
Short PCPs with Polylog Query Complexity

Eli Ben-Sasson
Computer Science Department

Technion — Israel Institute of Technology
Haifa, 32000, Israel

eli@cs.technion.ac.il ∗

Madhu Sudan
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

madhu@mit.edu †

November 21, 2006

Abstract

We give constructions of probabilistically checkable proofs (PCPs) of length n · polylog n proving
satisfiability of circuits of size n that can verified by querying polylog n bits of the proof. We also give
analogous constructions of locally testable codes (LTCs) mapping n information bits to n · polylog n bit
long codewords that are testable with polylog n queries.

Our constructions rely on new techniques revolving around properties of codes based on relatively
high-degree polynomials in one variable, i.e., Reed-Solomon codes. In contrast, previous constructions
of short PCPs, beginning with [5] and until the recent [9], relied extensively on properties of low-degree
polynomials in many variables. We show how to convert the problem of verifying the satisfaction of a cir-
cuit by a given assignment to the task of verifying that a given function is close to being a Reed-Solomon
codeword, i.e., a univariate polynomial of specified degree. This reduction also gives an alternative to
using the “sumcheck protocol” [34]. We then give a new PCP for the special task of proving that a
function is close to being a Reed-Solomon codeword.

The resulting PCPs are not only shorter than previous ones but also arguably simpler. In fact, our
constructions are also more natural in that they yield locally testable codes first, which are then converted
to PCPs. In contrast, most recent constructions go in the opposite direction of getting locally testable
codes from PCPs.

Keywords: Probabilistically checkable proofs, PCPs of proximity, locally testable codes, Reed-Solomon
codes

∗Landau Fellow — supported by the Taub and Shalom Foundations. Supported in part by a European Community International
Reintegration Grant and an Alon Fellowship. This work was done while the author was at the Radcliffe Institute for Advanced
Study, Cambridge, MA.

†Supported in part by NSF Award CCR-0312575. This work was done while the author was at the Radcliffe Institute for
Advanced Study, Cambridge, MA.

Contents

I Main results and ingredients 4

1 Introduction 4
1.1 Acknowledgments . 7

2 Definitions and main results 7
2.1 PCPs . 7
2.2 Proximity and Proofs of Proximity . 8
2.3 Locally testable codes . 11

3 Technical ingredients of our constructions 12
3.1 PCPPs for Reed-Solomon codes . 12

3.1.1 Fields of characteristic two . 13
3.1.2 RS-codes over smooth fields . 14
3.1.3 Proof of quasilinear LTC Theorem 2.13 . 14

3.2 Algebraic Constraint Satisfaction Problems . 15
3.3 Vanishing RS-codes and the PCP Construction . 17

3.3.1 Proof of quasilinear PCP Theorem 2.2 . 18
3.4 Systematic RS Codes and Quasilinear PCPPs . 20

3.4.1 Proof of quasilinear PCPP Theorem 2.10 . 21
3.5 Organization of the rest of the paper . 21

II From Reed-Solomon proximity to quasilinear PCPs and PCPPs 23

4 PCPPs for Vanishing and Systematic Reed-Solomon Codes 23
4.1 PCPPs for vanishing Reed-Solomon — proof of Lemma 3.12 23
4.2 Agreeing Reed-Solomon codes . 24
4.3 PCPP for systematic Reed-Solomon codes - proof of Theorem 3.15 25
4.4 PCPPs for multivariate polynomials and vanishing Reed-Muller codes 28

5 Quasilinear reductions of NTIME(n) to ALGEBRAIC-CSP 31
5.1 Warmup — quadratic size reduction . 31
5.2 Quasilinear size reduction . 33
5.3 Systematic reduction to PAIR-ALGEBRAIC-CSP . 36

III PCPPs for Reed-Solomon codes 37

6 PCPPs for Reed-Solomon codes over fields of characteristic 2 37
6.1 Sketch of proof of Theorem 3.2 . 37
6.2 The RS proof of proximity and its associated verifier . 40
6.3 Basic properties . 42
6.4 Soundness . 43
6.5 Proof of Theorem 3.2 . 46
6.6 Proof of Lemma 6.12 . 48

2

7 PCPPs for Reed-Solomon codes over smooth fields 48
7.1 Proof overview . 48
7.2 The shifted Reed-Solomon code . 50
7.3 The SRS proof of proximity and its associated verifier . 51
7.4 Basic properties . 52
7.5 Soundness . 53
7.6 Proof of Theorem 3.4 . 56
7.7 Proving Theorem 2.2 using smooth RS-Codes . 56

3

Part I

Main results and ingredients
1 Introduction

Probabilistically Checkable Proof (PCP) systems as formulated in [20, 3, 2] are proof systems that allow
efficient probabilistic verification based on querying few bits of a proof. Formally, a PCP system is given by
a PCP verifier that probabilistically queries a few bits of a purported proof of a claimed theorem and accepts
valid proofs of true theorems with probability 1, while accepting any claimed proof of false assertions with
low probability, say at most 1/2. The celebrated PCP Theorem [3, 2] asserts that for any language in NP
there exists a PCP verifier that reads just a constant number of bits from a proof of polynomial length.
Subsequently, it was shown in [29, 26] that the number of queries can be made as small as three bits, while
rejecting proofs of false assertions with probability arbitrarily close to (but larger than) 1/2. Such query-
efficient proofs translate to strong inapproximability results for many combinatorial optimization problems,
see [7, 8, 26, 29, 38].

Somewhat surprisingly, PCPs are rarely appreciated for their positive properties: i.e., as methods of
transforming proofs into extremely efficiently verifiable formats. Instead it is their negative implications for
combinatorial optimization that dominate their study. In principle, PCPs could form the semantic analogue
of error-correcting codes: Error-correcting codes are used to preserve data for long periods of time; PCPs
may be used to preserve data, with a promise of integrity with respect to any fixed Boolean property, for
long periods of time. However such uses seemed infeasible using current PCP constructions, which are too
long and too complex. This forms the motivation of our work, which tries to find shorter and simpler PCPs.

A number of works [5, 37, 27, 24, 11, 9] have been focused on optimizing the length of the probabilisti-
cally checkable proof. In addition to the inherent motivation mentioned above, the length of PCPs also plays
an important role in their use in cryptography (e.g., in CS-proofs [30, 35] and their applications [6, 13]) and
is closely related to the construction of locally testable codes [24, 11, 9]. Simplifying PCP constructions has
long been a goal within the study of PCPs, though little progress had been achieved in this direction until
Dinur’s recent surprising proof of the PCP Theorem by gap amplification [18] continuing the combinatorial
approach taken in [19]. Although we also construct simpler PCPs, our approach by contrast relies on adding
algebraic structure instead of combinatorics.

PCPs: Our main result, Theorem 2.2, is a PCP construction that blows up the proof length by only a
polylogarithmic factor resulting in a probabilistically checkable proof of quasilinear length. (Throughout
this paper, a function f : N+ → N+ is said to be quasilinear if f(n) = n · polylog n.) These short proofs
can be verified by querying a polylogarithmic number of bits of the proof. By way of comparison, the recent
results of Ben-Sasson et al. [9] give proofs of length n · exp(poly log log n) with a query complexity of
poly log log n. Thus, while the query complexity of our PCPs is higher than that of most recent results, the
proof size is smaller.

PCPs of Proximity: The results of [9] are actually for a stronger notion of PCPs, called PCPs of Proximity
(PCPPs). This notion was simultaneously introduced (under the name assignment testers) in [19] and a
similar notion also appeared earlier in [40]. Informally, a PCPP verifier’s input includes two oracles, a
“claimed theorem” and the “proof”, and the verifier confirms that the claimed theorem is close in say,
Hamming distance, to a true theorem. It does so by making few oracle queries into the theorem and the
proof. In contrast, recall that a PCP verifier had unlimited access to the “claimed theorem”, but verified

4

that it was true exactly as stated. Theorem 2.10 gives a construction of PCPPs for all languages in NP with
shorter proofs of proximity, though with larger query complexity than that of [9].

Locally Testable Codes: PCPs typically go hand-in-hand with Locally Testable Codes (LTCs); for a de-
tailed discussion of LTCs, see [24, 23] and references therein. Briefly, LTCs are error-correcting codes with
relatively large rate and distance. Additionally, the amount of noise in a received word can be bounded from
above by querying only a sublinear number of positions of the received word. Specifically, these codes have
an associated tester that reads very few symbols of a received word and accepts codewords with probability
1, while rejecting words that are far from all codewords with constant probability (say 1/2). Theorem 2.13
constructs locally testable codes with parameters similar to those of our PCPs. Namely, the codes have linear
distance while the codeword to message ratio and the query complexity of the tester are polylogarithmic.

We highlight the fact that our work first constructs LTCs with polylogarithmic rate and query complexity,
after which PCPs with the same parameters are derived as a consequence. While the early work of Babai
et al. [5] also had this feature, constructions of smaller LTCs (in particular those in [24, 11, 9]) reverse this
direction, getting PCPs first and then deriving LTCs as a consequence. Our work thus achieves one of the
goals associated with LTCs, namely, offering benefits and insights into to PCPs via direct construction of
LTCs.

Our techniques: Although our construction is algebraic as in prior PCP constructions, our techniques
are significantly different and thus interesting in their own right. All previous algebraic PCPs (i.e., those
excluding the combinatorial construction of [19]) start with a PCP based on the properties of multivariate
polynomials over some finite field. Some key ingredients in such constructions are the following: (1) A low-
degree test: i.e., a method to test if a function given by an oracle is close to being a low-degree multivariate
polynomial. (2) A self-corrector: i.e., a procedure to compute the value of a multivariate polynomial at a
given point, given oracle access to a polynomial that is close to this polynomial. (3) A zero-tester: i.e., an
efficient procedure to verify if a function given by an oracle is close to a multivariate polynomial that is zero
on every point in a prespecified subset of its domain. (4) A reduction from verifying satisfiability to zero-
testing. Typical solutions to the above problems yield a query complexity that is polynomial in the number
of variables and the degree of the multivariate polynomial. This query complexity can then be reduced using
a set of techniques referred to as proof composition.

Our solution follows a similar outline (almost, as we do not need a self-corrector) except that, for the
most part, we work only with univariate polynomials. This forms the essence of our technical advantage,
giving PCPs with smaller proof length. The length of PCPs is well known to grow with the number of
variables in the polynomials used to construct them, and reducing this number was an obvious way to try
to reduce PCP length. However, reducing the number of variables increases the degree of the associated
polynomials and since solutions to steps (1)-(3) above had query complexity polynomial in the degree,
previous solutions needed to use a large number of variables to significantly reduce the number of queries.
In our case, we propose analogous questions for univariate polynomials and give query efficient solutions
for them, leading to short PCPs. We describe our solutions to the steps (1)-(4) in reverse order.

We start with the reduction from satisfiability to testing zeroes of polynomials, step (4) above. The usual
reduction is a transformation from a SAT formula φ to a constraint C on pairs of polynomials along with
subsets S1 and S2 of the multivariate domains with the following property: φ is satisfiable if and only if there
exist polynomials P1, P2 that are zero on S1, S2 respectively and furthermore C(P1, P2) holds. (To enable
“easy verification”, C(P1, P2) needs to be of a special form, but we won’t get into this now.) In general,
these reductions are simple and our version of the reduction is as well. However in our case, the reductions
appear particularly natural since we deal with a very small number of variables. In Section 5 we describe
our natural way of reducing NP-complete problems to problems about testing zeroes of polynomials. In the

5

end we use a somewhat more complex solution only due to our goal of extreme length efficiency; even in
this case the full proof is only a few pages long.

Next we move to the zero-testing problem, step (3) above. We reduce this to two univariate low-degree
testing questions, along with a natural consistency test between the two polynomials. The query complexity
is a constant independent of the degrees of the polynomials we are working with. Furthermore, it directly
reduces zero-testing to low-degree testing while most previous solutions relied on some form or other of the
self-correcting question. Put together, our solutions for steps (3) and (4) give a short and simple reduction
from verifying NP statements to testing the degree of a univariate function. Furthermore, these reductions
add only a constant number of queries to the query complexity of the low-degree testing protocol. This
highlights the importance of the low-degree testing problem for univariate polynomials, which we describe
below.

Reed-Solomon codes and Proofs of Proximity: The problem at the heart of our PCPs is the following:
Given a finite field F, a degree bound d, and oracle access to a function f : F → F, test if f is close to
a polynomial of degree at most d. Specifically, if f is a degree-d polynomial then the test must always
accept. On the other hand, if f is δ-far from every degree-d polynomial, i.e., the value of f needs to be
changed on at least δ-fraction of the points in F to get a degree-d polynomial, then the test must reject with
high probability. The objective is to do this while querying the oracle for f as few times as possible. The
functions derived by evaluating polynomials of a specified degree over a field are known as Reed-Solomon
codes, which we sometimes refer to by the name RS-codes. Our goal is thus to provide an efficient test for
membership in these codes.

It is easy to see that, as such, the problem above allows no very efficient solutions: A tester that accepts
all degree-d polynomials with probability 1 must probe the value of f on at least d+ 2 places before it can
reject any function. This is too many queries for our purpose. This is where the notion of PCPPs comes to
the rescue. Whereas it is hard to test if function f described by the oracle represents a degree d polynomial
with fewer than Ω(d) queries, it is conceivable (and indeed implied by previous works, for example by
[9]) that one can use an auxiliary proof oracle π to “prove” that f is close to the evaluations of a degree d
polynomial. More formally, our new task is thus to design a PCPP verifier that makes few queries to a pair
of oracles (f, π) where we allow π to return elements of F as answers, and the following holds: If f is a
degree-d polynomial, there exists a valid proof π so that (f, π) is always accepted by the tester. If f is δ-far
from every degree-d polynomial then for every π, the pair (f, π) must be rejected with high probability.

Since the property of being a degree d polynomial over F can be efficiently verified (in time |F| ·
polylog |F|), we can apply the final theorem of Ben-Sasson et al. [9], which gives length-efficient proofs
for any property relative to the time it takes to verify the property deterministically, to get moderately
efficient solutions to this problem. Unfortunately, such a solution would involve proof oracles of length
|F| · exp(poly log log |F|) which is longer than we can allow. Also, their solution would also not satisfy
our (subjective) simplicity requirement. However it does confirm that our goal of making o(d) queries is
attainable.

Our main technical result is a PCPP for Reed-Solomon codes. This proof of proximity has length O(n ·
polylog n) and query complexity polylog n for RS-codes over a field F of cardinality n and characteristic
2. We also describe some variations, such as PCPPs for RS-codes over certain prime fields, but these are
not needed for our final PCP results. Our proof of proximity consists of an encoding of an efficient FFT-like
evaluation of the low-degree polynomial. Our analysis makes crucial (black-box) use of Polishchuk and
Spielman’s [37] analysis of a natural low-degree test for bivariate polynomials.

We remark that almost all ingredients in the construction of our PCPs, including the PCPPs for RS-
codes, are simple. The simplicity of the PCP also means that the “hidden constants” in the construction
are relatively small and the building blocks we use can be implemented with relative ease. In fact, our

6

main building block, namely the PCP of proximity for Reed-Solomon codes and its verifier described in
Theorem 3.2 have been recently implemented successfully in code [12], resulting in PCPPs of length ≈
1
4n · log4 n for RS-codes over binary fields of size n.

Recent developments: One of the main problems left open by this work was obtaining quasilinear PCPs
and PCPPs with constant query complexity. This was recently solved by Dinur in [18], by applying her novel
proof of the PCP Theorem by gap amplification to our Theorem 2.2. Dinur provides a general transformation
that takes any PCP of length `(n) where the verifier makes q(n) queries and converts it into a PCP of length
`(n) · q(n)O(1) where the verifier makes O(1) queries. Applying this to the trivial PCP that makes O(n)
queries yields a simple proof of the PCP theorem though with long proofs. On the other hand, applying this
transformation to our PCP yields a quasilinear PCP with constant query complexity.

With the exception of [5], the running time of all previously known PCP and PCPP-verifiers, including
ours, is polynomial in the size of the input. Recently, [10] showed that the running time of our PCPP-
verifier can be reduced to polylogarithmic, maintaining the query complexity and proof length of our PCPP
construction in Theorem 2.10.

Organization of this paper: In Section 2 we present formal definitions of the notions of PCPs, LTCs,
and PCPPs, and present the formal statements of our main theorems about these concepts. In Section 3 we
introduce the main technical notions used in this paper, namely Reed-Solomon codes, some computationally
important subclasses of Reed-Solomon codes, and algebraic satisfiability problems. We state our technical
results about these problems and then show how our main theorems (i.e., the ones stated in Section 2) follow
from these technical results. In Sections 4-7, we prove our technical results. A more detailed breakdown of
these results is given at the end of Section 3.

1.1 Acknowledgments

We thank Oded Goldreich, Prahladh Harsha, Salil Vadhan and Chris Umans for helpful discussions. We
thank Don Coppersmith for pointing us to Linnik’s Theorem which appears here as Theorem 7.9. We thank
Venkatesan Guruswami, Subhash Khot, Jaikumar Radhakrishnan and an anonymous referee for pointing out
errors in previous versions of the paper. Finally, we thank the editor and anonymous referees for remarks
that helped improve the clarity of presentation.

2 Definitions and main results

Preliminaries Unless specified otherwise, our alphabet of choice is Σ = {0, 1} and all logarithms are
taken to base 2. For a function t : N+ → N+, recall NTIME(t(n)) is the class of languages L ⊆ Σ∗

decidable in nondeterministic time t(n) on inputs of length n.

2.1 PCPs

The following is a variant of the standard definition of PCPs [3], where the running time of the verifier is
allowed to grow exponentially with the randomness. This is done following [10] to allow statement of results
about languages whose nondeterministic decision time is superpolynomial. Recall an oracle machine is said
to be nonadaptive if its queries do not depend on previous oracle answers. We stress that all oracle machines
considered in this paper and in particular the following PCP verifier and the PCPP-verifier of Definition 2.4
are nonadaptive.

7

Definition 2.1 (PCP). For functions r, q : N+ → N+ an (r(n), q(n))-PCP verifier is a probabilistic machine
V with oracle access to a probabilistically checkable proof, or simply proof, denoted π. On input x of length
n, V runs in time 2O(r(n)), tosses r(n) coins, makes q(n) nonadaptive queries to the proof and outputs either
accept or reject. We denote by V π[x;R] the output of V on input x, proof π and random coins R.

For constant s ∈ [0, 1], a language L ⊆ Σ∗ is said to belong to the class of languages

PCPs[randomness r(n),query q(n)]

if there exists a (r(n), q(n))-PCP verifier VL such that the following holds:

• Perfect completeness: If x ∈ L then ∃π such that PrR[V π
L [x;R] = accept] = 1.

• Soundness: If x 6∈ L then ∀π we have PrR [V π
L [x;R] = accept] ≤ s.

Our first main result is the following. Recall the definition of a proper complexity function from [36,
Definition 7.1], where a function f(n) is proper if it can be computed in time polylog n.

Theorem 2.2 (Quasilinear PCPs). For any proper complexity function t : N+ → N+,

NTIME(t(n)) ⊆ PCP 1
2
[randomness log(t(n) · polylog t(n)),query polylog t(n)].

Remark 2.3. The parameters of Theorem 2.2 have been recently improved. In particular, [18] reduced the
query complexity to O(1) and [10] reduced the verifier’s running time to poly n+polylog t(n) (as opposed
to t(n) · polylog t(n)). In both cases all other parameters remain unchanged.

Since without loss of generality the proof is of size at most 2randomness × query the previous theorem
implies the probabilistically checkable proof for x ∈ L is quasilinear in the running time of the nondeter-
ministic machine deciding L.

In contrast, the recent results of [9] give proofs of length n · exp(poly log log n) with a query com-
plexity of poly log log n and slightly longer proofs with constant query complexity. Thus, while the query
complexity of our PCPs is higher than that of the previous state of the art, their length is shorter.

2.2 Proximity and Proofs of Proximity

We now formalize the notion of verifying proofs of theorems where even the theorem is not known, but rather
provided as an oracle to the verifier. The verifier, in such case, can only hope to certify that the theorem
is “close” to one that is true. To define this notion we first need to formalize the notion of “closeness”, or
proximity.

We will work with a variety of distance measures ∆ : ΣN × ΣN → [0, 1], where a distance measure
satisfies the properties (1) ∆(x, x) = 0, (2) ∆(x, y) = ∆(y, x), and (3) ∆(x, z) ≤ ∆(x, y) + ∆(y, z). The
most common/natural one, and the target of most of our theorems will be relativized Hamming distance over
the alphabet Σ, denoted HammingΣ(·, ·). Formally, for y = (y1, . . . , yN), y′ = (y′1, . . . , y

′
N) ∈ ΣN ,

HammingΣ(y, y′) = |{i : yi 6= y′i}|/N.

For our proofs we use other distance measures on strings which may weigh different coordinates differently.
For example given a set I ⊆ [N] we may consider the distance HammingΣ,I(y, y

′) = |{i ∈ I : yi 6=
y′i}|/|I|. Note that a convex combination of distance measures is also a distance measure and this describes
many other distance measures we use later.

8

Given a distance measure ∆ : ΣN×ΣN → [0, 1] and a set S ⊆ ΣN we define the distance of an element
y ∈ ΣN from S to be

∆(y, S) =
{

mins∈S ∆(y, s) S 6= ∅
1 S = ∅

We are now ready to describe PCPs of Proximity (PCPPs)/Assignment Testers [9, 19]. We follow the
general formulation as appearing in [9]. In this formulation, the input comes in two parts (x, y), where
x ∈ Σ∗ is given explicitly to the verifier and y ∈ Σ∗ is given as oracle. In addition, the verifier is given
oracle access to a proof. The verifier is allowed to read x in its entirety, but its queries to y are counted as
part of its query complexity, i.e., together with the queries to the proof. Throughout this paper we assume
without loss of generality the explicit input of a pair instance includes a specification of the length of the
implicit input. If unspecified we set the length to be t(|x|). Formally, we assume the explicit input is of the
form x = (x′, N) where N = |y|. The size of the explicit input is the size of x′.

Definition 2.4 (PCPP Verifier). For functions r, q : N+ → N+ a (r(n), q(n))-PCPP-verifier is a probabilis-
tic machine V with oracle access to an implicit input y and a proof of proximity, or simply proof, denoted π.
On explicit input x = (x′, N) with |x′| = n, and N an integer, verifier V runs in time 2O(r(n)), tosses r(n)
coins, makes at most q(n) nonadaptive queries in total to the two oracles, y of size N and π, and outputs
either accept or reject. We denote by V (y,π)[x;R] the output of the PCPP-verifier on input x and random
coins R.

PCPPs refer to languages consisting of pairs of strings where the elements in these pairs refer to the two
parts of the input in Definition 2.4. Thus, we define a pair language to be subset of Σ∗ × Σ∗. It is useful
for us to measure the complexity of a pair language as a function of its first input. So PAIR-TIME(t(n))
is the set of languages L such that there exists a machine M that takes time t(|x|) on input (x, y) such that
L = {(x, y) : M(x, y) = accept}. One notable pair language in PAIR-TIME(n · polylog n) is CKTVAL,
the language of pairs (C,w) where C is a Boolean circuit with N inputs and w is an assignment satisfying
C. PAIR-NTIME(t(n)) is defined similarly, this time allowing M to be a nondeterministic machine.

For a pair language L and x ∈ Σ∗, x = (x′, N), let

Lx , {y ∈ ΣN : (x, y) ∈ L}.

PCPP-verifiers are intended to accept implicit inputs in Lx and reject implicit inputs that are far from being
in Lx. This gives rise to classes of pair-languages defined in terms of PCPPs.

Definition 2.5 (PCPP). For functions r, q : N+ → N+, soundness parameter s ∈ [0, 1], family of distance
measures ∆ = {∆N : ΣN × ΣN → [0, 1]}N∈N+ and proximity parameter δ ∈ [0, 1] we say the pair
language L belongs to the class of languages

PCPPs,δ

 randomness r(n),
query q(n),
distance ∆

if there exists a (r(n), q(n))-PCPP-verifier VL such that the following holds for all (x, y), |y| = N :

• Perfect Completeness: If (x, y) ∈ L then ∃π such that PrR[V (y,π)
L [x;R] = accept] = 1.

