) and da‖b.
8. Show that a1, . . . , aN , b1, . . . , bN ∈ {−1, 1} by giving a product argument

for
∏2N

i=1 gi (a commitment to (1, . . . , 1, 1, . . . , 1)) containing the entry-
wise product of the values in ca‖b and da‖b.

9. Show that the values are internally consistent with the wires. The values
ai1 , . . . , ai�

, bj1 , . . . , bjm may for instance all correspond to the same wire.
Pick a permutation ρ ∈ S2N such that it contains cycles of the form
i1 → i2 → . . . → i� → j1 + N → j2 + N → . . . → jm + N → i1
for all sets of values corresponding to the same wire. Give a permutation
argument for ca‖b containing the ρ-permutation of the values in ca‖b. For
each set corresponding to the same wire, this shows ai2 = ai1 , . . . , bj1 =
ai�

, . . . , bjm = bjm−1 so the values must be the same.
10. Give a permutation argument for cu‖r and ca‖b showing that the

outputs values (u1, . . . , un) are consistent with the input values
(a1, . . . , aN , b1, . . . , bN ). (The (r1, . . . , rN ) values are the remaining N
values in (a1, . . . , aN , b1, . . . , bN) that correspond to duplicates of an out-
put wire or input wires to the circuit.

11. Give a permutation argument for cb‖a containing the swap of the values
in ca‖b.

12. Give a product argument for cb‖0 containing the entry-wise product of
the values in cb‖a and

∏N
j=1 gj(n+1) (contains (1, . . . , 1, 0, . . . , 0)).

13. Give a product argument for c−u‖0 containing the entry-wise product of
the values in cu‖r and

∏N
j=1 g−1

j(n+1) (contains (−1, . . . ,−1, 0, . . . , 0)).
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14. Show the NAND-gates are respected by giving a product argument for
c−u‖0 containing the entry-wise product of the values in cb‖0 and da‖b.

The argument consists of the 6 knowledge commitments with correspond-
ing restriction arguments, the 5 product arguments and the 3 permutation
arguments given above. The total size is 42 group elements.

Verification: Accept the argument if and only if the 6 knowledge commitments
are well-formed, their corresponding restriction arguments are acceptable,
the 5 product arguments are acceptable and the 3 permutation arguments
are acceptable.

Theorem 5. The NIZK argument for circuit satisfiability is perfectly complete
and perfectly zero-knowledge. If the q-PKE and q-CPDH assumptions hold with
q = (4N2 + 6N − 2), then the NIZK argument is computationally sound.

The proof can be found in the full paper.
Arithmetic circuits. It is possible to adjust our NIZK argument to handle
arithmetic circuits consisting of addition and multiplications gates over Zp. The
commitment scheme is homomorphic so if we multiply two commitments we get
the sum of their values, which can be used to handle the addition gates. The
multiplication gates can be handled with our product arguments.

9 Reducing the Common Reference String

In the last section, we constructed constant size NIZK arguments. The common
reference string, however, grows quadratically in the size of the circuit. If the
NIZK argument is only used a few times the cost of setting up the common
reference string may be prohibitive. In this section, we will outline how to reduce
the size of the common reference string in return for increasing the size of the
argument. If the circuit has 2N = nd wires for some constant d ≥ 1 we get
a common reference string with O(n2) group elements and an NIZK argument
with O(nd−1) group elements. If we choose d = 3, the combined size of the CRS
and the NIZK argument is O(N2/3) group elements making both components
sub-linear in the circuit size.

The idea is to reduce the common reference string and let each commitment
hold fewer values. If we have a circuit with nd wires and a common reference
string of size q = n2 + 3n− 2 = O(n2), the set S̃ will permit the commitment of
n elements at a time. Each commitment is a constant number of group elements,
but now we use nd−1 commitments to commit to all the 2N = nd input values to
the gates. The product and permutation arguments are also of constant size, but
they only work on commitments to n values. If we look at our NIZK argument,
the product argument can be used on each of the nd−1 triples of commitments
containing n values each so there is no problem here. The permutation argument
is not useful though, because we need to permute 2N = nd committed values
spread across nd−1 commitments. The goal in this section is to build a permuta-
tion argument for two nd−1-tuples of commitments to a total of 2N = nd values
each. The permutation argument consists of O(nd−1) group elements and uses
the existing CRS consisting of O(n2) group elements.
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9.1 Permutation Argument Spanning Multiple Commitments

Consider two sets of n commitments c1, . . . , cn, d1, . . . , dn to values a11, . . . , ann

and b11, . . . , bnn. We will use a Clos-network [12] to give an argument for the two
sets of committed values being permutations of each other for a publicly known
permutation ρ ∈ Sn2 . The idea in a Clos network is to build large permutations
from smaller permutations. Consider a permutation ρ ∈ Sn2 . First we divide
the elements into n blocks of n elements and permute the elements within each
block. Next, we distribute the elements in each block evenly on n other blocks
giving us a new set of n blocks each containing one element from each of the
previous blocks. We permute the elements in each block again. Once again, we
distribute the elements in each block evenly on n new blocks. Finally, we permute
the elements within the last blocks to get the elements permuted in the desired
order. The permutations in the Clos network vary depending on ρ, whereas the
distributions between blocks are fixed and independent of ρ.