• Soundness: If ∆N (y, Lx) ≥ δ, then ∀π PrR[V (y,π)
L [x;R] = accept] ≤ 1− s.

Remark 2.6. As mentioned earlier our main results (for example, Theorem 2.10) target the relative Ham-
ming distance. However, to prove these we shall need to use PCPPs with different distance measures (see
Section 3.4).

9

Our constructions of PCPPs come naturally with a somewhat different soundness condition than the one
required in Definition 2.5. On the one hand, they do not achieve a soundness error of an absolute constant.
On the other hand, they satisfy the additional property that a PCPP verifier for Lx rejects every string y
with probability proportional to the distance of y from Lx. We formalize this “strong” soundness condition
below, and then state a general transformation from PCPPs with strong soundness to the weaker version
above. (The term “strong” is derived from the analogous definition of strong locally testable codes [24,
Definition 2.1].)

Definition 2.7 (Strong PCPP). For r, q,∆ as in Definition 2.5 and soundness function s : (0, 1] × N+ →
(0, 1], we say language L belongs to the class

Strong-PCPPs(δ,n)

 randomness r(n),
query q(n),
distance ∆

,
if there exists a (r(n), q(n))-PCPP-verifier VL with perfect completeness as in Definition 2.5 and for all
(x, y), |y| = N :

• Strong soundness: ∀π PrR[V (y,π)
L [x;R] = accept] ≤ 1− s(∆N (y, Lx), n).

Remark 2.8. Naturally, one expects the soundness function to be nondecreasing. Formally, we say s :
(0, 1]×N+ → [0, 1] is nondecreasing if for all n ∈ N+ the function s(·, n) : (0, 1] → (0, 1] is nondecreasing.
This implies that the farther y is from Lx, the higher the rejection probability or soundness. Indeed, all
soundness functions considered in this paper are nondecreasing.

Notice a “weak” PCPP, with soundness parameter s0 and distance parameter s0 , is also a “strong” PCPP
with a threshold soundness function s(δ, n) that evaluates to 0 on δ′ < δ0 and to s0 on δ′ ≥ δ0. A converse of
this is also true. To see this one only needs to amplify the soundness error from s(δ, n) to some fixed desired
constant s′. The now standard application of randomness efficient sampling allows such amplification with
little additional cost in randomness. Indeed, using the expander-neighborhood sampler of [25] (see also [22,
Section C.4]) we get the following proposition, given here without proof. (For a proof see [9, Lemma 2.11].)

Proposition 2.9 (Strong PCPPs imply “weak” ones). Let s : (0, 1] × N+ → (0, 1] be a nondecreasing
soundness function as defined in Remark 2.8. If a pair language L belongs to

Strong-PCPPs(δ,n)

 randomness r(n),
query q(n),
distance ∆

,
Then, for every s′, δ ∈ (0, 1), the language L belongs to

PCPPs′,δ

 randomness r(n) +O(1
s(δ,n) · log 1

s′),

query O
(

q(n)·log 1/s′

s(δ,n)

)
,

distance ∆

.
Furthermore, the proof queried by the “weak”-PCPP-verifier is of the same length as that queried by the
“strong” one.

We now ready to state our main result for PCPPs.

10

Theorem 2.10 (Quasilinear PCPPs). For any proper complexity function t : N+ → N+,

PAIR-NTIME(t(n)) ⊆ Strong-PCPPδ/ polylog t(n)

 randomness log(t(n) · polylog t(n)),
query polylog t(n),
distance HammingΣ

.
Consequently, as implied by Proposition 2.9, for any s, δ ∈ (0, 1),

PAIR-NTIME(t(n)) ⊆ PCPPs,δ

 randomness log(t(n) · polylog t(n)),
query polylog t(n),
distance HammingΣ

.
Furthermore, the length of the proof queried by the PCPP-verifier (in both the strong and weak cases) is
t(n) · polylog t(n).

Remark 2.11. As in the case of Theorem 2.2, the parameters of Theorem 2.10 have been recently improved.
In particular, [18] reduced the query complexity to O(1) and [10] reduced the verifier running time to
poly n+ polylog t(n). In both cases all other parameters remain unchanged.

The previous state of the art with respect to PCPPs [9] gave proofs of length n ·exp(poly log log n) with
a query complexity of poly log log n (and slightly longer proofs with constant query complexity). Once
again, our query complexity is somewhat higher but our proofs are somewhat shorter.

2.3 Locally testable codes

We now move to the third notion addressed by this paper — that of locally testable codes.
For field F and integers n, k, d, a linear [n, k, d]F-code is an injective linear map C : Fk → Fn such that

for every pair x 6= y ∈ Fk, HammingF(C(x), C(y)) ≥ d/n. We point out that all codes considered in this
paper are linear. The alphabet of C is F, the blocklength is n, the dimension is k, the rate is k/n, and the
distance is d. The image of C is the linear space Image(C) = {C(a) : a ∈ Fk}. Often a code is identified
with its image.

Loosely speaking, a linear [n, k, d]F-code is said to be locally testable if a tester, i.e., a randomized
machine with oracle access to the supposed codeword, can distinguish with high probability between words
in the code and words that are far from it, while making only o(k) random queries into a purported codeword.
The following is essentially Definition 2.1 from [24].

Definition 2.12 (Locally Testable Codes). A randomized polynomial time oracle machine T is called a
(δ, q, γ)-tester for the linear [n, k, d]F code C if it satisfies the following two conditions:

• For any w ∈ Image(C),
Pr[Tw[R] = accept] = 1,

where Tw[R] denotes the output of the tester on oracle w and random coins R.

• For any w ∈ Fn such that HammingF(w, Image(C)) ≥ δ,

Pr[Tw[R] = reject] ≥ γ.

A code is said to be (δ, q, γ)-locally testable if it has a (δ, q, γ)-tester.

11

Theorem 2.13 (Locally Testable Codes with polylogarithmic rate). Let δ, γ ∈ (0, 1), Σ = F2 be the field of
two elements and let n be any power of 2. Then, there exists a linear [N = n · polylog n,K = n/8, D =
N/8]Σ-code that is (δ,polylog n, γ)-locally testable. Furthermore, encoding, decoding and testing can be
performed in time polynomial in n.

Remark 2.14. As with Theorems 2.2, 2.10, the query complexity of Theorem 2.13 has been recently im-
proved in [18] to O(1), leaving all other parameters unchanged.

We remark that we also give LTCs over a variety of other fields and other choices of n (see Theo-
rems 3.2 and 3.4 for details). Also if we relax the requirement that the code be linear, then the theorem
above follows immediately from Theorem 2.10 (and [9, Section 4.1]) without any restrictions on the choice
of n.

3 Technical ingredients of our constructions

In this section we introduce the main technical ingredients of our paper and prove the three main theorems
(Theorems 2.2, 2.10, and 2.13) of our paper, assuming these ingredients. Recall that these theorems promise
short PCPs, PCPPs, and LTCs. We stress that while the construction of PCPs and LTCs follow easily from
the PCPP construction, this is not the approach in our paper.

We start by constructing an LTC, based on one of the most popular codes, namely the Reed-Solomon
code. We give a PCPP for a language whose elements are essentially Reed-Solomon codewords. Recalling
the fact that Reed-Solomon codes are evaluations of univariate polynomials of bounded degree, this result
shows how it is possible to prove that a function given as an oracle is close to some polynomial of bounded
degree. Section 3.1 below describes the actual language based on Reed-Solomon codes and states the PCPP
construction that we obtain for this language. This immediately leads to a proof of Theorem 2.13.

We then move to the constructions of PCPs and PCPPs for general NTIME languages. These con-
structions are obtained by first reducing the NTIME language under consideration to an algebraic version
of SAT that we call an Algebraic Constraint Satisfaction Problem, and then giving PCPs (and PCPPs) for
Algebraic Constraint Satisfaction Problems. We define Algebraic Constraint Satisfaction Problems and state
their completeness for NTIME in Section 3.2.

The advantage of Algebraic Constraint Satisfaction Problems are that the natural “classical” proofs of
satisfiability for these problems come in the form of two univariate polynomials of bounded degree, say,
f, g that satisfy some simple constraints. For example in the PCP construction, the verifier knows some set
H ⊆ F and would like to verify that g(x) = 0 for every x ∈ H . The PCPPs for Reed-Solomon codes
already show how to prove/verify that the functions f and g are close to some polynomials of bounded
degree. In Section 3.3 we augment this PCPP so as to test that it vanishes on the set H , and this leads us to
a proof of Theorem 2.2. Finally in Section 3.4 we describe the additional ingredients needed to get a PCPP
for NTIME and prove Theorem 2.10 modulo these ingredients.

3.1 PCPPs for Reed-Solomon codes

We start by defining the Reed-Solomon codes and a pair language based on these codes. We then describe
two cases of Reed-Solomon codes where we can obtain PCPPs for membership in the language. This yields
our main theorem (Theorem 2.13) on LTCs.

Definition 3.1 (Reed Solomon Codes and Pair Language). The evaluation of a polynomialP (z) =
∑d

i=0 aiz
i

over S ⊆ F, |S| = n is the function p : S → F defined by p(s) = P (s) for all s ∈ S. The formal sum

12

P (z) is called the polynomial corresponding to (the function) p. The Reed-Solomon code of degree at most
d over F, evaluated at S is

RS(F, S, d) , {p : S → F | p is an evaluation of a polynomial of degree ≤ d over S}

The pair language PAIR-RS is defined as follows. The explicit input is a triple (F, S, d) where F is a
description of a finite field1, S ⊆ F, and d is an integer. The size of the explicit input is assumed to be
|S| + O(1) field elements because in all our applications both d and F can be described using log |F| bits.
The implicit input is a function p : S → F. The size of the implicit input is |S| field elements. A pair
((F, S, d), p) is in PAIR-RS iff p ∈ RS(F, S, d) and the explicit input is in the format described above.

Notice RS(F, S, d) is the image of a linear [n, d + 1, n − d]F-code. To see this, set S = {ξ1, . . . , ξn}
and consider the linear map sending (a0, . . . , ad) ∈ Fd+1 to the codeword (P (ξ1), . . . , P (ξn)) for P (z) =∑d

i=0 aiz
i.

Next we state our main technical results, namely quasilinear length proofs of proximity for Reed-
Solomon codes. Our result holds for certain “well-behaved” fields and evaluation sets, including fields
of characteristic 2 (Theorem 3.2) and multiplicative subgroups that are sufficiently smooth (Theorem 3.4).
As is customary when discussing Reed-Solomon codes, our distance measure is the relative Hamming dis-
tance over alphabet F, denoted HammingF, and our alphabet is the underlying field. In particular, queries
are answered by field elements.

3.1.1 Fields of characteristic two

Theorem 3.2 (PCPPs for RS-codes over fields of characteristic 2). Let PAIR-ADDITIVE-RS be the re-
striction of PAIR-RS to pairs ((GF(2`), S, d), p) where GF(2`) is the Galois field of size n = 2` and
characteristic 2 and S ⊆ F is GF(2)-linear. (Recall S is GF(2)-linear iff for all α, β ∈ S we have
α+ β ∈ S.) Then,

PAIR-ADDITIVE-RS ∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(1),
distance HammingGF(2`)

.
Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-ADDITIVE-RS ∈ PCPPs,δ

 randomness log(n · polylog n),
query polylog n,
distance HammingGF(2`)

.
Furthermore, the proof queried by the “weak”-PCPP-verifier is of the same length as that queried by the
“strong” one.

Remark 3.3. The proof of Theorem 3.2 can be modified to obtain (strong) PCPPs with parameters as above
for some other fields also. In particular we can get PCPPs for F of characteristic ≤ polylog n, as long as
the evaluation set S is linear over a subfield of F of size polylog n. For simplicity, and since this suffices for
our applications, we prove the result only for characteristic 2.

We prove Theorem 3.2 in Section 6. Here we note that Theorem 3.2 immediately leads to a construction
of LTCs. In particular, we use it to prove Theorem 2.13 later in this section. But before doing so, we describe
a different collection of fields F and sets S where we can derive PCPPs for Reed-Solomon codes.

1An explicit description for such a field could be via a prime a and an irreducible polynomial g(x) over GF(a)

13

3.1.2 RS-codes over smooth fields

For this part, and throughout the rest of this paper, let F∗ denote the multiplicative group of a finite field F.
The order of ω ∈ F∗, denoted ord(ω), is the smallest positive integer n such that ωn = 1. The multiplicative
group generated by ω is 〈ω〉 ,

{
ω0, ω1, . . . , ωn−1

}
.

Theorem 3.4 (PCPPs for Smooth RS-codes). Let PAIR-SMOOTH-RS be the restriction of PAIR-RS to
pairs ((F, 〈ω〉, d), p) where ord(ω) = n is a power of 2. Then,

PAIR-SMOOTH-RS ∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-SMOOTH-RS ∈ PCPPs,δ

 randomness log(n · polylog n),
query polylog n,
distance HammingF

.
Furthermore, the proof queried by the “weak”-PCPP-verifier is of the same length as that queried by the
“strong” one.

Remark 3.5. Examination of the proof of Theorem 3.4 shows it can be extended to 〈ω〉 of size n that is
polylog n-smooth, i.e., all prime factors of n are at most polylog n. For simplicity, we state and prove our
theorem only for the multiplicative case of a 2-smooth n.

While not immediately evident, prime fields satisfying the requirements of the previous theorem abound.
In Section 7 we discuss this and provide an alternative proof of the quasilinear PCP Theorem 2.2 that relies
on such prime fields. Notice the intersection of PAIR-ADDITIVE-RS and PAIR-SMOOTH-RS is empty.
Indeed, a field with a multiplicative subgroup of size 2k must be of size c · 2k + 1 for integer c, whereas the
size of a field of characteristic 2 is a power of 2. Next we show how to construct LTCs using the PCPPs for
RS-codes over fields of characteristic two.

3.1.3 Proof of quasilinear LTC Theorem 2.13

Proof of Theorem 2.13: Given an integer n = 2t we use Theorem 3.2 above applied to the field F of size n,
with S = F and d = n/8. The resulting Reed-Solomon code has rate Ω(1) and relative distance at least 7/8.
We then convert the PCPP for this code into an LTC over F using a standard conversion. Here we simply
sketch this step. For a formal proof, see [9, Proposition 4.1].

The codewords of the LTC are in one-to-one correspondence with the codewords of the Reed-Solomon
code. The codeword of the LTC corresponding to a polynomial p consists of two parts. The first part is
simply the Reed-Solomon encoding of p repeated sufficiently often so that the first part takes at least, say
half of the coordinates of the LTC. The second part consists of the PCPP that p is a member of the language.
The LTC verifier simply simulates the PCPP verifier using the first half as the oracle for the implicit input
and the second half as the proof oracle, along with some spot-checks to verify that the first part repeats the
same codeword several times. It is straightforward to see that the rate of this LTC is asymptotically bounded
by the length of the Reed-Solomon codewords divided by the length of their PCPP, and the query complexity
is similar to that of the PCPP verifier. It is easy to see that the LTC so obtained has relative distance at least
7/16 (i.e., half the relative distance of the Reed-Solomon code).

It remains to convert this code into a binary code. This is also straightforward using the idea of con-
catenation of codes. We pick a small error-correcting code with |F| codewords of length ` = O(log |F|)

14

and distance, say, at least .4` and represent elements of F as codewords of this code. This converts the LTC
obtained in the previous paragraph into a binary code with relative distance at least .4 times the distance
of that code, which yields a relative distance of at least 7/40 > 1/8. The verifier of the LTC above can
now be simulated on this binary code with a multiplicative increase in the query complexity by a factor of
O(log |F|).

Thus the PCPP for Reed-Solomon codes immediately leads to short LTCs. Additionally as we discuss
in the upcoming sections, it also forms the central ingredient in our PCP and PCPP constructions.

3.2 Algebraic Constraint Satisfaction Problems

To obtain length-efficient PCPs and PCPPs we reduce L ∈ NTIME(t(n)) to an algebraic constraint sat-
isfaction problem. We describe this problem by comparing it to a combinatorial analog, namely 3SAT. A
3-CNF formula ψ with n variables and m clauses can be viewed as a mapping ψ : {0, 1}n → {0, 1}m,
sending an assignment to the characteristic vector of the set of clauses satisfied by it. The “natural” proof of
satisfiability of a 3-CNF formula is a vector a of n bits. The proof proves the satisfiability of ψ if ψ(a) = ~1.
The typical advantage of this proof is that verification is a sequence of local steps, i.e., to verify that the jth

coordinate of ψ(a)j = 1, we only need examine three coordinates of a.
An instance of an algebraic constraint satisfaction φ similarly can be viewed as a mapping φ : F[x] →

F[x] from polynomials to polynomials. A candidate proof for the algebraic problem is a low-degree (uni-
variate) polynomial A ∈ F[x] over finite field F, called the proof polynomial. The map φ would map A
to a polynomial P of slightly larger degree. φ would be considered satisfiable if P = φ(A) vanishes on a
prespecified subset H of F. Finally, for “local verifiability”, we will expect that computing P (x0) requires
knowledge of A at very few places, denoted k. But here we place some very strong restrictions on the local
neighborhoods. Whereas in 3SAT, there was no simple relationship between a clause index j and the vari-
ables participating in the clause, in Algebraic Constraint Satisfaction Problems, we expect P (x0) to depend
on A on some set of points of the form {AFF1(x0), . . . ,AFFk(x0)} where AFFi(x) = aix + bi is an affine
map. Moreover, we insist that the computation of P (x0) from x0 andA(AFF1(x0)), . . . , A(AFF1(x0)) itself
be algebraically simple. Combining all these ingredients leads to the following definition.

Definition 3.6 (Univariate Algebraic CSP). Instances of the language ALGEBRAIC-CSP are tuples of the
form φ = (F, {AFF1, . . . ,AFFk′},H,C), where F is a field, AFFi(x) , aix + bi is an affine map over F
specified by ai, bi ∈ F, H ⊆ F and C : Fk′+1 → F is a polynomial of degree at most |H| in its first variable.
The size of φ is |F|.

A polynomial A ∈ F[x] is said to satisfy the instance φ ∈ ALGEBRAIC-CSP iff deg(A) ≤ |H| − 1
and for all x ∈ H ,

C(x,A(AFF1(x)), . . . , A(AFFk′(x))) = 0. (1)

The instance φ is in ALGEBRAIC-CSP iff there exists a polynomial satisfying it.
For integers k, d, let ALGEBRAIC-CSPk,d be the restriction of ALGEBRAIC-CSP to instances as

above where k′ ≤ k and the degree of C in all but the first variable is at most d.

Our main theorem on PCPs is obtained by reducing NTIME languages to ALGEBRAIC-CSP, while
preserving the length of instances to within polylogarithmic factors.

Theorem 3.7 (ALGEBRAIC-CSP is NTIME-complete). There exist integers k, d such that for any proper
complexity function t : N+ → N+ and L ∈ NTIME(t(n)) the following holds.

1. L is reducible to ALGEBRAIC-CSPk,d in time poly t(n).

15

2. The reduction maps an instance of L of size n to an instance of ALGEBRAIC-CSPk,d over field
GF(2`) of size 2` ≤ t(n) polylog t(n) and characteristic 2, where 100(kd + 1)(|H| − 1) < 2` ≤
200(kd+ 1)(|H| − 1).

This proof of this theorem is given in Section 5.

Remark 3.8. Inspection of the proof of Theorem 3.7 gives k = 10 and d = 8. More careful optimization
can give k = 9 and d = 1, i.e., C is multilinear in all but the first variable. Favoring simplicity over constant
optimization we omit this proof. Additionally, one can obtain the theorem for any F as long as |F| > |H|.
However, to derive Theorem 2.2 and Theorem 2.10 we need |F| � |H|.

Very similar algebraic reductions are prevalent in many previous PCPs [5, 3, 2, 37, 39, 11, 9], starting
with [5] and our reduction follows that of Polishchuk and Spielman [37]. However, all previous reductions
used multivariate polynomials to perform degree reduction. Namely, a message (or assignment) of length n
is encoded by anm-variate polynomial of degree≈ m·n1/m (allowing proximity testing with n1/m queries).
In contrast, our reduction does not reduce the degree at all; in fact it slightly increases it. The PCPPs for
the RS-code described earlier allow us to tolerate this and verify proximity to high-degree polynomials with
very small query complexity — logarithmic in the degree.

For our PCPP construction we need to modify the reduction above so that it works appropriately for pair
languages. Suppose we wish for a reduction R from a pair language L to a pair language L′. Note that
such a reduction can only work with the explicit input of pair languages. Furthermore, the reduction should
say something about (the proximity of) the implicit input to an accepting pair. The following definition of a
“systematic reduction” (borrowing a phrase from coding theory) specifies our needs.

Definition 3.9 (Systematic Reduction). A systematic reduction from a pair language L to L′, is a given by
a pair of functions (R,m), R : Σ∗ → Σ∗, and m : Σ∗ × Z+ → Z+ satisfying the following properties:

• For every x, the function m′(i) = m(x, i) restricted to the domain {1, . . . , N} is injective and maps
to the range {1, . . . , N ′}, where N denotes the length of the implicit input associated with x, and N ′

denotes the length of the implicit input associated with R(x).

• If y ∈ Lx, then there exists a y′ ∈ Σ∗ such that y′ ∈ L′R(x) and yi = y′m(i) for every i ∈ {1, . . . , N}.

• If y′ ∈ L′R(x) then y ∈ Lx, where y is the string given by yi = y′m(i) for i ∈ {1, . . . , N}.

The running time of the reduction is the maximum of the computation times of R(x) and m(x, i), measured
as a function |x|.

We next state a variant of Theorem 3.7 giving systematic reductions from pair languages to a language
related to ALGEBRAIC-CSP. To this end, we define PAIR-ALGEBRAIC-CSP to be the pair language
whose explicit inputs are instances φ as in Definition 3.6 and whose implicit inputs are mappings y : F → F.
A pair (φ, y) is in PAIR-ALGEBRAIC-CSP if and only if the polynomial corresponding to y satisfies φ.
We now state our theorem about the completeness of PAIR-ALGEBRAIC-CSP for PAIR-NTIME.

Theorem 3.10. There exist integers k, d such that for any proper complexity function t : N+ → N+ and
L ∈ PAIR-NTIME(t(n)) the following holds.

1. L is reduces to PAIR-ALGEBRAIC-CSPk,d by a systematic reduction, given by the pair (R,m), in
time poly t(n).

2. For x ∈ {0, 1}n, the instanceR(x) is an instance of ALGEBRAIC-CSPk,d over field GF(2`) of size
2` ≤ t(n) polylog t(n) and characteristic 2, where 100(kd+1)(|H|−1) < 2` ≤ 200(kd+1)(|H|−
1).

16

Since Theorem 3.10 is proved by a minor modification of the proof of Theorem 3.7, we prove them
together in Section 5.

3.3 Vanishing RS-codes and the PCP Construction

The completeness of ALGEBRAIC-CSP for NP, combined with the PCPPs for Reed-Solomon codes,
suggests a natural approach to building PCPs. In order to prove that some input instance x belongs to some
NP language L, the verifier transforms x into an instance φ of ALGEBRAIC-CSP. To prove that φ is
satisfiable, the prover can write a table of the assignment function A : F → F. Furthermore, the prover can
also write a table of the transformed polynomial P = φ(A). In order to verify that this is a valid proof of the
satisfiability of φ, the verifier only need verify the following three properties: (1) The degrees ofA and P are
as specified; (2) A and P satisfy the relationship P = φ(A); and (3) P vanishes on the set H . The PCPP for
Reed-Solomon codes solves the problem in (1) above. The locality in the definition of ALGEBRAIC-CSP
turns out to lead to a simple solution to step (2) above as well. This leaves us to solve the problem in Step
(3). In this section we abstract this problem, calling it the Vanishing RS-Code problem, and state our result
showing how to verify this. We then formalize the argument above to get a formal proof of Theorem 2.2.

We remark that the problem in step (3) is a special case of a common problem in all previous algebraic
PCPs [4, 5, 20, 3, 2, 37, 39, 11, 9], where the goal is to test whether an m-variate function f , given as an
oracle, is close to some polynomial p that vanishes on a set Hm for some prespecified subset H ⊂ F. Our
setting specializes this to the case where the functions are univariate (i.e., m = 1) as opposed to multivariate
in the above mentioned results. This motivates the following pair language.

Definition 3.11 (Vanishing RS-Codes). A polynomial P (z) over field F is said to vanish over H ⊆ F iff
∀h ∈ H,P (h) = 0. For field F, subsets S,H of F and integer d, the H-vanishing RS-code is

VRS(F, S,H, d) , {p ∈ RS(F, S, d) : The polynomial correspoding to p vanishes on H}.

The pair language PAIR-VRS is defined as follows. The explicit input is a quadruple (F, S,H, d) where
F is a description of a finite field, S,H ⊆ F, and d is an integer. The implicit input is a function p : S → F.
The size of both the implicit and explicit inputs is O(|S|). A pair ((F, S,H, d), p) is in PAIR-VRS iff
p ∈ VRS(F, S,H, d).

Note in the above definition we do not require H to be a subset of S. The following lemma reduces
testing proximity to the vanishing RS-code to testing proximity to the standard RS-code.

Lemma 3.12 (PCPPs for PAIR-VRS). Suppose a field F, S ⊆ F and integer d are such that

RS(F, S, d) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

.
Then, for any H ⊂ F and s′(δ) = min{δ/2, s(δ/2)},

VRS(F, S,H, d) ∈ Strong-PCPPs′(δ)

 randomness max{r, log |S|},
query q + 2,
distance HammingF

.
Applying the previous lemma to Theorem 3.2 and Theorem 3.4 we immediately get:

17

Corollary 3.13 (Quasilinear PCPPs for vanishing RS-codes). Let PAIR-ADDITIVE-VRS be the restric-
tion of PAIR-VRS to pairs ((F, S,H, d), p)) where F, S are as defined in Theorem 3.2. Similarly, let
PAIR-SMOOTH-VRS be the restriction of PAIR-VRS to pairs where F, S are as defined in Theorem 3.4.
Let |S| = n. Then,

PAIR-ADDITIVE-VRS,
PAIR-SMOOTH-VRS

∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-ADDITIVE-VRS,
PAIR-SMOOTH-VRS

∈ PCPPs,δ

 randomness log(n · polylog n),
query polylog n,
distance HammingF

.
Furthermore, the proof queried by the “weak”-PCPP-verifier is of the same length as that queried by the
“strong” one.

Lemma 3.12 generalizes to the case of multivariate polynomials and can replace the sumcheck based
protocols in previous PCP constructions [5, 3, 2, 37, 27, 24, 11, 9]. We describe this problem and our
solution for it in Section 4.4. We remark that our solution is both simpler and somewhat more efficient than
the previous sections (alas we don’t need it for any of our own constructions). For our PCP construction the
univariate version above suffices, as we show next.

3.3.1 Proof of quasilinear PCP Theorem 2.2

We now show how to use the PCPP for (vanishing) RS-codes to prove Theorem 2.2, which gives short PCPs
for all NTIME languages.

Proof of Theorem 2.2:

Overview We need to show L ∈ NTIME(t(n)) has short PCPs. We start by reducing an instance ψ, |ψ| =
n of L to an instance φ of ALGEBRAIC-CSPk,d of quasilinear size in n. As our proof, we request an
evaluation p0 of the polynomial A satisfying φ. Additionally, we request an evaluation p1 of the polynomial
from Equation (1) appearing in Definition 3.6. To verify that A satisfies φ, we need only test (i) p0 is of
sufficiently low degree, (ii) p0, p1 are consistent, i.e., p1 is the evaluation of the polynomial from Equation
(1), (iii) The polynomial corresponding to p1 vanishes on H . We test (i) using Theorem 3.2, (iii) using
Corollary 3.13, and for (ii) we use an additional consistency test with constant query complexity. Details
follow.

Let φ = {GF(2`), {AFF1, . . . ,AFFk},H,C} be the instance of ALGEBRAIC-CSPk,d that ψ is re-
duced to via Theorem 3.7. Let F = GF(2`) and notice |F| = Θ(t(n) polylog t(n)).

Probabilistically Checkable Proof Verifier expects oracle access to a proof comprised of:

• Function p0 : F → F and proof of proximity π0 to RS(F,F, |H| − 1) as per Theorem 3.2.

• Function p1 : F → F and proof of proximity π1 to VRS(F,F,H, (kd + 1)(|H| − 1)) as per Corol-
lary 3.13.

Notice Theorem 3.2 and Corollary 3.13 imply the size of the proof is quasilinear in |F| which is quasilinear
in t(n).

18

Verifier’s operation Verifier tosses log(t(n) · polylog t(n)) coins and runs the following subtests using
the same random coins in all and accepting iff all subtests accept.

• Invoke the PCPP-verifier for the Reed-Solomon code from the second part of Theorem 3.2 on explicit
input (F,F, |H| − 1), implicit input p0 and proof π0, using proximity parameter δ = 1/10k and
soundness half.

• Invoke the PCPP-verifier for vanishing Reed-Solomon code from the second part of Corollary 3.13
on explicit input (F,F,H, |H| − 1), implicit input p1 and proof π1, using proximity parameter 1/100
and soundness half.

• Select random x ∈ F, query p0(x), p0(AFF1(x)), . . . , p0(AFFk(x)) and p1(x); Accept iff

p1(x) = C(x, p0(x), p0(AFF1(x)), . . . , p0(AFFk(x))).

Basic parameters Randomness and query complexity are as claimed, by Theorem 3.2 and Corollary 3.13.

Completeness Suppose ψ ∈ L. Then φ ∈ ALGEBRAIC-CSPk,d by Theorem 3.7. Suppose A satisfies
φ as per Definition 3.6. Let p0 be the evaluation of A on F. Let

B(x) , C(x,A(AFF1(x)), . . . , A(AFFk(x))). (2)

Notice deg(B) ≤ degx0
(C) +

∑k
i=1 degxi

(C) · deg(A) ≤ (kd + 1)(|H| − 1). Furthermore, B vanishes
on H because A satisfies φ. Let p1 be the evaluation of B on F. We conclude p0 ∈ RS(F,F, |H| − 1) and
p1 ∈ VRS(F,F,H, (kd+1)(|H| − 1)) so by the completeness property of Theorem 3.2 and Corollary 3.13
there exist proofs π0, π1 causing the first two subtests of the verifier to accept. Finally, for all x ∈ F we have
by construction

p1(x) = B(x) = C(x,A(AFF1(x)), . . . , A(AFFk(x))) = C(x, p0(AFF1(x)), . . . , p0(AFF1(x)))

We conclude the last subtest also accepts with probability 1, completing the proof of the completeness
statement.

Soundness Suppose ψ 6∈ L. Then φ 6∈ ALGEBRAIC-CSP by Theorem 3.7. There are several cases to
consider:

• If p0 is (1/10k)-far from RS(F,F, |H| − 1) then Theorem 3.2 implies the first subtest rejects with
probability 1/2. Similarly, if p1 is not (1/100)-close to VRS(F,F,H, (kd+1)(|H|−1)) then Corol-
lary 3.13 implies the second subtest rejects with probability 1/2.

• Otherwise, let A be the unique polynomial of degree ≤ |H| − 1 that is closest to p0 and let B(x) be
as defined in Equation (2). Let p2 : F → F be defined by

p2(x) = C(x, p0(AFF1(x)), . . . , p0(AFFk(x))).

A union bound implies p2 is (1/10)-close to the valuation of B on F because p0 is (1/10k)-close to
the valuation of A and AFFi(x) is uniformly distributed on F when x is uniformly distributed on F.

Let B′ be the (unique) polynomial closest to p1. Notice B 6= B′ because if B = B′ then B vanishes
on H , implying A satisfies φ. Summing up, we have p1 is (1/100)-close to B′ and p2 is (1/10)-close
to B, where B 6= B′ are polynomials of degree ≤ |F|/100 so they agree on at most 1/100 fraction of
their entries. Thus, the third subtest accepts with probability at most (1/10) + (1/100) + (1/100) <
1/2. The soundness analysis is complete and with it we have proved Theorem 2.2.

19

3.4 Systematic RS Codes and Quasilinear PCPPs

We now turn to the task of building PCPPs for PAIR-NTIME languages. It is relatively straightforward
to convert the PCP verifier for ALGEBRAIC-CSP constructed in the previous section into a PCPP ver-
ifier for PAIR-ALGEBRAIC-CSP. Unfortunately, this is not sufficient to imply a PCPP verifier for all
PAIR-NTIME languages, despite the systematic reduction given by Theorem 3.10.2

To get to the underlying issue, consider pair language L in PAIR-NTIME, and consider the task of
proving/verifying if (x, y) ∈ L, where x is explicit and y is given as an oracle. Using the systematic reduc-
tion of Theorem 3.10, a PCPP verifier could convert x to an instance φ = R(x) of ALGEBRAIC-CSP.
It now demands proof oracles for a polynomial A satisfying φ, along with other ingredients as in the proof
of Theorem 2.2 that prove that A satisfies φ. The PCPP verifier can now verify that A satisfies φ with few
queries. It still needs to verify that A is consistent with the implicit input y. Using the “systematic” nature
of the given reduction, it also knows that y ought to be “contained” in A. More specifically, it knows that
there is some subset H of A such that the evaluation of the polynomial A on the set H should be equal to
the string y. In what follows we abstract this problem as that of building a PCPP verifier for “systematic”
Reed-Solomon codes. Such a verifier is given two oracles, one for a function f : H → F (representing the
implicit input y above), and the other for a (supposedly polynomial) function p : S → F, and attempts to
verify that p is a polynomial of the appropriate degree that agrees with the function f . We formalize the task
below and state our main result for this task.

Definition 3.14 (Systematic RS-codes). For field F, subsets S,H ⊆ F, |H| ≤ |S|/2 and integer d ≤ |S|/2
let RSsys(F, S,H, d) be the set of pairs of functions (f : H → F, p : S → F), such that p ∈ RS(F, S, d)
and the polynomial corresponding to p agrees with f on H . The pair language PAIR-RSsys is the set of
pairs with explicit input (F, S,H, d) as above and implicit input (f, p) ∈ RSsys(F, S,H, d). Similarly,
the pair language PAIR-ADDITIVE-RSsys (PAIR-SMOOTH-RSsys, respectively) is the restriction of
PAIR-RSsys to pairs with F, S as in Theorem 3.2 (Theorem 3.4, respectively).

Notice in Definition 3.14 we do not require H to be a subset of S, nor do we assume H ∩ S = ∅.
Furthermore, we allow d be greater than |H| − 1, in which case there are several polynomials of degree d
that all agree with f on H .

Recall that when building PCPP verifiers we need to specify our distance measure. Since typically
|H| � |S|, the standard Hamming distance is not a good measure because under this measure (f, p) is close
to RSsys whenever p is low degree, regardless of the amount of agreement between p and f . To amend this
we use the following weighted Hamming distance:

Hamming
1
2
F ((f, p), (f ′, p′)) =

1
2
(HammingF(f, f ′) + HammingF(p, p′)).

The main theorem of this section gives an efficient PCPP for the language of systematic Reed-Solomon
codes. Its proof is deferred to Section 4.3.

Theorem 3.15 (PCPPs for systematic RS-codes).

PAIR-ADDITIVE-RSsys,
PAIR-SMOOTH-RSsys

∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query polylog n,

distance Hamming
1
2
F

.
2Indeed, we do not know of a generic reduction that, when given a pair language L with a systematic reduction to L′ and a

PCPP verifier for L′, can construct an efficient PCPP verifier for L.

20

3.4.1 Proof of quasilinear PCPP Theorem 2.10

We now show how to use Theorem 3.10 and Theorem 3.15 to construct efficient PCPP verifiers for all
PAIR-NTIME languages.

Proof of Theorem 2.10: Let (x, y) be an instance of PAIR-L ∈ NTIME(t(n)) with |y| = N . The PCPP-
verifier starts by reducing x to an instance φ = (F, {AFF1, . . . ,AFFk},H,C} of ALGEBRAIC-CSP as
in Theorem 3.10. Let m : {1, . . . , N} → F be the efficiently computable injective mapping as per Defini-
tion 3.9. Let m([N]) = {m(1), . . . ,m(N)} ⊆ F. From here on we view y as a function from m([N]) to
F by associating {0, 1} with the same elements in F. Verifier expects oracle access to a proof of proximity
comprised of:

• Probabilistically checkable proof π for x as described in the proof of Theorem 2.2. In particular, the
probabilistically checkable proof is comprised of functions p0, p1 : F → F and subproofs π0, π1.

• Proof of proximity for PAIR-ADDITIVE-RSsys(F,F,m([N]), |H| − 1), denoted π2.

Verifier’s Operation Verifier invokes the PCP-verifier described in the proof of Theorem 2.2 on ex-
plicit input x and proof π. Reusing randomness, Verifier invokes the PCPP-verifier for the pair language
PAIR-ADDITIVE-RSsys described in Theorem 3.15 on explicit input (F,F,m([N]), |H| − 1), implicit
input pair (y, p0) and proof π2. Verifier accepts iff both subverifiers accept. Notice Theorem 2.2 and Theo-
rem 3.15 imply the randomness and query complexity are as claimed.

Completeness Suppose (x, y) ∈ PAIR-L and let φ be the instance of ALGEBRAIC-CSP that x is
reduced to as per Theorem 3.7. By Theorem 3.10, y agrees with p0 on m([N]) and p0 is an evaluation of a
polynomial satisfying φ. Completeness now follows from Theorem 2.2 and Theorem 3.15.

Soundness Suppose y is δ-far from Lx in distance measure Hamming
1
2
F . There are several cases to con-

sider. First, if x 6∈ L in which case Lx is empty and δ = 1, then Theorem 2.2 implies the first sub-
test of our verifier rejects with probability δ/ polylog n. From here on we assume x ∈ L. If p0 is not
(1/100)-close to an evaluation of a polynomial of degree ≤ |H| − 1 that satisfies φ, then the sound-
ness part of the proof of Theorem 2.2 implies the first subtest of our verifier rejects with probability
≥ 1/(100 · polylog n) ≥ δ/ polylog n. Finally, suppose p0 is (1/100)-close to evaluation of a polyno-
mial A satisfying φ and let y′ : m([N]) → F be the evaluation of A on m([N]). Theorem 3.10 implies
y′ satisfies x, so by assumption y is δ-far from y′. Thus, the pair of functions (y, p0) is (δ/2)-far from
RSsys(F,F,m([N]), |H| − 1) so Theorem 3.15 implies the second subtest rejects (y, p0) with probability at
least δ/ polylog n, completing the proof of Theorem 2.10

3.5 Organization of the rest of the paper

We have thus far proved our main theorems (Theorems 2.2, 2.10, and 2.13) assuming NTIME completeness
result for ALGEBRAIC-CSP (Theorems 3.7 and 3.10) and PCPPs for RS-codes (Theorem 3.2), for van-
ishing Reed-Solomon codes (Lemma 3.12), and for systematic Reed-Solomon codes (Theorem 3.15). In the
following sections we give proofs for these claims. We remark that the sections may be read in any order.
The order in which they are sequenced here merely reflects our opinion of the complexity of the proofs.

In Section 4 we assume a PCPP for Reed-Solomon codes and give PCPPs for vanishing and systematic
Reed-Solomon codes. We also show how to verify vanishing properties of multivariate polynomials in this
section (see Lemma 4.5 in Section 4.4) a result that may be of independent interest. In Section 5 we prove

21

the NTIME completeness of ALGEBRAIC-CSP and PAIR-ALGEBRAIC-CSP. In Section 6 we give
the PCPP for RS-codes over fields of characteristic two, which is our central technical result. Finally, in
Section 7, we give a analogous PCPP for RS-codes over smooth fields.

22

Part II

From Reed-Solomon proximity to quasilinear PCPs
and PCPPs
4 PCPPs for Vanishing and Systematic Reed-Solomon Codes

In this section, we show how one can test various properties of polynomials given by an oracle, once we
have the ability to test that an oracle is close to a polynomial.

The first such property is to verify that a univariate function f is close to some polynomial P that
vanishes on a prespecified set H . This property was used crucially in building a PCP for NP languages in
Section 3.3.

The PCPP for vanishing RS-codes immediately leads to a PCPP to verify if two given oracles f1 and f2

are close to polynomials that agree on the prespecified set of inputs. (This task reduces to verifying whether
f1 − f2 represents a vanishing RS-code.) We refer to this property as “agreeing” Reed-Solomon codes.

We then use the PCPP for agreeing Reed-Solomon codes to get a PCPP for systematic RS-codes. Recall
that here, our goal was to take two oracles for functions f : H → F and p : S → F and verify that p is close
to a polynomial P that agrees with f on H . This PCPP was crucial to our PCPP Theorem 2.10.

Finally we show how to extend our PCPP for vanishing RS-codes to PCPP for vanishing multivariate
polynomial codes even though we don’t use this result anywhere in the paper. (However, it was extensively
used in previous PCP constructions.)

We note that all the constructions are quite simple and differ from previous such “tests” in a crucial way.
Whereas previous tests of properties as above attempt to use the fact that the oracle being tested is close to
a polynomial, they do not seem to explicitly use the fact that a low-degree test is available and can be used
to test other functions that may be provided by the prover. Our constructions exploit this additional feature
to simplify many known tests.

4.1 PCPPs for vanishing Reed-Solomon — proof of Lemma 3.12

Recall the notion of a vanishing RS-code from Definition 3.11.

Lemma (3.12, restated). Suppose a field F, S ⊆ F and integer d are such that

RS(F, S, d) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

.
Then, for any H ⊂ F and s′(δ) = min{δ/2, s(δ/2)},

VRS(F, S,H, d) ∈ Strong-PCPPs′(δ)

 randomness max{r, log |S|},
query q + 2,
distance HammingF

.
The key observation in our proof is that a degree-d polynomial P (z) vanishes on H iff the polynomial

gH(z) ,
∏

h∈H(z − h) divides P (z), i.e., iff there exists a polynomial P̃ ,deg(P̃) ≤ d − |H| such that
P (z) = gH(z) · P̃ (z).

Proof. The PCPP-verifier for VRS(F, S,H, d) has oracle access to implicit input p : S → F and a proof
combined of two parts: (i) A function p̃ : S → F (a supposed evaluation of P̃ on S); (ii) A proof of
proximity π̃ to RS(F, S, d− |H|). Notice the proof length is |S|+ |π̃|. The verifier operates as follows.

23

• Toss max{r, log |S|} random coins. Let R denote the random outcome.

• Invoke assumed RS-verifier using randomness R on explicit input (F, S, d − |H|), implicit input p̃
and proof π̃. Reject if the verifier rejects. Otherwise,

• Pick random α ∈ S (using randomness R); Read p(α) and p̃(α); Accept iff p(α) = gH(α) · p̃(α).

Notice gH(α) can be computed in time poly(|H| · log |F|) by the verifier because H is given as an explicit
input. Thus, the running time is as claimed, and so are the randomness and query complexity, by construc-
tion. Completeness follows by taking p̃ to be the evaluation of P̃ (z) , P (z)/gH(z) and taking π̃ to be p̃’s
proof of proximity to RS(F, S, d− |H|).

As to the soundness, assume p is δ-far from VRS(F, S,H, d). If p̃ is δ/2-far from RS(F, S, d − |H|),
then by assumption the RS-verifier rejects p̃ with probability at least s(δ/2) and we’re done. Otherwise,
p̃ is δ/2-close to some polynomial Q of degree ≤ d − |H|. Let q : S → F be the evaluation of Q on S.
Notice the function p̃ · gH is δ/2-close to q · gH and the latter function is, by construction, a codeword of
VRS(F, S,H, d). By assumption, p is δ/2-far from p̃ · gH , hence the last subtest of the verifier rejects with
probability at least δ/2. This completes our proof.

4.2 Agreeing Reed-Solomon codes

We now show how to extend the PCPP of the previous section to test if two polynomials agree on a given
set. Two polynomials P1(z), P2(z) are said to agree on H ⊆ F if P1(z) = P2(z) for all z ∈ H . Below we
formalize the problem of testing agreement.

Definition 4.1 (Agreeing RS-Codes). For field F, subsets S,H ⊆ F and integers |S|/2 ≥ d1 ≥ d2 let
RSagr(F, S,H, d1, d2) be the set of pairs of functions p1, p2 : S → F, such that p1 ∈ RS(F, S, d1), p2 ∈
RS(F, S, d2) and the polynomial corresponding to p1 agrees with the polynomial corresponding to p2 on
H . The pair language PAIR-RSagr is the set of pairs with explicit input (F, S,H, d1, d2) as above and
implicit input (p1, p2) ∈ RSagr(F, S,H, d1, d2). Similarly, the pair language PAIR-ADDITIVE-RSagr

(PAIR-SMOOTH-RSagr, respectively) is the restriction of PAIR-RSagr to pairs with F, S as in Theo-
rem 3.2 (Theorem 3.4, respectively).

Lemma 4.2. Assume a field F, S ⊆ F and integers d2 ≤ d1 ≤ |S|/2 satisfy

RS(F, S, d1),
RS(F, S, d2),
VRS(F, S, d1)

∈ Strong-PCPPs(δ,|S|)

 randomness r,
query q,
distance HammingF

,
where s is monotone nondecreasing in δ. Then for any H ⊂ F,

RSagr(F, S,H, d1, d2) ∈ Strong-PCPPs(δ/8,|S|)

 randomness r,
query q + 2,
distance HammingF

.
Proof. The main idea is that P1(z) agrees with P2(z) on H iff P1(z) − P2(z) vanishes on H , so we apply
the PCPP from Lemma 3.12 to this difference. Details follow.

The verifier for RSagr(F, S,H, d1, d2) has oracle access to implicit inputs p1, p2 : S → F and proof of
proximity combined of:

• Proof of proximity π1 to RS(F, S, d1);

24

• Proof of proximity π2 to RS(F, S, d2);

• Proof of proximity π3 to VRS(F, S, d1).

Verifier’s operation is to invoke the following three subtests using the same randomness across all tests and
accepting iff all of them accept.

• Invoke verifier for RS(F, S, d1) on implicit input p1 and proof π1.

• Invoke verifier for RS(F, S, d2) on implicit input p2 and proof π2.

• Invoke verifier for RSH(F, S, d1) on implicit input p1− p2 and proof π3. Querying p1− p2 on α ∈ S
is performed by querying p1(α), p2(α) and taking their difference.

All properties can be checked as in the proof of Lemma 3.12. For illustration, consider the soundness.
Suppose the pair of functions (p1, p2) is δ-far from RSagr(F, S,H, d1, d2). If either one of p1, p2 is δ/8-far
from RS(F, S, d1),RS(F, S, d2) respectively, then (first/second subtest of) verifier rejects with probability
s(δ/8, |S|). Otherwise, q = (p1 − p2) is δ/4-close to a polynomial of degree d1 that by assumption does
not vanish on H . Since d1 ≤ |S|/2 and δ ≤ 1 we conclude q is 1/4-far from VRS(F, S,H, d1) in which
case the third subtest of the verifier rejects with probability ≥ s(1/4, |S|) ≥ s(δ/8, |S|). The last inequality
follows from monotonicity of s.

The previous lemma combined with Lemma 3.12, Theorem 3.2 and Theorem 3.4 immediately implies
the following.

Corollary 4.3 (PCPPs for Agreeing RS-Codes).

PAIR-ADDITIVE-RSagr,
PAIR-SMOOTH-RSagr

∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
4.3 PCPP for systematic Reed-Solomon codes - proof of Theorem 3.15

Recall the definition of the systematic RS-code (Definition 3.14) and the related notation presented in Sec-
tion 3.4. We now prove Theorem 3.15, restated below.

Theorem (3.15, restated).

PAIR-ADDITIVE-RSsys,
PAIR-SMOOTH-RSsys

∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query polylog n,

distance Hamming
1
2
F

.
To prove the theorem we apply induction to the following Lemma, the proof of which appears below.

Roughly, the lemma says that if we have PCPPs for systematic and agreeing RS-codes of size n/2, then
we can construct systematic codes of size n. Intuitively, the proof is as follows. To verify that a message
is indeed encoded by a codeword, we split the message into two parts of equal length. We ask for the
encoding of each of these submessages and verify agreement of the subencodings with the encoding of the
large message. This part uses PCPPs for agreeing codes described in the previous Section. Then we pick
one of the submessages at random and verify it is consistent with its supposed subencoding and for this part
we use induction. Details follow.