To give a permutation argument for {ci}i∈[n], {d}i∈[n] containing the same
values permuted according to ρ ∈ Sn2 the prover builds a Clos-network
for the permutation ρ. She constructs 4 sets of n intermediate commitments
{c′i}i∈[n], {vi}i∈[n], {v′i}i∈[n], {d′i}i∈[n] together with arguments of knowledge and
restriction arguments. Each commitment contains a block of n values in the mid-
dle stages of the Clos network. She uses the permutation argument from Section
7 to show that for all i ∈ [n] the pairs of commitments (ci, c

′
i), (di, d

′
i) and (vi, v

′
i)

contain the same elements in permuted order as dictated by ρ ∈ Sn2 . The re-
maining problem is to give an argument for having dispersed the values between
{c′i}i∈[n] and {vj}j∈[n] such that for each c′i the values have been dispersed to n
different vj ’s and to give a dispersion argument for having spread the values in
{v′i}i∈[n] to {d′j}j∈[n] such that for each v′i the n committed values have been dis-
persed to n different d′js. We present a dispersion argument in Section 9.2, which
uses the existing CRS consisting of O(n2) group elements and has an argument
size of O(n) group elements. Counting the cost of commitments, within-block
permutation arguments and the dispersion arguments, we get a total size of O(n)
group elements for proving that two sets of n commitments to n values each are
related by a publicly known permutation ρ ∈ Sn2 .

Once we have a permutation argument for n2 values spread over n commit-
ments, we can recursively get permutation arguments for larger permutations.
The cost for a permutation of nd elements spread over two sets of nd−1 commit-
ments is O(nd−1) group elements for any constant d.

9.2 Dispersion Argument

Consider a matrix of n2 values a11, . . . , ann. We can view commitments c1, . . . , cn

given by cj = grj
∏

i∈[n] g
aij

i as commitments to the columns of the matrix.
Similarly, we can view d1, . . . , dn given by di = gsi

∏
i∈[n] g

aij

j(n+1) as commitments
to the rows of the matrix. We give an argument for demonstrating that c1, . . . , cn

and d1, . . . , dn contain respectively the columns and the rows of the same n× n
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matrix. This means that for each cj the n committed values have been distributed
to n different commitments d1, . . . , dn.

To get some intuition for the construction consider first the simple case where
all the randomizers are 0. We then have

∏

j∈[n]

e(cj , gj(n+1)) =
∏

i∈[n]

(gi, di).

Taking discrete logarithms on both sides of the equation we get
∑

j∈[n]

∑

i∈[n]

aijx
j(n+1)+i =

∑

i∈[n]

∑

j∈[n]

bijx
j(n+1)+i,

which by Lemma 1 implies aij = bij for all i, j ∈ [n]. Due to the randomizers
this verification equation will not hold in general though. The prover therefore
constructs an argument (πL, πR, π̂L, π̂R, π̄L, π̃R) consisting of six group elements
such that the cross-terms arising from the randomizers cancel out.

Statement: Commitments c1, . . . , cn, d1, . . . , dn ∈ G.
Prover’s witness: Openings r1, . . . , rn, a11, . . . , ann, s1, . . . , sn, b11, . . . , bnn

∀i, j ∈ [n] : cj = grj

∏

i∈[n]

g
aij

i di = gsi

∏

j∈[n]

g
bij

j(n+1) aij = bij .

Argument: Pick t ← Zp at random and compute the argument
(πL, πR, π̂L, π̂R, π̄L, π̃R) as

πL = gt
∏

j∈[n]

g
−rj

j(n+1) πR = gt
∏

i∈[n]

g−si

i

π̂L = ĝt
∏

j∈[n]

ĝ
−rj

j(n+1) π̂R = ĝt
∏

i∈[n]

ĝ−si

i

π̄L = h̄t
∏

j∈[n]

h̄
−rj

j(n+1) π̃R = h̃t
∏

i∈[n]

h̃−si

i

Verification: Output 1 if and only if

e(g, π̂R) = e(πR, ĝ) e(g, π̃R) = e(πR, h̃) e(g, π̂L) = e(πL, ĝ)

e(g, π̄L) = e(πL, h̄) e(g, πL)
∏

j∈[n]

e(cj , gj(n+1)) = e(g, πR)
∏

i∈[n]

e(gi, di).

Theorem 6. The dispersion argument is perfectly complete and perfectly
witness-indistinguishable. If the q-CPDH assumption holds, a non-uniform prob-
abilistic polynomial time adversary has negligible chance of producing commit-
ments c1, . . . , cn, d1, . . . , dn and an accepting argument (πL, πR, π̂L, π̂R, π̄L, π̃R)
with corresponding openings of the commitments and the argument such that
c1, . . . , cn and d1, . . . , dn are commitments to two different matrices.

We refer to the full paper for the proof.



Short Pairing-Based Non-interactive Zero-Knowledge Arguments 339

References

1. Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)

3. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

4. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS, pp. 62–73 (1993)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC, pp. 103–112 (1988)

7. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

8. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC, pp. 209–218 (1998)

10. Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as ap-
plied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40–57. Springer, Heidelberg (2004)

11. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
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