Lemma 4.4. If H,S ⊆ F and d ≤ |S|/2 satisfy the following conditions:

25

1. There exists S0, S1 ⊆ S, |S0|, |S1| = |S|/2 and a partition H0 ∪H1 = H, |H0|, |H1| = |H|/2 and
these sets are computable in time t0.

2. RS(F, S, d) ∈ Strong-PCPPs1(δ,|S|)

 randomness r1,
query q1,
distance HammingF

.

3. For i = 0, 1 we have

RSagr(F, S,Hi, d, |Hi| − 1) ∈ Strong-PCPPs2(δ,|S|)

 randomness r2,
query q2,
distance HammingF

.
4. For i = 0, 1 we have

RSsys(F, Si,Hi, |Hi| − 1) ∈ Strong-PCPPs3(δ,|Si|)

 randomness r3,
query q3,

distance Hamming
1
2
F

,
and s3 is subadditive, i.e., s3(δ0, |S0|) + s3(δ1, |S1|) ≥ s3(δ0 + δ1, |Si|).

Then for any 0 < α < 1/16,

RSsys(F, S,H, d) ∈ Strong-PCPPs(δ,|S|)

 randomness r,
query q,

distance Hamming
1
2
F

,
where

s(δ, |S|) = min{s1(αδ, |S|), s2(αδ, |S|)/2,
1
2
s3((2− α)δ, |S|/2)}

r = max{r1, r2, r3}+ 1
q = q1 + q2 + q3

Proof of Theorem 3.15: Consider first the case of PAIR-ADDITIVE-RSsys. We need to prove there exists
a constant c ≥ 1 that will be specified later such that for any F of characteristic 2, linear space S ⊆ F,
|S| = n, set H ⊂ F, |H| = 2` ≤ |S|/2 and d ≤ |S|/2 we have

RSsys(F, S,H, d) ∈ Strong-PCPPδ/(log n)c

 randomness log(n · polylog n),
query polylog n,
distance HammingF

.
Our proof is by induction on n, using Lemma 4.4. The base case of constant n follows because a

verifier can query all entries in the implicit input and reject any pair of functions (f, p) that is not in
RSsys(F, S,H, d).

As to the inductive step, partition H into two equal sets H0,H1 arbitrarily. Let S0 = S1 be a (k − 1)-
dimensional space. Part 1 of Lemma 4.4 holds by construction. Parts 2,3 follow from Theorem 3.2 and
Corollary 4.3 respectively, with

s1(δ, n), s2(δ, n) ≥ δ/(log n)c′ , q1, q2 = polylog n, r1, r2 = log(n · polylog n),

26

where c′ is a constant. Part 4 holds by induction with

s3(δ, n/2) = δ/((log n)− 1)c, q3 = poly((log n)− 1), r3 ≤ log(n · polylog n).

Notice s3 is subadditive. Apply Lemma 4.4 with α = 1/ log n. Randomness and query complexities follow
immediately and the verifiers running time is polynomial. As to soundness, notice 1

2s3((2 − α)δ, n/2) ≥
(1− 1/ log n)δ/(log n− 1)c ≥ δ/ logc n. Thus, by selecting c > c′ + 1 we conclude

s(δ, n) ≥ min{δ/ logc′+1 n, δ/ logc n} ≥ δ/ logc n.

This completes proof.
Regarding PAIR-SMOOTH-RSsys, change S = 〈ω〉 and S0 = S1 = 〈ω2〉 and use Theorem 3.4. The

rest of the proof is identical.

Proof of Lemma 4.4: To prove that p is an evaluation of a polynomial P that agrees with f on H , we
request the prover provide evaluations of the polynomials that agree with P on the two partitions of H . We
test agreement of p with these two polynomials, denoted p0, p1, and then split f to two corresponding parts
and recurse. Details follow. We describe the proof of proximity, followed by the verifier’s operation and
conclude with completeness and soundness analysis.

Proof of proximity The proof for the implicit input pair f : H → F, p : S → F is defined recursively. In
the base case (|S| = O(1)) the proof is empty. Otherwise, it is comprised of:

• One proof of proximity π to RS(F, S, d).

• Two functions p0, p1 : S → F.

• Two proofs of proximity π0, π1 to RSagr(F, S,H0, d, |H0| − 1) and RSagr(F, S,H1, d, |H1| − 1)
respectively.

• Two proofs of proximity π′0, π
′
1 to RSsys(F, S0,H0, |H0| − 1) and to RSsys(F, S1,H1, |H1| − 1)

respectively, defined recursively.

Verifier’s Operation Let fi : Hi → F be the restriction of the function f to domain Hi and let p′i be the
restriction of the function pi to domain Si, for i = 0, 1. Verifier tosses r = max{r1, r2, r3} + 1 coins, sets
i ∈ {0, 1} according to the first coin and performs the following subtests reusing the remaining r − 1 coins
across different tests.

• Invoke verifier for RS(F, S, d) on input p and proof π.

• Invoke verifier for RSagr(F, S,Hi, d, |Hi| − 1) on input pair (p, pi) and proof πi.

• Invoke verifier for RSsys(F, Si,Hi, |Hi| − 1) on input pair (fi, p
′
i) and proof π′i.

• Accept iff all aforementioned tests accept.

Basic Properties The randomness is r, by construction. The query complexity is the sum of queries made
by the various subtests, as claimed.

27

Completeness Assume (f, p) ∈ RSsys(F, S,H, d). Since p is of degree ≤ d there exists a proof π ac-
cepted by the first subtest of the verifier with probability one. Let pi be the polynomial of degree |Hi| − 1
that agrees with fi (on Hi). By construction p agrees with pi on Hi. Thus, there exist proofs πi accepted by
the second subtest of the verifier with probability 1. Finally, notice (fi, p

′
i) ∈ RSsys(F, Si,Hi, |Hi| − 1) so

there exist subproofs π′i causing the third test of the verifier to accept with probability one.

Soundness Assume the distance of (f, p) from RSagr(F, S,H, d) is exactly δ. There are several cases
to consider. (i) If p is αδ-far from RS(F, S, d) then the first test of the verifier rejects with probability
s1(αδ, |S|). (ii) If for some i ∈ {0, 1} the distance of (p, pi) from RSagr(F, S,Hi, d, |Hi| − 1) is greater
than αδ then the second test of the verifier rejects with probability s2(αδ, |S|)/2. The factor half decrease
in rejection probability is due to the random selection of i. (iii) Otherwise, because (i) doesn’t hold and
d ≤ |S|/2 and α < 1/16 we conclude p is αδ-close to a unique polynomial P , so f is ((2− α)δ)-far from
the evaluation of P on H . Similarly, because (ii) doesn’t hold we conclude each of p0, p1 is 1/8-close to the
unique polynomial agreeing with P on Hi.

For i = 0, 1, let δi be the distance of (fi, p
′
i) from RSsys(F, Si,Hi, |Hi|−1) using measure Hamming

1
2
F .

Notice δ0 + δ1 ≥ (2 − α)δ because pi is 1/8-close to the evaluation of P on H so p′i is 1/4-close to the
evaluation of P on Hi while f is ((2− α)δ)-far from it. By induction, the rejection probability of the third
subtest in this case is at least

1
2
(s3(δ0, |S|/2) + s3(δ1, |S|/2)) ≥ 1

2
s3(δ0 + δ1, |S|/2) ≥ 1

2
s3((2− α)δ, |S|/2).

Summing up, our rejection probability is at least as claimed and this completes our proof.

4.4 PCPPs for multivariate polynomials and vanishing Reed-Muller codes

Finally, we give a generalization of Lemma 3.12 to the case of multivariate polynomials. This generalization
would suffice to replace the sumcheck based protocols in previous PCP constructions [5, 3, 2, 37, 27, 24,
11, 9].

In the multivariate problem we are given sets S,H ⊂ F and oracle access to a multivariate function
f : Sm → F. We are asked to verify f is close to a polynomial of degree ≤ d in each variable that
evaluates to zero on Hm. Once again, we do not need to assume H ⊂ S. Recall evaluations of low-degree
multivariate polynomials form the well known Reed-Muller code. We denote by RM(F, S, d,m) the set of
functions p : Sm → Fm that are evaluations of m-variate polynomials of maximal individual degree d. We
denote by VRM(F, S,H, d,m) its subcode consisting of all evaluations of polynomials that vanish on Hm.
Our main lemma of this section is the following.

Lemma 4.5 (Multivariate Zero Testing). Suppose field F, set S ⊆ F and integers d,m satisfy

RM(F, S, d,m) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

Then, for any H ⊂ F and s′(δ) = min{s(δ), 1− ((m+ 1)δ +

(
d
|S|

)m
)},

VRM(F, S,H, d,m) ∈ Strong-PCPPs′(δ)

 randomness r +m log |S|,
query (m+ 1)(q + 1),
distance HammingF

.

28

Notice that the query complexity of previous solutions to this problem depended polynomially on the
size of H . Our solution has query complexity that is independent of H and is based on a straightforward
characterization of VRM that resembles Alon’s Combinatorial Nullstellensatz [1]). Before proving the
lemma we first recall some (relatively well-known) results on testing proximity to Reed-Muller codes.

Testing proximity to multivariate polynomials It is easy to extend the PCPP for the RS-code into one
for the Reed-Muller code (based on multivariate polynomials), given the extensive literature on testing
multivariate polynomials using axis parallel lines [4, 5, 20, 3, 37, 21].

For a set S ⊆ F and m-variate function f : Sm → F, let δd
m(f) be the fractional distance of f from

RM(F, S, d,m). Let δd
m,i(f) denote the fractional distance of f from a polynomial of degree d in the ith

variable, and unbounded degree in all other variables. Finally, let E[δd
m,i(f)] be the expectation of δd

m,i over
random i ∈ [m]. The following lemma is a rephrasing of [3, Lemma 5.2.1]. Notice Lemma 6.12 is a special
case of it with tighter parameters.

Lemma 4.6. [3] There exists a universal constant c such that for every S ⊂ F such that |S| ≥ poly(m, d),

δd
m(f) ≤ c ·m · E[δd

m,i(f)]

This lemma together with Theorem 3.2 imply short PCPPs for Reed-Muller codes.

Lemma 4.7 (RM PCP of Proximity). Let S ⊂ F and d,m be integers such that |S| ≥ poly(m, d) for the
polynomial of Lemma 4.6 and suppose

RS(F, S, d) ∈ Strong-PCPPs(δ)

 randomness r,
query q,
distance HammingF

,
Then

RM(F, S, d,m) ∈ Strong-PCPPs(δ)/m

 randomness r + log(m · |S|m−1),
query q,
distance HammingF

.
Proof. The proof for a purported RM-codeword is the collection of proofs of proximity for each axis-parallel
line (to the RS-code). A line parallel to the ith axis is {(b1, . . . , bi−1, xi, bi+1, . . . , bm) : xi ∈ S} where
b1, . . . , bm ∈ S. The verifier selects a random axis parallel line and invokes the RS-verifier of Definition 6.6
on the line and its proof. The proof follows from Lemma 4.6.

Remark 4.8. A more query efficient test can be constructed when S = F. Instead of axis parallel lines, we
use an ε-biased set of directions as in [11]. This results in proofs of similar length and query complexity and
slightly larger randomness, but the soundness is as large as Ω(s(δ)) and independent of m.

Testing proximity to vanishing multivariate polynomials We now move to the proof of Lemma 4.5.
The catch in immediately extending the univariate verifier of Lemma 3.12 to even the bivariate case is
that the “factoring” concept does not extend immediately. Specifically, if we are given that a bivariate
polynomial Q(x, y) has a zero at (α, β) this does not imply that Q(x, y) has some nice factors. However,
one can abstract a nice property aboutQ from this zero. Specifically, we can say that there exist polynomials
A(x, y), B(x, y) (of the right degree) such that Q(x, y) = A(x, y) · (x − α) + B(x, y) · (y − β). Thus to
prove that Q(α, β) = 0, we may ask the prover to give an evaluation of Q(x, y), A(x, y) and B(x, y). We
can then test that Q, A and B are of low-degree and that they satisfy the identity above. Extending this idea
to m-variate polynomials that are zero on an entire generalized rectangle is straightforward. The technical
lemma giving the identity is included below. The lemma is also a key ingredient in Alon’s “Combinatorial
Nullstellensatz” [1]. We include a proof for completeness.

29

Lemma 4.9. Let Q(x1, . . . , xm) be a polynomial over FQ of degree d in each of m variables. Let H ⊆ FQ

and let gH(z)
def
=
∏

β∈H(z − β). Then Q evaluates to 0 on Hm iff there exist m-variate polynomials
A1, . . . , Am of individual degree at most d such that Q(~x) =

∑m
i=1Ai(~x) · gH(xi).

Remark 4.10. The lemma above is intentionally sloppy with degree bounds. While tighter degree bounds
on Ai’s can be obtained, this won’t be needed for our PCPs.

Proof. One direction is immediate. If Q(~x) =
∑m

i=1Ai(~x) · gH(xi) then Q(~α) = 0 for every ~α ∈ Hm.
The other direction is proved in three steps. First, we show that for any polynomial P (x1, . . . , xm) of
degree dj in xj , and any i ∈ {1, . . . ,m}, there exist polynomials B(x1, . . . , xm) and C(x1, . . . , xm) of
degree at most dj in xj , with the degree of C in xi being at most min{dj , |H| − 1}, such that P (~x) =
B(~x) · gH(xi) + C(~x). Second, we show that there exist polynomials A1, . . . , Am and R with the Ai’s
having degree at most d in each variable and R having degree at most |H| − 1 in each variable such that
Q(~x) =

∑m
i=1Ai(~x) · gH(xi) + R(~x) where Q is the polynomial from the lemma statement. In the final

step, we show that R(~x) = 0, concluding the proof.
STEP 1: Recall that any polynomial f(xi) can be written as q(xi)·gH(xi)+r(xi) where r has degree less

than |H|. Applying this fact to the monomials xD
i for nonnegative D we find that there exist polynomials

qD(xi) and rD(xi), with degree of qD being at most D and degree of rD being less than |H|, such that
xD

i = qD(xi) · gH(xi) + rD(xi). Now consider any polynomial P (x1, . . . , xm) of degree di in xi. Suppose
P (~x) =

∑di
D=0 Pi(~x′) · xD, where ~x′ = (x1, . . . , xi−1, xi+1, . . . , xm). Writing the monomials xD

i in terms
of the qD’s and rD’s, we get:

P (~x) =

(
di∑

D=0

Pi(~x′)qD(xi)

)
· gH(xi) +

(
di∑

D=0

Pi(~x′)rD(xi)

)
.

Letting B(~x) =
∑di

D=0 Pi(~x′)qD(xi) and C(~x) =
(∑di

D=0 Pi(~x′)rD(xi)
)

, yields the polynomials as
claimed. In particular the degrees of B and C in any variable are no more than of P , and the degree of
C in xi is smaller than |H|.

STEP 2: We now claim that there exist polynomials A1, . . . , Am and R0, . . . , Rm such that for every
j ∈ {0, . . . ,m},Q(~x) =

∑j
i=0Ai(~x) ·gH(xi)+Rj(~x), withAi’s being of degree at most d in each variable

and Rj being of degree less than |H| in x1, . . . , xj and of degree at most d in the remaining variables.
The proof is straightforward by induction on j, with the induction step using Step 1 on the polynomial
P () = Rj() and the variable xj+1. The final polynomials A1, . . . , Am and R = Rm are the polynomials as
required to yield the subclaim of this step.

STEP 3: Finally we note that for every ~α ∈ Hm, we have R(~α) = Q(~α) −
∑m

i=1Ai(~α) · gH(αi) =
0 −

∑m
i=1 0 = 0. But R is a polynomial of degree less than |H| in each variable and is zero on the entire

box Hm. This can only happen if R ≡ 0. Thus we get that Q(~x) =
∑m

i=1Ai(~x) · gH(xi), with Ai’s being
of degree at most d in each variable, as required in the completeness condition.

Proof of Lemma 4.5: As a proof of the proximity of q ∈ FSm
to the code VRM(F, S, d,m) our verifier

expects (i) the evaluations of A1, . . . , Am from Lemma 4.9 on Sm, denoted a1, . . . , am, and (ii) for each
of q, a1, . . . , am, a proof of proximity of Ai to RM(F, S, d,m). Proof length is as claimed. The verifier
operates as follows. First, it tests proximity of each of q, a1, . . . , am to RM(F, S, d,m). Then, a random
〈α1, . . . , αm〉 ∈ Sm is selected and verifier accepts iff q(~α) =

∑m
i=1 gH(αi) · ai(~α). The query complexity

is as claimed. Completeness follows from Lemma 4.9. As to the soundness, if any of q, a1, . . . , am is δ-
far from RM(F, S, d,m) Verifier rejects with probability s(δ). Otherwise, q is δ close to a polynomial Q
that doesn’t vanish on Hm. If A1, . . . , Am are the polynomials closest to a1, . . . , am respectively, then by
Lemma 4.9 we get Q(~x) 6=

∑
iAi(~x) · gH(xi) and Q has degree at most d in each variable. Thus, the two

30

polynomials agree on ≤ dm points so the acceptance probability of Verifier is ≤ (m + 1)δ +
(

d
|S|

)m
as

claimed.

5 Quasilinear reductions of NTIME(n) to ALGEBRAIC-CSP

In this section we show the completeness of ALGEBRAIC-CSP for NTIME classes, thereby proving
Theorem 3.7 (recalled below). We also show how to modify this proof to get a proof of Theorem 3.10,
which shows the completeness of PAIR-ALGEBRAIC-CSP for PAIR-NTIME classes under systematic
reductions.

Theorem (3.7, restated). There exist integers k, d such that for any proper complexity function t : N+ →
N+ and L ∈ NTIME(t(n)) the following holds.

1. L is reducible to ALGEBRAIC-CSPk,d in time poly t(n).

2. An instance of L of size n is reduced to an instance of ALGEBRAIC-CSPk,d over field GF(2`) of
size 2` ≤ t(n) polylog t(n) and characteristic 2, where 100(kd + 1)(|H| − 1) < 2` ≤ 200(kd +
1)(|H| − 1).

5.1 Warmup — quadratic size reduction

To illustrate the ideas used in the proof of Theorem 3.7 we start with a simpler proof of a weaker version of it,
where the size blowup is quadratic, rather than quasilinear. Our starting point is the following NP-complete
language essentially from Cook’s Theorem [14]. (See also [36, Proof of Theorem 8.2]).

Definition 5.1 (Domino Tiling). A Domino Tiling instance over alphabet Σ is a tuple of constraints ψ =
{Ĉij : i, j ∈ {0, . . . , n − 2}}, where each constraint is a mapping Ĉij : Σ3 → {accept, reject}. An
instance is satisfiable iff there exists a mapping Â : {0, n2 − 1} → Σ such that for all i, j ∈ {0, . . . , n− 2}:

Ĉi,j(Â(in+ j), Â(in+ j + 1), Â((i+ 1)n+ j) = accept.

The language DOMINO-TILINGΣ is the set of all satisfiable instances over alphabet Σ.

Theorem 5.2 (DOMINO-TILING is NTIME-Complete). [14] There exists a finite size alphabet Σ such
that if L ∈ NTIME(t(n)) for a proper complexity function t : N+ → N+, then L is reducible to
DOMINO-TILINGΣ under quadratic size reductions.

Our warmup version of Theorem 3.7 is the following.

Theorem 5.3. For every finite alphabet Σ, the language DOMINO-TILINGΣ is reducible under linear sized
reductions to ALGEBRAIC-CSP4,|Σ| .

Notice that although the reduction from DOMINO-TILING to ALGEBRAIC-CSP is linear, the reduc-
tion from a language L ∈ NTIME(t(n)) to DOMINO-TILING incurs a quadratic size blowup.

Proof. We reduce an instance ψ of DOMINO-TILINGΣ to an instance φ = (F, {AFF1, . . . ,AFF4},H,C) as
in Definition 3.6. We will make crucial use of the fact that the constraint Ĉij depends on assignment entries
whose indices are linear functions of i and j.

Fix F to be any finite field satisfying 100n2 < |F| ≤ 200n2. Let ω be a generator of F∗. Associate Σ with
arbitrary elements of F. View an assignment to ψ as a mapping Â : {win+j : i, j ∈ {0, . . . , n − 1}} → Σ
where the domain and range of this mapping are subsets of F. The arithmetized instance φ will be satisfied

31

only by polynomials A that are a low-degree extension of an assignment Â that satisfies ψ. Thus, the
constraint polynomial C will ensure (i) A takes only values in Σ on I = {win+j : i, j ∈ {0, . . . , n − 1}},
and (ii) the evaluation of A on I produces an assignment Â that satisfies ψ. Details follow.

Define
AFF1(x) = x; AFF2(x) = x · ωn; AFF3(x) = x · ω,AFF4(x) = x · ω−n2

.

H = I ∪ ωn2 · I = {{win+j : i ∈ {0, . . . , 2n− 1}, j ∈ {0, . . . , n− 1}}.
Notice |I| = n2 and |H| = 2n2. We now define the constraint polynomial C.

Notice Ĉi,j can be interpreted as a function from Σ3 ⊂ F3 to {0, 1} ⊂ F and we associate 0 with accept
and 1 with reject. Arithmetize this constraint by a trivariate polynomial Ci,j : F3 → F of degree at most
|Σ| − 1 in each variable, satisfying

Ci,j(σ1, σ2, σ3) = Ĉi,j(σ1, σ2, σ3) for all σ1, σ2, σ3 ∈ Σ (3)

For ωin+j ∈ H , let Pi,j(x) be the unique polynomial of degree |H|−1 that evaluates to 1 on ωin+j and to 0
on every other element in H . Finally, let PΣ(x) =

∏
σ∈Σ(x− σ) be the unique monic nonzero polynomial

of degree |Σ| whose set of roots is precisely Σ. The constraint polynomial is

C(x, y1, . . . , y4) =
n−2∑
i,j=0

Pi,j(x) · Ci,j(y1, y2, y3) +
2n−1∑
i=n

n−1∑
j=0

Pi,j(x) · PΣ(y4) (4)

The polynomial Pi,j is often used to “bundle” together many constraints and verify all of them are
satisfied, forming the algebraic analogue of an AND gate. The second summand on the right hand side of
(4) corresponds to the set of constraints (i) mentioned above and the first summand corresponds to (ii).

Notice C has degree |H| − 1 in its first variable and degree |Σ| in the remaining variables. We conclude
φ is a legal instance of ALGEBRAIC-CSP4,|Σ|.

Completeness Suppose ψ ∈ DOMINO-TILINGΣ and let Â be a proof for ψ. Let A be the low-degree
extension of Â, i.e., A is a polynomial of degree ≤ n2 − 1 satisfying A(ωin+j) = Â(in + j) for all
i, j ∈ {0, . . . , n− 1}. We now prove for all x ∈ H ,

C(x,A(x), A(ωnx), A(ωx), A(ω−n2
x)) = 0.

If x = ωin+j ∈ H then by definition of Pi,j at most one summand of (4) can be nonzero. There are two
cases to consider.

• i ≤ n − 2: The summand to consider is Pi,j(ωin+j) · Ĉi,j(Â(ωin+j), Â(ωin+j+1), Â(ω(i+1)n+j)).
This summand vanishes because Â satisfies Ĉi,j .

• i ≥ n: The summand to consider is Pi,j(ωin+j) · PΣ(Â(ωin+j)) which vanishes because Â evaluates
to Σ on I .

We conclude φ ∈ ALGEBRAIC-CSP4,|Σ|.

Soundness Suppose φ ∈ ALGEBRAIC-CSP4,|Σ| and let A witness this. Let Â : {0, . . . , n2 − 1} be
defined by Â(in + j) = A(ωin+j). We claim Â satisfies ψ. First, notice the range of A on inputs from I
is Σ. If this isn’t the case and A(ωin+j) 6∈ Σ then PΣ(A(ωin+j)) 6= 0 so Equation (4) does not vanish on
x = ωn2+in+j ∈ H .

Since A evaluates to Σ on I and for σ1, σ2, σ3 ∈ Σ Equation (3) implies Ci,j(σ1, σ2, σ3) = 0 iff
Ĉ(σ1, σ2, σ3) = accept, we conclude Â satisfies ψ so ψ ∈ DOMINO-TILINGΣ. This completes our
proof.

32

5.2 Quasilinear size reduction

In this Section we prove Theorem 3.7 and show ALGEBRAIC-CSP is NTIME(t(n))-complete under
quasilinear size reductions. Our proof is similar to that of Polishchuk and Spielman [37], however our
ending point is a problem over univariate polynomials.

Overview The reason we chose DOMINO-TILING as our starting point in the previous Section was be-
cause this language was both NP-complete and additionally had “nice” structure, in the sense that each
constraint (Ĉi,j) depended on assignment entries whose indices are linear functions of the constraint index.
The problem with DOMINO-TILING is that the reduction from an arbitrary language in NTIME(t(n)) to it
results in instances of size t2(n). Thus, we are looking for an NP-complete language that has a similar “nice”
structure, yet whose blowup factor, when reducing from a language in NTIME(t(n)), is only quasilinear.

One such language is DE-BRUIJN COLORING first presented by Polishchuk and Spielman [37] based
on a construction of [5]. First we will describe this language and state its completeness. Then we will
arithmetize it and reduce it to ALGEBRAIC-CSP. The crucial observation in the arithmetization, given in
Proposition 5.10, is that the de Bruijn graph can be embedded in an “affine” graph over a finite field (see
Definition 5.8).

DE-BRUIJN COLORING Let σ : {0, 1}k → {0, 1}k be the cyclic permutation operator, i.e., for w ∈
{0, 1}k, w = (w1, . . . , wk) let σ(w) = (wk, w1, . . . , wk−1). Let u ⊕ v denote the bitwise xor of u, v ∈
{0, 1}k and let ei ∈ {0, 1}k be the sequence that is zero on all but the ith coordinate, where it is one.

Definition 5.4 (Wrapped De Bruijn Graph [39]). The k-dimensional Wrapped de Bruijn graph is the fol-
lowing directed graph Bk = (V,E). Let m be the smallest power of 2 satisfying m > 5k. The vertex set
is

V = {(w, i) : w ∈ {0, 1}k, i ∈ {0, . . . ,m− 1}}
Each vertex v = (w, i) : w ∈ {0, 1}k, i ∈ {0, . . . ,m− 1} has two neighbors:

N0(v) = (σ(w), (i+ 1 mod m)), N1(v) = ((σ(w))⊕ e1, (i+ 1 mod m))

Remark 5.5. The definition in [39, Section 4.3.2] is slightly different than the above, namely it fixes m =
5k + 1. However, Theorem 5.7 holds for any m > 5n as inspection of [39, Section 4.3] reveals.

Definition 5.6 (DE-BRUIJN COLORING). Let Σ̂ = {0, 1}4. The language DE-BRUIJN COLORING has as
its space of instances tuples of the form ψ = {Bk, Ĉ}, where Bk = (V,E) is a k-dimensional wrapped de
Bruijn graph, and Ĉ = {Ĉv : v ∈ V } is a set of constraints, where Ĉv : Σ̂3 → {accept, reject}.

An instance is in the language DE-BRUIJN COLORING iff there exists an assignment Â : V → Σ̂ such
that for all v ∈ V we have Ĉv(Â(v), Â(N0(v)), Â(N1(v)) = accept.

Theorem 5.7. DE-BRUIJN COLORING is NP-complete. Moreover, for any proper complexity function t :
N+ → N+, a language L ∈ NTIME(t(n)) is reducible in time poly t(n) to an instance ψ = {Bk, Ĉ} of
DE-BRUIJN COLORING where k = dlog(t(n) ·O(log2 t(n)))e.

Proof. L ∈ NTIME(t(n)) is reducible in time poly t(n) to an instance of CKTSAT of sizeO(t(n) log t(n))
[28, 15]. This instance is reducible in time poly t(n) to an instance of DE-BRUIJN COLORING of size
t(n) polylog t(n) [37]. (See [39, Section 4.3] for details).

To arithmetize an instance of DE-BRUIJN COLORING we embedBk in an affine graph as defined below.
Recall an injective graph homomorphism of G to H is an injective mapping f : V (G) → V (H) such that
if (u, v) ∈ E(G) then (f(u), f(v)) ∈ E(H). Further recall an affine map AFF : F → F is of the form
AFF(z) = az + b for a, b ∈ F.

33

Definition 5.8 (Affine Graph). Let A be a set of affine maps over a field F. The affine graph G(F,A) over
F, generated by A, is the directed graph over vertex set F, where each vertex v ∈ F is connected to AFF(v)
for all AFF ∈ A. Notice the outdegree of this graph is at most |A|.

We will use the following elementary properties of primitive polynomials (see [32, Section 3.1]).

Proposition 5.9. Let S(x) be a primitive polynomial of degree s over GF(2). Then, denoting ξi = xi(mod
S(x)), we have ξ1, . . . , ξ2s = ξ0 are distinct polynomials over GF(2) of degree less than s.

We now define a graph homomorphism injecting Bk to an affine graph of outdegree eight over GF(2`)
for any ` > k + log 5k + 2. Briefly, a vertex (w, i) ∈ Bk will be mapped to a polynomial p(w,i) ∈ GF(2`).
We will show that the polynomials corresponding to (w, i + 1) and (w ⊕ ei, i + 1) can be obtained by
applying two out of eight possible affine shifts to p(w,i). In what follows, addition and multiplication are in
GF(2`) and we identify {0, 1} with GF(2).

Proposition 5.10. Let m be the smallest power of 2 satisfying m > 5k. Let GF(2`) = GF(2)[x]/q(x)
where q(x) is an irreducible polynomial of degree `. Let S(x) be a primitive polynomial of degree s = logm
(notice s is an integer) and let ξi be as defined in Proposition 5.9. For ((w1, . . . , wk), i), wj ∈ {0, 1}, i ∈
[m], let

g(w) = xs ·
k∑

j=1

wjx
j ; h(i) = ξi ; f(w, i) = g(w) + h(i) (5)

Then, the mapping f : V (Bk) → GF(2`) is an injective homomorphism of Bk into the affine graph
G(GF(2`),A), where

A =
{

AFFb(α) , x · α+ b1S(x) + b2x
s+1 + b3x

s+k+1 : b = (b1, b2, b3) ∈ {0, 1}3
}

(6)

Proof. Our mapping is injective. Notice deg(h(i)) < s for all i ∈ [m], whereas the minimal degree of a
nonzero term of g(w) is s + 1. Thus, f(w, i) = f(w′, i′) iff g(w) = g(w′) and h(i) = h(i′). The former
happens by definition iff w = w′ and the latter happens iff i = i′ because Proposition 5.9 implies ξi 6= ξi′

for all i 6= i′ ∈ [m].
To prove f is a homomorphism, we need to show that if ((w, i), (w′, (i+1 mod m))) is an edge ofBk,m

then f(w′, (i+1 mod m)) = AFFb(f(w, i)) for some b ∈ {0, 1}3. There are eight cases to consider. Recall
w′ is either σ(w) or (σ(w))⊕ e1. Notice ` > k+ s+ 1 so for all w ∈ {0, 1}k we have x · g(w) mod (q(x))
is equal to x · g(w) as polynomials over GF(2). By definition of g we get

g(σ(w)) =
{
x · g(w) wk = 0
x · g(w) + xs+k+1 + xs+1 wk = 1

Similarly,

g((σ(w))⊕ e1) =
{
x · g(w) + xs+1 wk = 0
x · g(w) + xs+k+1 wk = 1

Finally, by definition of h we get

h(i+ 1 mod m) =
{
x · h(i) deg(h(i)) < s− 1
x · h(i) + S(x) deg(h(i)) = s− 1

Our claim follows from the definition of AFFb and the previous equations.

34

Proof of Theorem 3.7: We prove Theorem 3.7 for k = 10 and d = |Σ̂| = 16 where Σ̂ is from Definition 5.6.
By Theorem 5.7 it suffices to show a polynomial time reduction sending an instance ψ = {Bk, Ĉ} of
DE-BRUIJN COLORING to an instance of ALGEBRAIC-CSP over a field of size 2k · poly k. We reduce
in time poly 2` to an instance over GF(2`) for any ` > k + (log 5k) + 2 and the reduced instance is of the
form

φ = {GF(2`), {AFF′,AFF′′} ∪ A,H,C(x, y0, y1, z000, . . . , z111)},

where AFF′(x) = x, AFF′′(x) = ζ − x (for ζ to be defined later) and A is as in Equation (6).
Embed Σ̂ in GF(2`) arbitrarily and associate accept with 0 and reject with 1. As in the proof

of Theorem 5.3, we view the constraint Ĉv as a mapping from Σ̂ ⊂ GF(2`) to {0, 1}. Recall Proposi-
tion 5.10 showed V (Bk) can be embedded in G(GF(2`),A) via the embedding f from (5). Notice the
outdegree of G(GF(2`),A) is greater than the outdegree of Bk, thus when arithmetizing Ĉv we must take
into account which of the eight neighbors of f(v) in G(GF(2`),A) are maps of the neighbors of v in
Bk. Let b0(v), b1(v) ∈ {0, 1}3 denote the two relevant neighbors of f(v) in G(GF(2`),A) satisfying
f(N0(v)) = AFFb0(v)(f(v)) and f(N1(v)) = AFFb1(v)(f(v)). Let Cv(y, zb0 , zb1) be the trivariate polyno-
mial of degree at most |Σ̂| − 1 in each variable, agreeing with Ĉv on inputs in Σ̂3. Let I = {f(v) : v ∈ V }.
Let ζ ∈ GF(2`) satisfy (ζ + I) ∩ I = ∅, where ζ + I = {ζ + ξ : ξ ∈ I} and set H = I ∪ (ζ + I). Such ζ
exists because viewing elements of GF(2`) as polynomials over GF(2) modulo an irreducible polynomial
of degree `, all elements in I have degree at most k+s. Now, let Ph(x) be the polynomial of degree |H|−1
that is 1 when x = h and 0 for all x = h′ ∈ H,h′ 6= h. Finally, let PΣ̂(y) be the nonzero polynomial of
degree |Σ̂| whose roots are precisely the elements of Σ̂. We are ready to define the constraint polynomial of
φ:

C(x, y0, y1, z000, . . . , z111) =
∑
v∈I

Pv(x) · Cv(y0, zb0(v), zb1(v)) +
∑

h∈H\I

Ph(x) · PΣ̂(y1) (7)

The second summand on the right hand side checks that all vertices receive colors in Σ̂ and the first summand
checks that all coloring constraints are satisfied. The polynomials Pv, Ph are used to “bundle” all constraints
into one polynomial.

Notice degx(C) ≤ |H| − 1 and the degree in the remaining variables is at most |Σ̂|. Thus, φ is a legal
instance of ALGEBRAIC-CSPk,d.

Completeness Suppose ψ ∈ DE-BRUIJN COLORING and let Â : V → Σ̂ witness this. Let A be the
polynomial of degree ≤ |V | − 1 satisfying A(f(v)) = Â(v) for all v ∈ V . We claim A satisfies φ. We need
to show for all x ∈ H

C (x,A(x), A(ζ − x), A(AFF000(x)), . . . , A(AFF111(x)))) = 0

As in the proof of Theorem 5.3, when x ∈ H at most one summand of Equation (7) may be nonzero, by
definition of Pv. We split the proof into cases.

• x ∈ I: Let v = x. The summand to consider is Pv(v) · Cv(A(v), A(AFFb0(v)(v)), A(AFFb1(v)(v))),
which vanishes because Ĉ(Â(v), Â(N0(v)), Â(N1(v)) = accept, f(N0(v)) = AFFb0(v)(f(v)) and
f(N1(v)) = AFFb1(v)(f(v)).

• x ∈ H \ I: The summand to consider is Pv(x) · PΣ̂(A(ζ − x)). By construction of H and selection
of ζ we have ζ − x ∈ I . By construction A takes on values in Σ̂ on ζ − x, so the summand vanishes.

35

Soundness Suppose φ ∈ ALGEBRAIC-CSPk,d and let A witness this. Let Â : I → GF(2`) be the
evaluation of A on I . First we claim the range of Â is Σ̂. Indeed, assume A(x) 6∈ Σ̂ for x ∈ I . Let
x′ = ζ + x and notice x′ ∈ H \ I . Then the second summand of Equation (7) does not vanish on x′.
Since all other summands vanish by construction of Pv, we reach a contradiction. We conclude Â is a legal
assignment to ψ.

Next, we claim Â satisfies ψ. Consider the constraint Ĉv. Equation (7) holds for v and Pv′(v) =
0 for all v′ 6= v, v′ ∈ H , implying Cv(A(v), A(AFFb0(v)(v)), A(AFFb1(v)(v))) = 0. Recall from the
previous paragraph that A(v), A(AFFb0(v)(v)), A(AFFb1(v)(v)) ∈ Σ̂. By construction of Cv we conclude
Ĉv(Â(v), Â(N0(v)), Â(N1(v))) = accept. This completes our proof.

5.3 Systematic reduction to PAIR-ALGEBRAIC-CSP

We now show how to modify the reduction of the previous section to apply it to pair languages and get a
systematic reduction, thus proving Theorem 3.10.

Proof Sketch: Consider the sequence of reductions applied to an instance x of L and resulting in an instance
φ of ALGEBRAIC-CSP. First, we reduce x to an instance C of CKTSAT along the lines of [28, 15].
Inspection reveals this reduction is systematic. Indeed, the implicit input y is embedded into the inputs of C
and C accepts only inputs y ∈ Lx.

In the next step we reduce C to an instance ψ of DE-BRUIJN COLORING. Once again, inspection of
this reduction shows it is systematic [39, Section 4.3]. In particular, this latter reduction embeds all nodes
of C including its inputs in the first layer of the wrapped de Bruijn graph and each input node is mapped to
a unique vertex. By construction, a coloring of the resulting de Bruijn graph is legal only if the colors of the
vertices corresponding to inputs form an assignment satisfying C. Similarly, any assignment satisfying C
can be extended to a coloring satisfying the constraints of ψ.

Finally, consider the reduction from DE-BRUIJN COLORING to ALGEBRAIC-CSP. Notice each ver-
tex of the de Bruijn graph is mapped to a distinct element of F (Proposition 5.10). Additionally, by con-
struction we map the colors of the De Bruijn coloring problem to distinct elements of F. By construction, φ
is satisfied by A iff A is the low-degree extension of a coloring that satisfies ψ. We have seen that all steps
of our reduction are systematic, hence so is their concatenation. This completes our proof.

36

Part III

PCPPs for Reed-Solomon codes
6 PCPPs for Reed-Solomon codes over fields of characteristic 2

In this section we give a PCPP verifier for RS-codes, when the field is of characteristic two and the set of
evaluation points is a linear subspace of the field over GF(2), thereby proving Theorem 3.2 (restated below).

An overview of the proof appears in Section 6.1. This is followed by a formal description of the proof
of proximity and verifier in Section 6.2 and the analysis of its basic properties in Section 6.3. The analysis
of the soundness follows in Section 6.4. We conclude with a formal proof of Theorem 3.2 in Section 6.5.

Theorem (3.2, restated). Let PAIR-ADDITIVE-RS be the restriction of the language PAIR-RS to pairs
((GF(2`), L, d), p) where GF(2`) is the Galois field of size n = 2` (and characteristic 2) and L ⊆ F is
GF(2)-linear. Then,

PAIR-ADDITIVE-RS ∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(1),
distance HammingGF(2`)

.
Remark 6.1. For simplicity, we first prove the theorem for the special case of degree d = |L|/8− 1. Then
we show in Proposition 6.13 this implies the theorem holds for all degrees.

6.1 Sketch of proof of Theorem 3.2

At a high level, we attempt a reduction from the task of testing a univariate polynomial to the task of testing
a bivariate polynomial of significantly smaller degree. We then invoke an analysis of a “bivariate low-degree
test” by Polishchuk and Spielman [37], which reduces the task of testing bivariate polynomials back to the
task of testing univariate polynomials, of much smaller degree than the original. Recursing on this idea
leads to the full test. We note that crucial to our obtaining short PCPPs, is the evaluation of the bivariate
polynomial on a carefully selected, algebraically structured, subset of points. This set is very different from
the sets typically used in previous PCP constructions, e.g., in [5, 2, 17], which are product sets usually
consisting of the whole field.

We start by considering the polynomial P (z) of degree< n/8 evaluated on the linear space L ⊂ GF(2`)
of cardinality n, and address the task of “testing” it. Our starting point is that for any polynomial q(z) of
degree≈

√
n, we can define a bivariate polynomialQ(x, y) of degree≈

√
n in each variable, that “captures”

all the information of P . Specifically, we can reconstruct P from Q using the identity P (z) = Q(z, q(z)).

Proposition 6.2. Given any pair of polynomials P (z), q(z), there exists a unique bivariate polynomial
Q(x, y) with degx(Q) < deg(q) and degy(Q) = bdeg(P)/deg(q)c, such that P (z) = Q(z, q(z)).

Proof. We use division over the ring of bivariate polynomials F[z, y] (see [16] for more details). Fix the
lexicographic ordering on terms where z > y, i.e., terms are ordered first by their degree in z and then by
their degree in y. Divide P (z) by (y − q(z)), obtaining:

P (z) = Q′(z, y) · (y − q(z)) +Q(z, y) (8)

By the basic properties of division in this ring Q is uniquely defined, and degy(Q) = bdeg(P)/deg(q)c
and degz(Q) < deg(q). To complete the proof set y = q(z) and notice the first summand on the right hand
side of (8) vanishes.

37

The presentation of P of degree ≈ n as a bivariate polynomial Q of individual degree ≈
√
n is useful,

because testing of bivariate polynomials reduces to testing of univariate polynomials of roughly the same
degree using well known “low-degree tests” and their analysis. This leads us to the hope that Q might
provide a good “proof” that P is of low degree. More to the point, to prove that a table of evaluations of P
corresponds to the evaluations of a polynomial of low degree, the prover can provide a table of evaluations
of a bivariate polynomialQ, prove thatQ has degree

√
n in each variable, and then prove thatQ is consistent

with the table of evaluations of P .
To completely describe the above approach, all we need to do is describe which set of points we will

specify Q on, so as to achieve both tasks: (i) verifying that Q has low degree, and (ii) that it is consistent
with P . However this leads to conflicting goals. To test that Q has low degree, using a bivariate verifier, we
need to know its values on some subset X × Y where X,Y ⊆ GF(2`). To make this efficient, we need to
make |X|, |Y | ≈

√
n. On the other hand to test its consistency with P , the natural approach is to ask for its

values on the set
T = {(z, q(z))|z ∈ L}.

Unfortunately the set T , which depends on the selection of q(z), is far from being of the form X × Y . For
starters, the projection of T onto its first coordinate has cardinality n while we would like this projection to
be of cardinality O(

√
n).

Our solution is to ask the prover to provide the evaluation on both sets of points. This leads to a problem
of checking consistency between the two sets and to do so we pick q(z) in a way that will ensure T to be
compatible with X × Y . In particular, we choose q(z) to be a special linearized polynomial as defined in
[32, Chapter 3, Section 4]. A polynomial q(z) over GF(2`) is said to be linearized if q(x+y) = q(x)+q(y)
for every x, y ∈ GF(2`). A linearized polynomial defines a linear map over GF(2`) and we abuse notation
and use q to denote this map. For S ⊂ GF(2`), let q(S) = {q(s) : s ∈ S}. The linearized polynomial we
use and its useful properties are listed below.

Proposition 6.3. For L a linear subspace of GF(2`) that is a direct sum of the linear spaces L0, L1, let

q(z) = qL0(z) ,
∏

α∈L0

(z − α)

• The polynomial q(z) is linearized.

• The kernel of (the linear map defined by) q is L0.

• q(L) = q(L1) and q(L1) is a linear space of dimension dim(L1).

• q is a one to one map from L1 to q(L1), i.e., for β 6= β′ we get q(β) 6= q(β′).

• q is a |L0| to one map on L, where for β ∈ L1, the affine space L0 + β , {α + β : α ∈ L0} is
mapped to q(β).

Proof. The first part is proved by induction on the dimension of L. The base case (dimension zero) is easy,
as qL0(z) = z is clearly linearized. For the inductive step, let L0 = span(L̂, α) where dim(L̂) = k − 1
and α ∈ GF(2`). Let q̂(z) = qL̂(z) be the linearized polynomial whose set of roots is L̂. Clearly, qL0(z) =
q̂(z) · q̂(α+ z) because addition and subtraction are the same in fields of characteristic 2. So

qL0(x+ y) = q̂(x+ y) · q̂(α+ x+ y) = q̂2(x) + q̂2(y) + q̂(α)(q̂(x) + q̂(y))
= q̂(x) · q̂(α+ x) + q̂(y) · q̂(α+ y) = qL0(x) + qL0(y)

We conclude qL0 is a linearized polynomial. The second part follows because deg(q) = |L0| and the
elements of L0 are all roots of q.

38

The last three parts follow via basic linear algebra from our previous assertions that q defines a linear
map with kernel L0.

q(L1)

y

x

L0, L0 + β1, . . . , L0 + β7

T

Figure 1: Here F =
GF(26) is the field
with 64 elements and
q is a linearized poly-
nomial of degree 8.
We plot the set of
points T ⊂ F ×
F defined by T =
{(z, q(z)) : z ∈
F}. Notice T can be
partitioned into eight
product sets, each set
being a product of an
affine shift of L0 and
some β ∈ L1.

With Proposition 6.3 in hand, we return to the task of providing a proof of proximity for the evaluation
of a polynomial on the set of points L. Write L as the direct sum of L0, L1, with dim(L0) = bdim(L)/2c
and dim(L1) = ddim(L)/2e (so |L0|, |L1| ≈

√
|L|), and take q(z) = qL0(z) as described above. The

last part of Proposition 6.3 implies q partitions T into the disjoint union of |L1| lines, where each line is a
product of a set of size ≈

√
|L| with a singleton set (See Figure 1):

T =
⋃

β∈L1

{{L0 + β} × {q(β)}}

This suggests requesting the evaluation of Q on the set of points (L0 × q(L1)) ∪ T , the cardinality of
which is≤ 2n. With such an evaluation in hand we can use the subset L0×q(L1) to perform a bivariate low-
degree test, by testing proximity to the RS-code of degree ≈

√
n of a random row/column of this product

set. The consistency of Q’s evaluation on the product set L0×q(L1) and on the set T can also be addressed,
by reading Q(x, q(β)) for all points x ∈ L0 ∪ (L0 + β) for β ∈ L1. This consistency is precisely what is
needed to connect the evaluation of P on the set L, that is isomorphic to T , to the evaluation of the bivariate
Q on the product set L0 × q(L1). We have reduced our original problem of size n to O(

√
n) identical

problems of size O(
√
n).

Our description so far leads to a proof of proximity of size O(n) that can be tested by making O(
√
n)

queries. However, the robustness of our tests can be used to decrease the query complexity further, at the
price of increasing the proof length. Informally, robustness means the following. If a function f : (L0 ×
q(L1)) ∪ T → GF(2`) is δ-far from being a low-degree bivariate polynomial, then the expected distance
of a random row/column of f from a low-degree univariate polynomial is Ω(δ). To apply recursion, notice
all of our tests verify proximity to Reed-Solomon codewords evaluated on linear subspaces of GF(2`). To
see this notice L0 and q(L1) are linear spaces and so is L0 ∪ (L0 + β) = span(L0, β). Using recursion

39

x

y
T

S

, Lβ7

q(L1)

L00, Lβ1 = L
0
0 ∪ (L

0
0 + β1), . . .

Figure 2: The proof
of proximity for P is
the evaluation of Q
on the set of points
denoted S. Notice
it has a large subset
that is the product set
L′0× q(L1), allowing
for bivariate low de-
gree testing. Addi-
tionally, S∪T can be
partitioned into eight
rows and each row is
a linear space.

we conclude that to test proximity to the RS-code of size n it suffices to test proximity to RS-codes of size
≈
√
n which can be done by testing proximity to the RS-code of size ≈ n1/4, etc. Applying this recursion

a log log n number of times reduces the degree to constant and gives us our proofs of length n · polylog n.

From Intuition to Proof Our rigorous analysis follows the intuition laid above, with one technical differ-
ence regarding the degree of the bivariate polynomial Q. To use the bivariate low-degree test on Q, we need
its evaluation on a product set of points X × Y where |X| � degx(Q) and |Y | � degy(Q). In our case
Proposition 6.2 only gives us |X| > degx(Q). As to y, we get |Y | > 8 degy(Q), which is sufficient. So we
need to enlarge X . This is done by taking a linear space L′0 ⊃ L0 of dimension dim(L0) + 2 and asking for
the evaluation of Q on (L′0× q(L1))∪ T . This causes a new problem, because L′0 ∪ (L0 + β) is not a linear
space, as dim(L′0) > dim(L0). This problem is fixed by asking for the evaluation of Q on the linear space
L′0 ∪ (L′0 + β). The resulting set of points is described in Figure 2.

6.2 The RS proof of proximity and its associated verifier

First we define the structure of the proof of proximity for RS(GF(2`), L, d) and then describe the verifiers
operation. As explained in the previous section, the proof for a purported low-degree polynomial p : L →
GF(2`) is an evaluation of a low-degree bivariate polynomial related to p on a carefully chosen subset of
GF(2`) × GF(2`), concatenated with a sequence of subproofs for RS-codes of smaller size. To formally
define the proof of proximity we use the following notations throughout this section.

Given basis (b1, . . . , bk) for L, let

L0 , span(b1, . . . , bbk/2c); L′0 , span(b1, . . . , bbk/2c+2); L1 , span(bbk/2c+1, . . . , bk) (9)

Fix q(x) , qL0(x). Notice L′0 ∩ L1 = span(bbk/2c+1, bbk/2c+2) and in particular this intersection is

40

nonempty. For β ∈ L1 let

Lβ ,

{
span(L′0, bbk/2c+3) β ∈ L′0
span(L′0, β) otherwise

(10)

A partial bivariate function f over GF(2`) is a function with a partial domain f : S → GF(2`) where
S ⊂ GF(2`) × GF(2`). The β-row of S is the set Rβ = {α : (α, β) ∈ S} (this set might be empty). The
restriction of f to the β-row is the univariate function f |↔β : Rβ → GF(2`) that agrees with f on its inputs,
i.e., f |↔β (α) = f(α, β). Similarly, the α-column of S is Cα = {β : (α, β) ∈ S}, and the restriction of f to

it is f |lα : Cα → GF(2`) defined by f |lα(β) = f(α, β).

Definition 6.4 (Reed-Solomon proof of proximity). The proof of proximity for a purported codeword of the
Reed Solomon code RS(GF(2`), L, n/8 − 1) is defined by induction on k = dim(L). If k ≤ 6 then it is
empty. Otherwise, the proof is a pair π = {f,Π} where f is a partial bivariate function over partial domain
S ⊂ GF(2`)×GF(2`) defined next and Π is a sequence of proofs of proximity for RS-codes over (smaller)
linear spaces.

Partial domain: Let

T ,
⋃

β∈L1

{{L0 + β} × {q(β)}} ; S ,

 ⋃
β∈L1

{Lβ × {q(β)}}

 \ T (11)

Auxiliary proofs: For each β ∈ L1, the sequence of proofs Π has a unique subproof for an RS-codeword
over Lβ of degree |Lβ |/8 − 1, denoted π↔β . For each α ∈ L′0, the sequence Π includes a unique

subproof for an RS-codeword over q(L1) of degree |q(L1)|/8− 1, denoted πlα. Formally,

Π , {π↔β : β ∈ L1} ∪ {πlα : α ∈ L′0}

The next proposition shows S ∪ T can be decomposed into rows and columns that are linear spaces (of
size ≈

√
|L|). This gives some explanation of our peculiar choice of the set S as described in the previous

Section and shown in Figure 2.

Proposition 6.5. The set S ∪T is the disjoint union of q(β)-rows, for β ∈ L1. The q(β)-row of S ∪T is the
linear space Lβ . Similarly, for every α ∈ L′0, the α-column of S ∪ T is the linear space q(L1).

Proof. By construction of S, to prove the claim about the rows of S∪T it suffices to show that the q(β)-row
of T is a subset of Lβ . By the last part of Proposition 6.3 this row is

{γ ∈ L : q(γ) = q(β)} = q(−1)(q(β)) ∩ L = L0 + β ⊂ Lβ.

The inclusion above follows by definition from Equation (10). This completes the proof of the claim about
the rows.

Now consider the α-column of S ∪T for α ∈ L′0. By Equation (10) we have L′0 ⊂ Lβ for every β ∈ L1

and Lβ × {q(β)} ⊂ S, so (α, q(β)) ∈ S implying q(L1) is a subset of the α-column. However, by the first
part of our proposition, the only nonempty rows of S ∪ T are the q(β)-rows. So we conclude the α-column
of S ∪ T is precisely q(L1).

Definition 6.6 (RS-verifier). The verifier for proximity to RS(GF(2`), L, d = |L|/8 − 1) is denoted
VRS

(p,π)(GF(2`), L, d). It receives as explicit inputs the description of the field GF(2`), a basis (b1, . . . , bk)
for L and the degree parameter d = |L|/8− 1. The implicit input of the verifier is the purported codeword
p : L→ GF(2`) and its purported proof is π = {f,Π} as described in Definition 6.4. The verifier operates
as follows.

41

Base case (|L| ≤ 64) Verifier reads p in entirety and accepts iff p ∈ RS(GF(2`), L, |L|/8− 1).

Recursion (|L| > 64) Let p̂ : T → GF(2`) be the partial bivariate function corresponding to p,

p̂(γ, q(γ)) = p(γ), for γ ∈ L (12)

Notice p̂ is well defined because the mapping γ 7→ (γ, q(γ)) is a bijection from L to T . Let

f̂ : S ∪ T → GF(2`) (13)

be the function that agrees with f on S and with p̂ on T . Notice f̂ is well defined because S ∩ T = ∅.
Verifier sets L0 = span(b1, . . . , bbk/2c), computes the coefficients of the polynomial q(x) = qL0(x)
and performs one of the following two tests with probability half each.

Row Test Pick β ∈ L1 at random. Let Lβ be as in Equation (10). Invoke

VRS
(f̂ |↔

q(β)
,π↔β)(GF(2`), Lβ , |Lβ|/8− 1).

Column Test Pick α ∈ L′0 at random. Let L1 be as in Equation (9). Compute a basis for q(L1) and
invoke

VRS
(f̂ |lα,π

l
α)(GF(2`), q(L1), |q(L1)|/8− 1).

Remark 6.7. The “inner” verifiers, i.e., the row and column tests, restrict their attention to special subsets
of p and π. To simplify our analysis, we assume these special subsets are copied to an “inner oracle” before
invocation of an inner test. This assumption can be made without loss of generality because the verifier is
nonadaptive, i.e., its operation does not depend on the implicit input given to it. Furthermore, the indices of
the queries needed at the bottom of the recursion can be computed efficiently given the random coins used
through the recursion as can be verified by inspection of the proof of Proposition 6.8).

The following subsections analyze the performance of VRS. Specifically, the next subsection analyzes
the simple properties including the running time, query complexity, randomness/size complexity, and the
completeness. The soundness analysis is addressed in Section 6.4.

6.3 Basic properties

Proposition 6.8. VRS
(p,π)(GF(2`), L, |L|/8− 1) makes at most 64 queries into p and π. It tosses at most

k + O(log k) random coins (recall k = dim(L)) and runs in time poly `. The size of the proof π accessed
by VRS

(p,π)(GF(2`), L, |L|/8− 1) is 2k · poly k = |L| · polylog |L|.

Proof. The query complexity is easy to verify. In the base case, the verifier reads 64 field elements. In the
inductive case the verifier invokes VRS which by induction makes 64 queries.

Regarding randomness complexity, in the base case the verifier tosses zero coins. In the inductive case,
the verifier tosses one coin to determine which test to perform — row or column. It then tosses k/2 +O(1)
coins to determine the inner call, and then (k/2 +O(1)) +O(log(k/2 +O(1))) coins in the recursive call.
Adding up, we get a total of k+O(log k) coins. The size of the proof can be similarly analyzed or bounded
by 2randomness to get the same bound.

We now analyze the running time, which is the sum of two processes.

The preprocessing time This is the time required by the outer verifier VRS
(p,π)[GF(2`), L, |L|/8 − 1]

to prepare the explicit input for invoking an inner verifier on a row/column. Notice q(x) can be
computed and evaluated in polynomial time in |L0| and ` and so can the bases for L0, L

′
0, Lβ, L1 and

q(L1). Thus, the preprocessing time is polynomial.

42

The index translation time Suppose the outer verifier conducts an inner row test of the form

VRS
(f̂ |↔

q(β)
,π↔β)[GF(2`), q(Lβ), |Lβ|/8− 1].

The case of a column test is analogous. A query to f̂ |↔q(β) by the inner verifier is indexed by an element

α ∈ Lβ . However, this query needs to be translated to a query to f̂ , which is a pair (α, β) ∈ S ∪ T .
This translation is easily seen to be efficient given α and β. Furthermore, translating a query to f̂ into
a query to f : S → F or p : T → F is also easy. If β = q(α) we query p(α) because (α, β) ∈ T and
otherwise we query f(α, β). This translation involves evaluating q(α) which can be done efficiently
as argued above.

We conclude that for each level of the recursion, the running time of the preprocessing and index transla-
tion is at most polynomial in |L| and `. Since there areO(log `) levels of recursion, we conclude the running
time is as stated, completing our proof.

Next we move to the completeness part of the proof.

Proposition 6.9 (Perfect Completeness). If p is the evaluation of a polynomial P of degree < |L|/8, then
there exists a proof that causes the RS-verifier to accept with probability one.

This part is straightforward given the intuition developed in the proof sketch of Theorem 3.2. If p is
indeed low degree, then there exists a proper low-degree bivariate polynomial Q that is consistent with it on
all rows. Looking at Figure 2 we argue that S is a union of linear spaces and the restriction of Q to each row
is low-degree and consistent with p. The formal proof follows.

Proof. To prove the proposition inductively, it suffices to construct f : S → GF(2`) so that the function f̂ :
S∪T → GF(2`) is such that for every β ∈ L1, the q(β)-row of f̂ is a codeword of RS(GF(2`), Lβ, |Lβ |/8−
1), and for every α ∈ L′0, the α-column of f̂ is a codeword of RS(GF(2`), L1, |L1|/8− 1).

Using Proposition 6.2 we get P (x) = Q(x, q(x)) for q(x) = qL0(x), where

degx(Q) < |L0| and degy(Q) = bdeg(P)/deg(q)c < (|L|/8)/|L0| = |L1|/8 (14)

Set f(α, β′) = Q(α, β′) for every (α, β′) ∈ S. If (α, β′) ∈ T we have β′ = q(α), so

p̂(α, β′) = p̂(α, q(α)) = p(α) = P (α) = Q(α, q(α)) = Q(α, β′)

Thus, f̂ is the evaluation of Q on S ∪ T . Consider the q(β)-row of f̂ for β ∈ L1. By Proposition 6.5 the
q(β)-row of S ∪ T is Lβ . By Equation (10) we have |Lβ | = 8 · |L0| because dim(Lβ) = dim(L0) + 3.
By Equation (14) we have deg(Q(x, q(β)) ≤ degx(Q) < |L0|. We conclude the q(β)-row of f̂ is indeed a
member of RS(GF(2`), Lβ, |Lβ |/8− 1).

Similarly, by Proposition 6.5 the α-column of f̂ is q(L1). By Proposition 6.3 dim(q(L1)) = dim(L1)
so |q(L1)| = |L1|. By construction the α-column of f̂ is the evaluation of Q(α, y) on q(L1). Equation (14)
completes our proof, because deg(Q(α, y)) ≤ degy(Q) < |L1|/8.

6.4 Soundness

Our analysis of the soundness is by induction. Assume VRS accepts implicit input p and proof π =
{f,Π} with high probability. Let p̂, f̂ be the partial bivariate functions as defined in Equation (12) and
Equation (13), respectively. We argue by induction that for most α ∈ L′0 and β ∈ L1, the α-column and
q(β)-row of f̂ are close to polynomials of degree roughly

√
|L|. The analysis of Polishchuk and Spielman

43

implies that f̂ restricted to the product set L′0×q(L1) is very close to some low-degree bivariate polynomial.
Then we claim that p̂ is close to an evaluation of the same polynomial on the set of points T . This implies p
is close to a degree-|L|/8 univariate polynomial, completing the analysis. Formally,

Lemma 6.10 (Soundness). There exists constant c ≥ 1 such that for every integer k and ε, if

Pr[VRS
(p,π)(GF(2`), span(b1, . . . , bk), 2k/8− 1) = reject] ≤ ε,

Then p is
(
clog k · ε

)
-close to RS(GF(2`), span(b1, . . . , bk), 2k/8− 1).

To prove the Lemma, we need a version of the analysis of Polishchuk and Spielman of the bivariate test.
The following lemma is directly implied by the main theorem in [37]. We defer its proof to Section 6.6
below.

Definition 6.11. For set S ⊆ F × F, partial bivariate function f : S → F, and nonnegative integers d1, d2

define δ(d1,d2)(f) to be the fractional distance of f from a polynomial of degree d1 in its first variable and
d2 in its second variable. Formally,

δ(d1,d2)(f) , min
{Q:S→F| degx(Q)≤d1,degy(Q)≤d2}

{δ(f,Q)}.

Let δ(d,∗)(f) and δ(∗,d)(f) denote the fractional distances when the degree in one of the variables is unre-
stricted.

Lemma 6.12 (Bivariate Test on Product Set). [37] There exists a universal constant c0 ≥ 1 such that the
following holds. For every A,B ⊆ F and integers d1 ≤ |A|/4, d2 ≤ |B|/8 and function f : A×B → F, it
is the case that

δ(d1,d2)(f) ≤ c0 ·
(
δ(d1,∗)(f) + δ(∗,d2)(f)

)
.

Proof of Lemma 6.10: By induction on k. Let L = span(b1, . . . , bk) and let L0, L
′
0, L1, q be as defined in

the beginning of Section 6.2. We use the following constants, where ĉ is a parameter to be minimized and
c0 is the universal constant from Lemma 6.12.

c1 , ĉlog(7/6)/2; c2 ,
c1
3c0

; c3 ,
3c1

16(3c0 + 2)

We fix c to be the minimal ĉ such that c3 ≥ 2 and 1
c3

+ 16
c1
≤ 1. Notice c1, c2, c3 are strictly increasing

functions of ĉ so c is well defined (we do not attempt to minimize it).
The base case k ≤ 6 is immediate. For the inductive case we assume the lemma is true by induction

for smaller dimension k′ and in particular for the recursive calls of the RS verifier and now prove it for
dimension k ≥ 7.

Let π = (f,Π) be as in Definition 6.4 and assume (p, π) is rejected by the verifier with probability at
most ε. We assume without loss of generality ε ≤ c− log k for otherwise there is nothing to prove. We show
below that p is within distance clog k ·ε of some RS-codeword. In what follows let p̂, f̂ be the partial bivariate
functions defined in Equation (12) and Equation (13), respectively.

Step 1: Restricting the bivariate function f̂ to a product set L′0×q(L1): Denote by ε(α) the probability
that the inner verifier rejects f̂ |lα (and its proof), and similarly let ε(β) be the probability verifier rejects
f̂ |↔q(β). Let εcol be the expectation of ε(α) over random α ∈ L′0 and let εrow be the similar expectation of
ε(β) over random β ∈ L1. By definition of the verifier, we have ε = 1

2(εrow + εcol). Since these quantities
are nonnegative we get εrow, εcol ≤ 2ε.

44

Let d1 = |L0| − 1 and recall |Lβ| = 8|L0| for every β ∈ L1. this follows from Equations (9), (10).
First we bound δ(d1,∗)(f̂). This quantity is the expectation over random β ∈ L1 of the fractional distance of
f̂ |↔q(β) from a degree-d1 univariate polynomial. Let δ(d1)(f̂ |↔q(β)) denote this distance. We get

δ(d1,∗)(f̂) = Eβ∈L1

[
δ(d1)(f̂ |↔q(β))

]
≤ Eβ∈L1

[
ε(β) · clog(dim(Lβ))

]
≤ εrow · clog(bk/2c+3) ≤ 2ε · clog

6k
7 =

ε

c1
· clog k (15)

The first inequality follows by induction, the second follows because dim(Lβ) = bk/2c + 3 for every
β ∈ L1, the third holds for k ≥ 7 and the last equality is true for our setting of c1.

Let f ′ be the restriction of f̂ to L′0 × q(L1), i.e., f ′ : L′0 × q(L1) → GF(2`) is the function that agrees
with f̂ on its domain. Since |L′0| = |Lβ |/2 we get from (15)

δ(d1,∗)(f ′) ≤ 2ε
c1
· clog k (16)

Let d2 = |L1|/8− 1. By analogy to (15), we get by induction

δ(∗,d2)(f ′) ≤ εcol · clog(bk/2c+1) ≤ ε

c1
· clog k (17)

The conditions of Lemma 6.12 hold with respect to f ′ and A = L′0, B = q(L1), because d1 ≤ |L′0|/4
and d2 ≤ |q(L1)|/8. Thus, from Equations (16), (17), Lemma 6.12 and our setting of c2, we conclude that
f ′ is “close” to an evaluation of a low degree bivariate polynomial:

δ(d1,d2)(f ′) ≤ ε

c2
· clog k (18)

Step 2: Extending the analysis to the bivariate function p̂: Let Q be the degree-(d1, d2) polynomial
closest to f ′. We wish to bound the probability over random (α, β̃) ∈ T that p̂(α, β̃) 6= Q(α, β̃). Let
β̃ = q(β) and notice β̃ ∈ q(L1). This follows from Proposition 6.3. Call β̃ good if the polynomial closest
to f̂ |↔

β̃
is Q(x, β̃), and otherwise it is bad. We bound the probability as follows,

Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)

]
≤ Pr

β̃∈q(L1)

[
β̃ is bad

]
+ Pr

(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)|β̃ is good

]
(19)

• First summand of (19): We start by bounding the probability of bad β̃. Let f̂ |↔
β̃

′
be the restriction

of f̂ |↔
β̃

to domain L′0 and let Qβ̃(x) be the degree-d1 polynomial closest to f̂ |↔
β̃

. If β̃ is bad, i.e.,

Qβ̃(x) 6= Q(x, β̃), then f̂ |↔
β̃

′
is either (3/8)-far from Q(x, β̃) or (3/8)-far from Qβ̃(x). This is

because Qβ̃(x) and Q(x, β̃) can agree on at most |L′0|/4 locations in L′0. Thus, by Equations (16),
(18), we get

Pr
β̃∈q(L1)

[
β̃ is bad

]
≤ 2 · 8

3
·max

{
1
c2
,

2
c1

}
· ε · clog k ≤ ε

c3
· clog k (20)

The last inequality follows by bounding the maximum of two nonnegative numbers by their sum and
holds for our setting of c1, c2, c3.

45

• Second summand of (19): Let Tgood = {(α, β̃) ∈ T : β̃ is good}. Since p̂ is a function on a
subdomain of f̂ we can bound the second summand in (19) as follows:

Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)|β̃ is good

]
≤ Pr

(α,β̃)∈S

[
f̂(α, β̃) 6= Q(α, β̃)

]
· |S|
|Tgood|

(21)

We already showed in Equation (15) that PrS [f̂ 6= Q] is relatively small, so we only need to argue
that |Tgood| large relative to |S|. By Proposition 6.3 the β̃-row of T is an affine shift of L0 by β̃. From
the proof of the first part of Proposition 6.5 we conclude the β̃-row of T is 1/8 fraction subset of the
β̃-row of S, so Equation (20) implies

|Tgood|/|S| =
1
8
· (1− Pr[β̃ is bad]) ≥ 1/16 (22)

The last inequality follows from Equation (20) by our assumption ε · clog k ≤ 1 and because we set
c3 ≥ 2.

Summing up from Equations (20), (21) and (22) we get

Pr
(α,β̃)∈T

[
p̂(α, β̃) 6= Q(α, β̃)

]
≤
(

1
c3

+
16
c1

)
ε · clog k ≤ ε · clog k (23)

The last inequality holds because we set c1 and c3 such that 1
c3

+ 16
c1
≤ 1.

Step 3: From bivariate p̂ to univariate p: Let P (x) = Q(x, q(x)). Notice deg(P) ≤ |L|/8 − 1. This
follows from the degree of Q and deg(q) = |L0| = |L′0|/4. Using (23) and the definition T = {(γ, q(γ)) :
γ ∈ L} we conclude that for all but a (ε · clog k)-fraction of L we have

p(γ) = p̂(γ, q(γ)) = Q(γ, q(γ)) = P (γ)

The fractional distance of p from a degree-|L|/8− 1 polynomial is as claimed, completing our proof.

6.5 Proof of Theorem 3.2

In this subsection we complete the formal proof of Theorem 3.2. First consider the case of degree precisely
|L|/8 − 1, dealt with in the preceding sections. In particular, the proof of proximity and its associated
verifier are described in Section 6.2. The query complexity, randomness and proof length are argued in
Proposition 6.8. Perfect completeness is asserted by Proposition 6.9. Soundness is analyzed in Lemma 6.10.
This completes the proof of the special case. The following Proposition 6.13 generalizes the degree and
completes the full proof of Theorem 3.2.

In what follows we say a soundness function s : [0, 1]× N+ → [0, 1] is monotone if it increases with δ,
i.e., for all n we have δ ≥ δ′ ⇒ s(δ, n) ≥ s(δ′, n).

Proposition 6.13. Let L be either of the pair-languages PAIR-ADDITIVE-RS, PAIR-SMOOTH-RS
and let L 1

8
be the restriction of L to explicit pairs of the form (F, S, |S|/8− 1). Suppose

L 1
8
∈ Strong-PCPPs(δ,n)

 randomness r(n),
query q(n),
distance HammingF

,
46

where s(δ, n) is monotone and r(n) ≥ log n. Then for s′(δ, n) = min{δ/2, s(δ/64, n)},

L ∈ Strong-PCPPs′(δ,n)

 randomness r(n),
query O(q(n)),
distance HammingF

.
Proof. Let (x, p) be an instance to L with explicit input x = (F, S, d′). Denote d = |S|

8 − 1 and let V 1
8

denote the verifier for L 1
8
. We start with the case of d′ < d. On explicit input (F, S, d′ < d) the verifier

expects a (concatenation of) two subproofs for RS(F, S, d), denoted π1, π2. Verifier operates as follows:

• Toss r(n) coins. Let R denote the random string.

• Invoke V 1
8

using randomness R on explicit input (F, S, d), implicit input p and proof π1.

• Fix Q(z) , zd−d′ and set p′(z) = p(z) · Q(z). Invoke V 1
8

using randomness R on explicit input
(F, S, d), implicit input p′ and proof π2.

Notice querying p′(α) can be simulated by querying p(α) and multiplying the answer byQ(α). Additionally
evaluatingQ(α) can be done in time polylog |F|. So the running time, query complexity and randomness are
essentially inherited from V 1

8
. Completeness follows by observing that deg(p) ≤ d′ implies deg(p′) ≤ d.

As to soundness, there are two cases to consider. If p is δ/4-far from RS(F, S, d) then by assumption, the
first subtest rejects with probability at least s(δ/4, n) ≥ s(δ/64, n) (the previous inequality follows from
monotonicity). Otherwise, p is within relative distance δ/4 ≤ 1/4 of an evaluation of a polynomial P
with d′ < deg(P) ≤ d. In this case, p′ is 1/4-close to the evaluation of P ′(z) = Q(z) · P (z), where
d < deg(P ′) < |S|/4. Thus, P ′ is 3/4-far from RS(F, S, d) so the distance of p′ from the same code is at
least 1/2 > δ/4. We conclude the second subtest rejects with probability s(δ/4, n) ≥ s(δ/64, n).

Next assume d′ > d and notice without loss of generality d′ ≤ 8(d+1) because otherwise every implicit
input is a codeword. The key observation is that a polynomial P (z) is of degree d′ iff it can be written as a
sum P (z) =

∑7
i=0 z

i(d+1) ·Pi(z), where deg(Pi) = di ≤ d can be uniquely and efficiently computed given
d and d′. Let L(≤d) be the restriction of L to instances of degree ≤ d and let V(≤d) denote the verifier for
L(≤d). The proof for explicit input (F, S, d′) consists of eight functions p0, . . . p7 : S → F and eight proofs
of proximity to L(≤d) denoted π0, . . . , π7. On explicit input (F, S, d′) and implicit input p, verifier operates
as follows:

• Toss r(n) coins. Let R denote the random string.

• For i = 0, . . . , 7, invoke V(≤d) using randomness R on explicit input (F, S, di), implicit input pi and
proof πi.

• Using R, select uniformly at random γ ∈ S. Accept iff p(γ) =
∑7

i=0 γ
i(d+1)pi(γ).

Proof length, randomness, completeness, running time and query complexity follow from construction. As
to soundness, assume p is δ-far from RS(F, S, d′). There are two cases to consider. If p(z) disagrees with∑7

i=0 z
i(d+1)pi(z) on a δ/2-fraction of z ∈ S, then the second subtest rejects with probability ≥ δ/2.

Otherwise, p(z) is δ/2-close to
∑7

i=0 z
i(d+1)pi(z). In this case at least one pi must be δ/16-far from

RS(F, S, di). So the first part of this proof (for the case d′ < d) implies the rejection probability is at least
s(δ

4·16 , n). This completes our proof.

47

6.6 Proof of Lemma 6.12

The lemma is an immediate corollary of the Bivariate Testing Theorem of Polishchuk and Spielman [37,
Theorem 9]. We use here the general version of it appearing in Spielman’s Thesis.

Theorem 6.14. [39, Theorem 4.2.19] Let F be a field, S, T ⊆ F. Let R(x, y) be a polynomial over F of
degree (d, |T | − 1) and let C(x, y) be a polynomial over F of degree (|S| − 1, e). If

Pr
(x,y)∈S×T

[R(x, y) 6= C(x, y)] < γ2, and 2(
d

|S|
+

e

|T |
+ γ) < 1,

then there exists a polynomial Q(x, y) of degree (d, e) such that

Pr
(x,y)∈S×T

[R(x, y) 6= Q(x, y) or C(x, y) 6= Q(x, y)] < 2γ2

To prove Lemma 6.12 we show the contrapositive form for c0 = 128, making no attempt to optimize
constants. We may assume without loss of generality δ(d,∗), δ(∗,e) < 1/c0, otherwise the claim is trivial.
Correct each row of f to its closest RS-codeword (breaking ties arbitrarily), obtaining a bivariate polynomial
R(x, y) of degree (d, |T | − 1). By definition, ∆(R(x, y), f) = δ(d,∗)(f). Similarly, correct the columns of
f to obtain the polynomial C(x, y) of degree (|S| − 1, e) that is within fractional distance δ(∗,e)(f) of f .
We get

Pr
(x,y)∈S×T

[R 6= C] ≤ δ(d,∗)(f) + δ(∗,e)(f) = γ2 < 1/64

Since γ ≤ 1/8, d ≤ |S|/4, e ≤ |T |/8, both conditions of Theorem 6.14 hold, allowing us to conclude
R(x, y) is (2γ2)-close to RM(F, S × T, (d, e)). The triangle inequality completes the proof:

δ(d,e)(f) ≤ ∆(f,R) + ∆(R,RM(F, S × T, (d, e))) ≤ 3δ(d,∗)(f) + 2δ(∗,e)(f)

7 PCPPs for Reed-Solomon codes over smooth fields

In this section we give a PCPP verifier for Reed-Solomon codes over smooth fields, when the set S over
which the polynomials are evaluated are multiplicative subfields of the field, thereby proving Theorem 3.4
(statement below). We also show it suffices for obtaining quasilinear PCPs (Theorem 2.2). Our presentation
mirrors that of the additive case presented in Section 6.

Theorem (3.4, restated). Let PAIR-SMOOTH-RS be the restriction of PAIR-RS to pairs ((F, 〈ω〉, d), p)
where ord(ω) = n is a power of 2. Then,

PAIR-SMOOTH-RS ∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(1),
distance HammingF

.
7.1 Proof overview

This section should be read as a continuation of Section 6.1. The crucial property used in our constructions
in Section 6 was that the linearized polynomial q(z) “nicely partitions” the linear space L. Specifically, q(z)
defines a linear map on L, its image is a linear space of size ≈

√
|L| and for every value in its image, the

set of preimages of that value form an affine space of size ≈
√
|L|.

In the smooth case, F contains a multiplicative subgroup S = 〈ω〉 of size n. Assume
√
n is an integer

and consider a polynomial P (z) evaluated over S. Using Proposition 6.2 with the polynomial q(z) , z
√

n

48

xx

y

ω0,ω1 ω5 ω10 ω15 ω20 ω24
ω0

ω5

ω10

ω15

ω20

κ, κω1 κω5 κω10 κω15 κω20 κω24

κ5

κ5ω5

κ5ω10

κ5ω15

κ5ω20

Z

Zκ

Figure 3: In this case,
F = Z101. Let σ
generate F∗, let ω =
σ4 be an element of
order n = 25, let
κ = σ2 and q(z) =
z5. The elements on
each axis are ordered
by increasing pow-
ers of σ and the fig-
ure shows the subsets
of points Z,Zκ ⊂
F∗ × F∗, where Z =
{(z, q(z)) : z ∈
〈ω〉} and Zκ =
{(κz, q(κz)) : z ∈
〈ω〉}.

we get P (z) = Q(z, z
√

n). Notice q(z) “nicely partitions” 〈ω〉. Specifically, q(〈w〉) = 〈ω
√

n〉 is of size√
n (recall q(S) , {q(s) : s ∈ S}), and for every value in the image of q, the set of its preimages is a

multiplicative coset of 〈ω
√

n〉.
Thus, to prove proximity of P (z) to RS(F, S, d) we may ask for an evaluation of Q(x, y) on the set

of points (X × Y) ∪ Z where Z = {(z, q(z)) : z ∈ 〈ω〉} and X = Y = 〈ω
√

n〉. In the additive case
we used the fact, implied by Proposition 6.5, that the union of a linear space (L′0) and an affine shift of
it (L′0 + β) form a linear space of slightly larger dimension. In the smooth case, it is not true in general
that 〈ω

√
n〉 and a coset of it form a small multiplicative group. In fact, the smallest group containing both

can be as large as 〈ω〉. To overcome this problem, we define the Shifted Reed Solomon Code (SRS-Code),
which is formed of evaluations of polynomials over a multiplicative group 〈ω〉 and a coset of it of the form
κ〈ω〉 , {κz : z ∈ 〈w〉}.

The crucial observation is that q(z) “nicely partitions” each of 〈ω〉 and κ〈ω〉 into
√
n cosets of 〈ω

√
n〉

(see Figure 3). Indeed, the image of q(〈ω〉) = 〈ω
√

n〉 and q(κ〈ω〉 = κ
√

n〈ω
√

n〉. Similarly, for an element
in q(〈ω〉) of the form ωj

√
n, j ∈ [

√
n], we get q(−1)(ωj

√
n) = ωj〈ω

√
n〉 and for an element in q(κ〈ω〉)

of the form κ
√

nωj
√

n we get q(−1)(κ
√

nωj
√

n) = κωj〈ω
√

n〉. Thus, we will ask our prover to provide an
evaluation of the bivariate polynomial Q on the points (See Figure 4):

{(z, q(z)) : z ∈ 〈ω〉 ∪ κ〈ω〉}
⋃(

〈ω
√

n〉 × (〈ω
√

n〉 ∪ κ
√

n〈ω
√

n〉)
)

By our previous discussion we notice the restriction of Q to certain rows and columns form a word of an
SRS-code of length ≈

√
n.

This allows us to measure proximity to the SRS-code of length n by measuring proximity to SRS-codes
of size ≈

√
n. As in the additive case of Section 6 we use the Bivariate Testing Lemma 6.12 to apply

recursion and obtain quasilinear sized proofs that can be tested with polylogarithmic query complexity. We
need some technical modifications, arising from difficulties similar to the additive case. In particular, the
degree of Q in its first variable is too large for applying Lemma 6.12, so we reduce this degree by breaking

49

xx

y

ω0,ω1 ω5 ω10 ω15 ω20 ω24
ω0

ω5

ω10

ω15

ω20

κ, κω1 κω5 κω10 κω15 κω20 κω24

Z

Zκ

X × Y

X × Yκ
κ5

κ5ω5

κ5ω10

κ5ω15

κ5ω20

Figure 4: The proof
of proximity for the
smooth RS-code is
the evaluation of Q
on the set of points
Z ∪Zκ ∪ (X × Y)∪
(X × Yκ). Notice the
restriction of this set
to every row and col-
umn gives a pair — a
multiplicative group
of order

√
n and a

coset of it.

Q into a sum of several polynomials of sufficiently small degree. Additionally, we will not assume
√
n

is an integer, rather use the fact that n = 2k and work with the multiplicative subgroups generated by
n0 = 2dk/2e, n1 = 2bk/wc that are of size ≈

√
n.

7.2 The shifted Reed-Solomon code

We prove Theorem 3.4 by proving a stronger statement about testing proximity to shifted RS-codes, defined
next.

Definition 7.1 (Shifted Reed Solomon Code). For F a finite field, ω, κ ∈ F∗, ord(ω) = n and integer d, the
degree-d shifted Reed Solomon (SRS) code over 〈ω〉 with shift κ is

SRS(F, d, ω, κ) , RS(F, 〈ω〉 ∪ κ〈ω〉, d).

Let PAIR-SMOOTH-SRS be the pair language whose explicit inputs are triples (F, S = 〈ω〉 ∪ κ〈ω〉, d)
where ord(ω) is a power of 2 and whose implicit inputs are functions p : S → F. The size of (explicit and
implicit) inputs is ord(ω). A pair ((F, S, d), p) is in PAIR-SRS if p ∈ SRS(F, ω, κ, d).

Notice SRS(F, ω, 1, d) = RS(F, 〈ω〉, d). Thus, Theorem 3.4 follows from the following theorem, the
proof of which occupies the rest of the section.

Theorem 7.2 (SRS PCP of Proximity).

PAIR-SMOOTH-SRS ∈ Strong-PCPPδ/ polylog n

 randomness log(n · polylog n),
query O(log |F|),
distance HammingF

.
As in the additive case, our proof will focus on the special case of degree d = n/8 − 1 and Proposi-

tion 6.13 generalizes this to arbitrary degree.

50

7.3 The SRS proof of proximity and its associated verifier

Notation Recall ord(ω) = n = 2k for integer k. Let n0 = 2dk/2e and n1 = 2bk/2c. Note that n = n0 · n1

and
√
n/2 ≤ n1 ≤ n0 ≤

√
2n. For r ≤ ord(α), let 〈α〉r , {α0, α1, . . . , αr−1}. When dealing with a

purported codeword of SRS(F, ω, κ, d) we treat it as a pair of functions, p : 〈ω〉 → F and pκ : κ〈ω〉 → F.

Definition 7.3 (SRS proof of proximity). The proof of proximity for a purported codeword of the code
SRS(F, ω, κ, n/8 − 1) is defined by induction on n = ord(ω). If n ≤ 16 then it is empty. Otherwise, it is
of the form

π = ({f (`), f (`)
κ , g(`), g(`)

κ , {π(1,β,`), π(2,β,`)}β∈〈ω〉n1
, {π(3,α̃,`)}α̃∈〈ωn1 〉}`∈{0,...,7}),

where

• f (`), f
(`)
κ : 〈ωn1〉 × 〈ω〉n1 → F.

• g(`), g
(`)
κ : 〈ωn1〉 × 〈ωn0〉 → F.

• π(1,·,`), π(2,·,`), π(3,·,`) are proofs for SRS-codewords (over F) of sizes n0, n0, n1, respectively.

We are now ready to describe the proximity tester.

Definition 7.4 (SRS-verifier). The verifier for proximity to SRS(F, ω, κ, d = ord(ω)/8 − 1) is denoted
V〈(p,pκ),π〉

SRS (F, ω, κ, d). It receives as explicit input the parameters F, ω, κ as defined in the statement of
Theorem 7.2. The implicit input is a pair of functions p : 〈ω〉 → F, pκ : κ〈ω〉 → F. The proof π is as
described in Definition 7.3. The verifier operates as follows.

Base case (n ≤ 16) Verifier reads p and pκ in entirety and accepts iff (p, pκ) ∈ SRS(F, ω, κ, 1).

Recursion (n ≥ 32) Verifier computes n0 = 2dk/2e, n1 = 2bk/2c and performs one of the following four
tests with probability 1/4 each.

Outer: Pick α̃ ∈ 〈ωn1〉, β ∈ 〈ω〉n1 uniformly at random; Query p(α̃ · β), pκ(α̃ · β) and f (`)(α̃, β),
f

(`)
κ (α̃, β) for every ` ∈ {0, . . . , 7}; Accept iff p(α̃ · β) =

∑7
`=0(α̃ · β)`n0/8 · f (`)(α̃, β) and

pκ(κα̃ · β) =
∑7

`=0(κα̃ · β)`n0/8 · f (`)
κ (α̃, β).

Inner: Pick ` ∈ {0, . . . , 7}, β ∈ 〈ω〉n1 at random and invoke

V
〈(g(`)|↔

βn0 ,f (`)|↔β),π(1,β,`)〉
SRS (F, ωn1 , β, n0/8− 1).

Innerκ: Pick ` ∈ {0, . . . , 7}, β ∈ 〈ω〉n1 at random and invoke

V
〈(g(`)

κ |↔
βn0 ,f

(`)
κ |↔β),π(2,β,`)〉

SRS (F, ωn1 , κβ, n0/8− 1).

Innerc: Pick ` ∈ {0, . . . , 7}, α̃ ∈ 〈ωn1〉 at random and invoke

V〈(g(`)|lα̃,g
(`)
κ |lα̃),π(3,α,`)〉

SRS (F, ωn0 , κn0 , n1/8− 1).

The remaining subsections analyze the performance of this verifier, thus yielding Theorem 3.4. Specifi-
cally, the next subsection analyzes the simple properties including the query complexity, the randomness/size
complexity, and the completeness. The hard part, the soundness analysis is addressed in Section 7.5.

51

7.4 Basic properties

Proposition 7.5. V〈(p,pκ),π〉
SRS (F, ω, κ, n/8 − 1) makes at most 32 queries into p, pκ, π. It tosses at most

log2 n+O(log log n) random coins and runs in time poly n. The size of the proof π is O(n · polylog n).

Proof. The proof is straightforward from the definition. The query complexity is easy to verify. In the base
case, the verifier reads 32 field elements. In the inductive case, if the verifier chooses to execute the Outer
step, then it makes 18 < 32 queries, else it makes a recursive query to V〈〉

SRS which makes 32 queries by
induction.

The randomness complexity is similar. In the base case the verifier tosses 0 coins. In the inductive case,
the verifier tosses O(1) coins to determine which step to perform. If it chooses the outer test, it picks α̃ and
β at random with log n + O(1) coins. If it chooses one of the inner tests, it tosses log

√
n + O(1) coins to

determine the inner call, and then log
√
n+O(log log

√
n) coins in the recursive call. Adding up, we get a

total of log n+ O(log log n) coins in all. Notice all computations are simple and can be performed in time
poly n. Finally, the size of the proof is bounded by 2randomness.

Next we move to the completeness part of the proof. This part is straightforward given the intuition
developed in Section 7.1. We first generalize Proposition 6.2 and express a univariate polynomial as a sum
of bivariate polynomials of low degree. We then use this as to describe a proof π that is accepted with
probability 1 when accompanying an SRS-codeword.

Proposition 7.6. Given positive integers d1, d2, L, and d such that d1 · d2 · L ≥ d, the following holds: For
every univariate polynomial P (x) of degree less than d there exists a sequence of L bivariate polynomial
Q(0)(y, z), . . . , Q(L−1)(y, z), of degree less than d1 in y and d2 in z such that

P (x) =
L−1∑
`=0

x`·d1Q(`)(x, xL·d1).

Furthermore, such a sequence is unique if d1 · d2 · L = d.

Proof. Let ai’s be the coefficients of P , i.e., P (x) =
∑d−1

i=0 aix
i. Now let

Q(`)(y, z) =
d1−1∑
i=0

d2−1∑
j=0

ai+`·d1+j·d1·Ly
izj ,

where ai is defined to be 0 if i ≥ d. It can be verified by inspection that we have

P (x) =
L−1∑
`=0

x`·d1Q(`)(x, xL·d1).

Uniqueness follows from a counting argument: the set of sequences of polynomials Q(0), . . . , Q(L−1) form
a vector space of dimension L · d1 · d2 = d, the dimension of the space of polynomials of degree less than
d.

Proposition 7.7 (Completeness). If (p, pκ) equal the SRS encoding of some polynomial P of degree less
than n/8, then there exists a proof that causes the SRS Proximity tester to accept with probability one.

52

Proof. By induction on n. Let Q(0), . . . , Q(7) be the polynomials as given by Proposition 7.6 applied to
P with integers d1 = n0/8, d2 = n1/8, L = 8 and d = n/8. Note that we have d1 · d2 · L = d, since
n0 ·n1 = n. For every ` ∈ {0, . . . , 7}, we let f (`)(α̃, β) = Q(`)(α̃β, βn0), f (`)

κ (α̃, β) = Q(`)(κα̃β, κn0βn0),
g(`)(α̃, β̃) = Q(`)(α̃, β̃), and g(`)

κ (α̃, β̃) = Q(`)(α̃, κn0 β̃), for every α̃ ∈ 〈ωn1〉, β ∈ 〈ω〉n1 , and β̃ ∈ 〈ωn0〉.
Note that the above choice of table f (`), f (`)

κ , g(`), g(`)
κ are such that the Outer test accepts with proba-

bility one. Specifically, we have

p(α̃ · β) = P (α̃ · β)

=
∑

`∈{0,...,7}

(α̃ · β)`n0/8Q(`)(α̃β, α̃n0βn0)

=
∑

`∈{0,...,7}

(α̃ · β)`n0/8Q(`)(α̃β, βn0)

=
∑

`∈{0,...,7}

(α̃ · β)`n0/8f (`)(α̃, β)

Similarly we get pκ(κα̃ · β) =
∑7

`=0(κα̃ · β)`n0/8 · f (`)
κ (α̃, β).

Now we describe how to set up the rest of the subproofs π(·,·,·) such that the inner tests accept. For this
part, note that the recursive calls to the SRS proximity verifiers access implicit input pairs that satisfy the
completeness condition on smaller inputs. Consider, for example, the invocation

V
〈(g(`)|↔

βn0 ,f (`)|↔β),π(1,β,`)〉
SRS (F, ωn1 , β, n0/8− 1)

by Inner for some ` ∈ {0, . . . , 7} and β ∈ 〈ω〉n1 . We may relate these implicit inputs to the polynomialQ(`)

as follows: We have g(`)|↔βn0 (α̃) = g(`)(α̃, βn0) = Q(`)(α̃, βn0), f (`)|↔β (α̃) = f (`)(α̃, β) = Q(α̃ · β, βn0).
Thus, if we let P ′(α̃) = Q(`)(α̃, βn0), and ω′ = ωn1 , then the pair f (`)|↔β , g(`)|↔βn0 is a codeword of the
SRS-code SRS(F, ω′, β, n0/8−1) corresponding to the encoding of P ′, and thus (by induction) there exists
a proof π(1,β,`) that causes the recursive verifier to accept with probability one. Similar reasoning shows that
the verifier also accepts with probability 1 when invoking Innerκ or Innerc.

7.5 Soundness

We now argue the soundness of the SRS-verifier as follows. By induction, for most α̃ and β, the func-
tions g(`)|lα̃, g(`)|↔βn0 , g(`)

κ |lα̃, and g(`)
κ |↔βn0 are close to polynomials of degree roughly

√
n. The bivariate

testing Lemma 6.12 implies g(`) and g(`)
κ are very close to some low-degree bivariate polynomials Q(`) and

Q
(`)
κ . Furthermore, we will show Q(`) ≡ Q

(`)
κ . Next, we claim the function f (`)(z, zn0) is close to the

function Q(`)(z, zn0) and similarly f (`)
κ is close to Q(`)(κz, (κz)n0). Finally, we claim that p(z) is close to∑7

`=0 z
`n0/8 ·Q(`)(z, zn0), i.e., p is close to a low-degree univariate polynomial. Similarly pκ is close to the

same low degree polynomial, where the consistency of p and pκ follows from the equivalence of Q and Qκ.

Lemma 7.8 (Soundness). There exists a constant c such that for every ε the following holds. If

Pr
[
V〈(p,pκ),π〉

SRS (F, ω, κ, ord(ω)/8− 1) = reject
]
≤ ε,

Then (p, pκ) is (clog log ord(ω) · ε)-close to SRS(F, ω, κ, ord(ω)/8− 1)

53

Proof. Let c0 be as in Lemma 6.12. Let c1 = 128 · c0, c2 = (320 + 2c1), and c3 = 8c2 + 4. We prove the
lemma for c = c23, which is a (large) constant. Note the conditions imply c > 1 and c > (2 · (256 + 4c1))2

as will be used later.
We assume the lemma is true by induction for smaller n and in particular for the recursive calls to the

various Inner tests, and now prove it for n. Assume clog log n · ε ≤ 1 or else the claim is vacuously true. We
use below the fact that clog log n0 ≤ clog log

√
2n ≤ clog log n− 1

2 for every c ≥ 1 and n ≥ 16.
Denote by εO(α̃, β) the probability that the Outer verifier rejects (p, pκ, π) on random choice α̃ and β.

Let εO denote the expectation of εO(α̃, β) over the choice of α̃ and β. Similarly let εI(`, β), εκ(`, β), and
εc(`, α̃) denote the probability that Inner, Innerκ, and Innerc, reject on random choice `, β, and α̃. Let
εI(`), εκ(`) and εc(`) denote the expectations of these quantities over β and α̃, and let εI , εκ and εc denote the
expectations over β, α̃, and `. By definition of the tester, we have ε = 1

4 · (εO + εI + εκ + εc). Since these
quantities are nonnegative, we get εO, εI , εκ, εc ≤ 4ε. Similarly, we have εO(`), εI(`), εκ(`), εc(`) ≤ 32ε,
for every ` ∈ {0, . . . , 7}.

For ` ∈ {0, . . . , 7}, denote by Q(`)(x, y) the polynomial of degree at most n0/8 in x and n1/8 in y
that is closest to g(`) (on the domain 〈ωn1〉 × 〈ωn0〉), where ties are broken arbitrarily. Similarly let Q(`)

κ

be the closest polynomial to g(`)
κ . Let P (z) =

∑7
`=0 z

`n0/8 · Q(`)(z, zn0) and let Pκ(z) =
∑7

`=0 z
`n0/8 ·

Q
(`)
κ (κz, zn0). We show below that (p, pκ) is close to the evaluation of P on 〈ω〉 ∪ κ〈ω〉. (Among other

facts, we also show that Pκ(z) ≡ P (κ · z).)

Step 1: The functions Q(`) (and Q
(`)
κ) By the inductive hypothesis applied to Inner(`, β), we have

(g(`)|↔βn0 , f
(`)|↔β) is (clog log n0 · εI(`, β))-close to the SRS encoding of some degree n0/8 polynomial. Thus

g(`)|↔βn0 is at most (2 · clog log n0 · εI(`, β))-close to the RS encoding of some degree-n0/8 polynomial.
Averaging over β, we get g(`) is (2 · clog log n0 · εI(`))-close to some bivariate polynomial of degree n0/8 in
x and arbitrary degree in y. A similar argument based on the Innerc tests yields that g(`) is (2 · clog log n1 ·
εc(`))-close to some bivariate polynomial of degree n1/8 in y and arbitrary degree in x. Now applying
Lemma 6.12, we get that g(`) is close to some polynomial of degree n0/8 in x and n1/8 in y. More
specifically, we have:

δ(n0/8,n1/8)(g(`)) ≤ c0 ·
(
δ(n0/8,∗)(g(`)) + δ(∗,n1/8)(g(`))

)
≤ c0 ·

(
2 · clog log n0 · εI(`) + 2 · clog log n1 · εc(`)

)
≤ 64 · c0

(
clog log n0 + clog log n1

)
· ε

≤ 128 · c0 · clog log n0 · ε.

Letting c1
def
= 128 · c0, we have that δ(g(`), Q(`)) ≤ c1 · clog log n0 · ε. A similar argument shows that

δ(g(`)
κ , Q

(`)
κ) ≤ c1 · clog log n0 · ε.

Step 2: The functions f (`) and f (`)
κ Next we move to the functions f (`) (for any ` ∈ {0, . . . , 7}) and show

that for most α̃, β f (`)(α̃, β) = Q(`)(α̃·β, βn0) (and similarly for most α̃, β, f (`)
κ (α̃, β) = Q

(`)
κ (κ·α̃·β, βn0).

We first describe the argument informally. Consider a β such that g(`)|↔βn0 and f (`)|↔β pass the Inner
test with high probability and the SRS-codeword correspond to the encoding of Q(·, βn0). For such β, we
have f (`)|↔β (α̃, β) = Q(α̃ · β, βn0) for most α̃. It remains to make this argument quantitative and we do so
below.

Define a β to be good if the fractional distance between (g(`)|↔βn0 , f
(`)|↔β) and the SRS(F, n0/8, ωn1 , β)

encoding of Q(`)(·, βn0) is at most 1/8. Let δ(β) denote the relative distance of f (`)|↔β to the projection of

54

the SRS-codeword nearest to (g(`)|↔βn0 , f
(`)|↔β) onto the second half of the coordinates. Note that

Pr
α̃,β

[f (`)(α̃, β) 6= Q(`)(α̃ · β, βn0)]

≤ Eβ [δ(β)|β is good] · Pr
β

[β is good] + Pr
β

[β is not good]

≤ Eβ [δ(β)] + Pr
β

[β is not good]

Note that the first term above is easily estimated as in Step 1. We get Eβ[δ(β)] ≤ (2 ·clog log n0 · εI(`)) ≤
64 · clog log n0 · ε.

Next we describe two sets that cover the case where β is not good. Let S1 be the set of all β such that
the distance of (g(`)|↔βn0 , f

(`)|↔β) from every SRS-codeword is more than 1
8 . For every β ∈ S1 note that the

εI(`, β) ≥ 1
8clog log n0

. Thus, the probability that β ∈ S1 is at most 8·clog log n0 ·εI(`) ≤ 256·clog log n0 ·ε. Next,
let S2 be the set of β for which (g(`)|↔βn0 , f

(`)|↔β) is 1
8 -close to an SRS-codeword, but the SRS-codeword is

not the encoding of Q(`)(·, βn0). For every β ∈ S2, we have Q(`)(α̃, βn0) and g(`)(α̃, βn0) disagree for at
least 5

8 fraction of the α̃’s (since Q(`)(·, βn0) and the other SRS-codeword can agree on at most n0/8 values
of α̃’s). Since the distance between g(`) and Q(`) is at most c1 · clog log n0 · ε, we get that the probability
that β ∈ S2 is at most 8

5 · c1 · c
log log n0 · ε ≤ 2c1 · clog log n0 · ε. Finally, we note that if β is not good, then

β ∈ S1 ∪ S2. Thus we get

Pr
β

[β is not good] ≤ (256 + 2c1) · clog log n0 · ε.

Putting the above together, and recalling c2 = (320+2c1), we get Prα̃,β[f (`)(α̃, β) 6= Q(`)(α̃·β, βn0)] ≤
c2 · clog log n0 · ε. Similarly we also get Prα̃,β[f (`)

κ (α̃, β) 6= Q
(`)
κ (κ · α̃ · β, βn0)] ≤ c2 · clog log n0 · ε.

Step 3: The functions p and pκ Next we move to the functions p and show that p(z) usually equals
P (z) =

∑7
`=0 z

`·n0/8Q(`)(z, zn0), for z ∈ 〈ω〉. Note that 〈ω〉 is in one-to-one correspondence with {α̃ · β}
where α̃ ∈ 〈ωn1〉 and β ∈ 〈ω〉n1 and so we are interested in estimating the probability that

p(α̃ · β) 6=
7∑

`=0

(α̃β)`·n0/8Q(`)(α̃β, βn0).

We consider the following events: For ` ∈ {0, . . . , 7}, let E` be the event that f (`)(α̃, β) 6= Q(`)(α̃β, βn0).
Further, let E′ be the event that p(α̃ · β) 6=

∑7
`=0(α̃β)`·n0/8f (`)(α̃β, βn0). For any `, we have E` happens

with probability at most c2 · clog log n0 · ε. Further, E′ happens with probability at most εO ≤ 4ε ≤ 4 ·
clog log n0 · ε, using c ≥ 1. Furthermore, if none of the events E′, {E`}` occur, then we do have p(α̃ · β) =∑7

`=0(α̃β)`·n0/8Q(`)(α̃β, βn0). Thus, recalling c3 = 8c2+4 we get that δ(p, P) ≤ c3·clog log n0 ·ε. Similarly,
we get δ(pκ, Pκ) ≤ c3 · clog log n0 · ε. Combining, we get that δ((p, pκ), (P, Pκ)) ≤ c3 · clog log n0 · ε. By the
definition of c = c23 and the condition clog log n0 ≤ clog log n− 1

2 , we get that the final proximity above is at
most clog log n · ε, as desired.

All that remains to be shown is that P and Pκ are consistent, i.e., that Pκ(z) = P (κ · z).

Step 4: Consistency of the κ shifts We prove this part by showing that for every `, Q and Qκ are consis-
tent, i.e., Q(`)

κ (x, y) = Q(`)(x, κn0y). This suffices, since we will then have

Pκ(z) =
∑

`

z`n0/8Q(`)
κ (κz, zn0) =

∑
`

z`n0/8Q(`)(κz, κn0zn0) = P (κz).

55

Fix ` ∈ {0, . . . , 7}. Define α̃ ∈ 〈ωn1〉 to be good if (g(`)|lα̃, g
(`)
κ |lα̃) is 1/8 close to some SRS-codeword

and g(`)|lα̃ is 1/4 close to the evaluations ofQ(`)(α̃, ·), and g(`)
κ |lα̃ is 1/4 close to the evaluations ofQ(`)

κ (α̃, ·),
It is straightforward to see that if α̃ is good, thenQ(`)

κ (α̃, y) = Q(`)(α̃, κn0y). Furthermore, if the fraction of
good α̃’s is more than 1/8, then we will have Q(`)

κ (x, y) = Q(`)(x, κn0y) as desired. So it suffices to bound
the probability of α̃ being not good (to be less than 7/8).

The three conditions above can be analyzed in a manner similar to the analysis of the probability of β
not being good in Step 2. Specifically, we have: The probability that (g(`)|lα̃, g

(`)
κ |lα̃) is not 1/8 close to some

SRS-codeword is at most 8 · clog log n1 · εc(`) ≤ 256 · clog log n0 · ε. The probability that g(`)|lα̃ is 1/8 close to
some SRS-codeword and not 1/4 close to the evaluations ofQ(`)(α̃, ·) is at most 2·c1·clog log n0 ·ε. Finally, the
probability that g(`)

κ |lα̃ is 1/8 close to some SRS-codeword and not 1/4 close to the evaluations of Q(`)
κ (α̃, ·)

is at most 2 · c1 · clog log n0 · ε. Combining the above we get that the probability that α̃ is not good is at most
(256+4 ·c1) ·clog log n0 · ε. In turn the final quantity is at most (256+4 ·c1) ·clog log n− 1

2 · ε ≤ 1
2c

log log n · ε ≤
1
2 < 7

8 as desired. The first inequality follows from the fact that we have c > (2 · (256 + 4 · c1))2. This
concludes the proof thatQ andQκ and hence P and Pκ are consistent. Combined with Step 3, this concludes
the soundness analysis.

7.6 Proof of Theorem 3.4

Proof of Smooth SRS PCPP Theorem 7.2 (for special case of d = n/8− 1): The verifier is formally defined
in Section 7.3. Its query complexity, randomness and proof length are given by Proposition 7.5. Its com-
pleteness is asserted by Proposition 7.7. Its soundness is analyzed in Lemma 7.8.

Theorem 3.2. The statement for d = n/8−1 follows from Theorem 7.2 by setting κ = 1. The generalization
to arbitrary degree d follows from Proposition 6.13.

7.7 Proving Theorem 2.2 using smooth RS-Codes

In this section we briefly outline the modifications needed to prove Theorem 2.2 using PCPPs for smooth RS-
codes (Theorem 3.4). Our motivation is to present a proof of Theorem 2.2 in as general a setting as possible
and in particular show we do not require the underlying field to be of characteristic 2. Our exposition follows
that of Section 3.3.1.

Our first challenge is to show the existence and abundance of fields with a multiplicative subgroup of
order that is a power of 2. A second problem is that we cannot embed De Bruijn graphs in an affine graph of
constant degree (Proposition 5.10), because our fields are not of characteristic 2. To solve this problem we
embed the De Bruijn graph is an affine graph of logarithmic degree. Thus, we end with a weaker version of
Theorem 3.7 and we need to prove quasilinear PCPs for this weaker version, using Theorem 3.4. We now
elaborate on each of these three issues.

Prime Fields with 2-smooth subgroups Theorem 3.4 holds only for Reed-Solomon codes RS(F, 〈ω〉, d)
where ord(ω) is a power of 2. The following (special case of a) theorem due to Linnik [33] shows there is
a polynomial time computable sequence {Fn}n∈N such that n ≤ |Fn| ≤ nO(1) and F∗n has an element ω the
order of which is a power of 2.

Theorem 7.9 (Linnik’s Theorem). [33] There exists a constant 1 < L < 6 such that for any sufficiently
large d, there exists a prime of size ≤ dL such that d|(p− 1).

56

Remark 7.10. The general statement of Linnik’s Theorem says there exists a universal constant L such that
for every pair of integers 0 < a < n, there exists a prime p < nL such that n|(p− a). The case stated above
is derived from the general statement by setting a = 1.

Suppose we wish to find a field Fn of size nO(1) that has an element ω of order Θ(n) that is a power of 2.
Let d be a power of 2 such that n < d ≤ O(n). Let Fn be the prime field Zp for p as in Linnik’s Theorem 7.9.
We have |F∗n| = p− 1 = k · d. Let σ be a generator of F∗ and set ω = σk. Then ord(ω) = Θ(n) is a power
of 2. Notice p and ω can be found in polynomial time (in n) by exhaustive search. Finally, each element of
Fn is represented by O(log n) bits.

Algebraic Constraint Satisfaction Problems for PAIR-SMOOTH-RS We now sketch a proof of a
weaker version of Theorem 3.7. The weakness of this version refers to the fact that the number of affine
functions is not constant but polylogarithmic. However, we will be able to prove this theorem without
relying on fields of characteristic 2. Rather, we only need our field to be sufficiently large.

Theorem 7.11 (ALGEBRAIC-CSP is NP-complete (weak version)). There exists integer d such that for
any proper complexity function t : N+ → N+ and L ∈ NTIME(t(n)), the following holds.

1. L is reducible to ALGEBRAIC-CSP in time poly t(n).

2. Given any field F of size Ω(t(n) polylog t(n)), an instance of L of size n is reduced to an instance of
ALGEBRAIC-CSPpolylog n,d over F.

Proof Sketch: The reduction underlying Theorem 3.7 and described in Section 5.2 relied on the existence
of a homomorphism of the wrapped de Bruijn graph Bk (see Definition 5.4) into an affine graph (as per
Definition 5.8) of constant degree over a field of characteristic 2. This homomorphism, in turn, relies on the
additive structure of the field (see proof of Proposition 5.10).

As in the proof of Theorem 5.3, we will only assume the underlying field is sufficiently large. We use the
existence of an efficiently computable homomorphism of Bk into the hypercube of dimension k+O(log k)
(for details see [31]). Next we notice the hypercube of dimension k′ can be embedded into an affine graph
over any finite field F, |F| > 2k′ . Indeed, fix ω ∈ F∗ with ord(ω) ≥ 2k′ . Consider the affine graph G over
vertex set 〈ω〉 and edge set generated by {ω(−1)b·2`}`∈[k′],b∈{0,1}. To see that the hypercube can be embedded
into G, let ī ∈ {0, . . . , 2k′ − 1} denote the integer with binary representation i ∈ {0, 1}k′ . Associate with i
the element ωī ∈ 〈ω〉. We claim that the elements associated with i and i+e` (in the hypercube) are adjacent
in G. Indeed, let b denote the `th bit of i and notice i is associated with ωī whereas i+ e` is associated with
ωī+(−1)b2`

= ω(−1)b·2` · ωī, so the corresponding vertices are adjacent in G.
From here on we follow the proof of Theorem 3.7, using the above defined affine graph G of degree

polylog n instead of the constant degree graph used there. All other details are identical. Thus, our reduction
results in an instance of ALGEBRAIC-CSPpolylog n,O(1).

Quasilinear PCPs via PCPPs for Smooth RS Codes We now provide efficient PCPs for the instances of
ALGEBRAIC-CSP given by Theorem 7.11 and thus provide an alternative proof of Theorem 2.2.

Proof of quasilinear PCP Theorem 2.2: Let ψ be an instance of L ∈ NTIME(t(n)) of size n. Using Theo-
rem 7.11 we reduce ψ to an instance φ = {F, {AFF1, . . . ,AFFk},H,C} of ALGEBRAIC-CSPk,d of size
n′ = n · polylog n, where k = polylog n, d = O(1) and F is the smallest prime field containing an element
ω with 100kdn′ < ord(ω) ≤ 200kdn′ where ord(ω) is a power of 2. Linnik’s Theorem 7.9 implies F and
ω exist and can be found in polynomial time (by exhaustive search).

57

From here on our proof is essentially identical to the proof presented in Section 3.3.1 and we use the
notation given there. Notice that since k = polylog n the first subtest invokes an RS-verifier with proximity
parameter 1/polylog n. However, Proposition 2.9 implies the query complexity increases only by a factor
of polylog n. All other details are exactly as in Section 3.3.1 and this completes the alternative proof of
Theorem 2.2.

58

References

[1] ALON, N. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8 (1999), 7–29.
29

[2] ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. Proof verification and the
hardness of approximation problems. Journal of the ACM 45, 3 (May 1998), 501–555. (Preliminary
Version in Proceedings of 33rd FOCS, 1992). 4, 16, 17, 18, 28, 37

[3] ARORA, S., AND SAFRA, S. Probabilistic checking of proofs: A new characterization of NP. Journal
of the ACM 45, 1 (Jan. 1998), 70–122. (Preliminary Version in Proceedings of 33rd FOCS, 1992). 4,
7, 16, 17, 18, 28, 29

[4] BABAI, L., FORTNOW, L. AND LUND, C. Nondeterministic exponential time has two-prover interac-
tive protocols. Computational Complexity, 1(1):3–40, 1991. 17, 29

[5] BABAI, L., FORTNOW, L., LEVIN, L., AND SZEGEDY, M. Checking computations in polylogarithmic
time. In Proceedings of 23rd STOC, 1991, 21–31. 1, 4, 5, 7, 16, 17, 18, 28, 29, 33, 37

[6] BARAK, B. How to go beyond the black-box simulation barrier. In Proceedings of 42nd STOC, 2001,
106–115. 4

[7] BELLARE, M., GOLDREICH, O., AND SUDAN, M. Free bits, PCPs, and nonapproximability—
towards tight results. SIAM Journal of Computing 27, 3 (June 1998), 804–915. (Preliminary Version
in 36th FOCS, 1995). 4

[8] BELLARE, M., GOLDWASSER, S., LUND, C., AND RUSSELL, A. Efficient probabilistically check-
able proofs and applications to approximation. In Proceedings of 25th STOC, 1993, 294–304. 4

[9] BEN-SASSON, E., GOLDREICH, O., HARSHA, P., SUDAN, M. AND VADHAN, S. Robust PCPs of
Proximity, Shorter PCPs and Applications to Coding. In Proceedings of 36th STOC, 2004, 13–15. 1,
4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 28

[10] BEN-SASSON, E., GOLDREICH, O., HARSHA, P., SUDAN, M. AND VADHAN, S. Short PCPs Verifi-
able in Polylogarithmic Time. In Proceedings of 20th Conference on Computational Complexity, 2005,
120–134. 7, 8, 11

[11] BEN-SASSON, E., SUDAN, M., VADHAN, S., AND WIGDERSON, A. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proceedings of 35th STOC, 2003, 612–621. 4,
5, 16, 17, 18, 28, 29

[12] BHATTACHARYYA, A. Implementing Probabilistically Checkable Proofs of Proximity. Tech-
nical report, MIT-CSAIL-TR-2005-051 (MIT-LCS-TR-998), August 8 2005. Obtainable at
http://publications.csail.mit.edu/2005trs.shtml 7

[13] CANETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle methodology, revisited. In
Journal of the ACM, 51(4), (2004), 557-594. (Preliminary version in Proceedings of 30th STOC. 4

[14] COOK, S. The complexity of theorem-proving procedures. In Proceedings of 3rd FOCS, 1971, 151–
158. 31

[15] COOK, S. Short propositional formulas represent nondeterministic computations. Information Pro-
cessing Letters, Volume 26 , Issue 5 (January 1988), 269 – 270. 33, 36

59

[16] COX, D., LITTLE, J., AND O’SHEA, D. Ideals, Varieties, and Algorithms. Springer-Verlag, Berlin,
1992. 37

[17] DINUR, I., FISCHER, E., KINDLER, G., RAZ, R., AND SAFRA, S. PCP Characterizations of NP:
Towards a Polynomially-Small Error-Probability In Proceedings 31st ACM Symp. on Theory of Com-
puting, 1999, 29-40. 37

[18] DINUR, I. The PCP Theorem by Gap Amplification. In Proceedings of 38th STOC, 2006, 241–250.
4, 7, 8, 11, 12

[19] DINUR, I., AND REINGOLD, O. PCP testers: Towards a more combinatorial proof of PCP theorem.
To appear in SIAM Journal on Computing. Preliminary version in Proceedings of 45th FOCS 2004,
155–164. 4, 5, 9

[20] FEIGE, U., GOLDWASSER, S., LOVÁSZ, L., SAFRA, S., AND SZEGEDY, M. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM 43, 2 (Mar. 1996), 268–292. (Preliminary
version in Proceedings of 32nd FOCS, 1991). 4, 17, 29

[21] FRIEDL, K., HÁTSÁGI, Z., AND SHEN., A. Low-degree tests. Proceedings of 5th SODA, 57–64,
1994. 29

[22] GOLDREICH, O. A sample of samplers – a computational perspective on sampling. Tech. Rep. TR97-
020, Electronic Colloquium on Computational Complexity, 1997. 10

[23] GOLDREICH, O. Short Locally Testable Codes and Proofs (Survey). Tech. Rep. TR05-014, Electronic
Colloquium on Computational Complexity, 2005. 5

[24] GOLDREICH, O., AND SUDAN, M. Locally testable codes and PCPs of almost linear length (second
revision). Initial version appeared in Proceedings of 43rd STOC, 2002, 13–22. 4, 5, 10, 11, 18, 28

[25] GOLDREICH, O., AND WIGDERSON, A. Tiny families of functions with random properties: A
quality–size trade–off for hashing. Journal of Random structures and Algorithms 11, 4 (Dec. 1997),
315–343. (Preliminary Version in Proceedings of 26th STOC, 1994). 10

[26] GURUSWAMI, V., LEWIN, D., SUDAN, M., AND TREVISAN, L. A tight characterization of NP with
3-query PCPs. In Proceedings of 39th FOCS, 1998, 18–27. 4

[27] HARSHA, P., AND SUDAN, M. Small PCPs with low query complexity. Computational Complexity
9, 3–4 (Dec. 2000), 157–201. (Preliminary Version in 18th STACS, 2001). 4, 18, 28

[28] HENNIE, F. C. AND STEARNS, R. E. Two-Tape Simulation of Multitape Turing Machines. Journal
of the ACM, Volume 13, Issue 4 (October 1966), 533–546. 33, 36

[29] HÅSTAD, J. Some optimal inapproximability results. Journal of the ACM 48, 4 (July 2001), 798–859.
(Preliminary Version in 29th STOC, 1997). 4

[30] KILIAN, J. A note on efficient zero-knowledge proofs and arguments (extended abstract). In Proceed-
ings of 24th STOC, 1992, 723–732. 4

[31] LEIGHTON, F. T. Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann Publish-
ers, Inc., San Mateo, CA, 1992. 57

60

[32] LIDL, R. AND NIEDERREITER, H. Finite Fields. Cambridge University Press, Cambridge, UK.
Second edition, 1997. 34, 38

[33] LINNIK, Y. On the least prime in an arithmetic progression. I. The basic theorem. In Mat. Sbornik N.
S. 15 (57), 139-178, 1944. 56

[34] LUND, C., FORTNOW, L., KARLOFF, H., AND NISAN, N. Algebraic methods for interactive proof
systems. In Journal of the ACM 39(4) (Oct. 1992), 859–868. (Preliminary version in Proceedings of
31st FOCS, 1990). 1

[35] MICALI, S. Computationally sound proofs. SIAM Journal of Computing 30, 4 (2000), 1253–1298.
(Preliminary Version in Proceedings of 35th FOCS, 1994). 4

[36] PAPADIMITRIOU, C. Computational Complexity. Addison Wesley Longman 1994. 8, 31

[37] POLISHCHUK, A., AND SPIELMAN, D. Nearly-linear size holographic proofs. In Proceedings of 26th

STOC, 1994, 194–203. 4, 6, 16, 17, 18, 28, 29, 33, 37, 44, 48

[38] SAMORODNITSKY, A., AND TREVISAN, L. A PCP characterization of NP with optimal amortized
query complexity. In Proceedings of 32 STOC, 2000, 191–199. 4

[39] SPIELMAN, D. Computationally Efficient Error-Correcting Codes and Holographic Proofs, Ph. D.
Thesis, MIT, Cambridge, MA, 1995. 16, 17, 33, 36, 48

[40] SZEGEDY, M. Many-Valued Logics and Holographic Proofs. In Proceedings of 26th ICALP, 1999,
676–686. 4

61

	Table of contents
	I Main results and ingredients
	Introduction
	Acknowledgments

	Definitions and main results
	PCPs
	Proximity and Proofs of Proximity
	Locally testable codes

	Technical ingredients of our constructions
	PCPPs for Reed-Solomon codes
	Fields of characteristic two
	RS-codes over smooth fields
	Proof of quasilinear LTC [thm:ltcs]Theorem 2.13

	Algebraic Constraint Satisfaction Problems
	Vanishing RS-codes and the PCP Construction
	Proof of quasilinear PCP [thm:main-pcp]Theorem 2.2

	Systematic RS Codes and Quasilinear PCPPs
	Proof of quasilinear PCPP [thm:main-pcpp]Theorem 2.10

	Organization of the rest of the paper

	II From Reed-Solomon proximity to quasilinear PCPs and PCPPs
	PCPPs for Vanishing and Systematic Reed-Solomon Codes
	PCPPs for vanishing Reed-Solomon --- proof of [lem:rsh]Lemma 3.12
	Agreeing Reed-Solomon codes
	PCPP for systematic Reed-Solomon codes - proof of [thm:systematic]Theorem 3.15
	PCPPs for multivariate polynomials and vanishing Reed-Muller codes

	Quasilinear reductions of NTIME(n) to ALGEBRAIC-CSP
	Warmup --- quadratic size reduction
	Quasilinear size reduction
	Systematic reduction to PAIR-ALGEBRAIC-CSP

	III PCPPs for Reed-Solomon codes
	PCPPs for Reed-Solomon codes over fields of characteristic 2
	Sketch of proof of [thm:main-rs]Theorem 3.2
	The RS proof of proximity and its associated verifier
	Basic properties
	Soundness
	Proof of [thm:main-rs]Theorem 3.2
	Proof of [lem:bivar]Lemma 6.12

	PCPPs for Reed-Solomon codes over smooth fields
	Proof overview
	The shifted Reed-Solomon code
	The SRS proof of proximity and its associated verifier
	Basic properties
	Soundness
	Proof of [thm:main-rs-mult]Theorem 3.4
	Proving [thm:main-pcp]Theorem 2.2 using smooth RS-Codes

