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Abstract. We derive various approximations for the solutions of nonlinear

hyperbolic systems with fastly oscillating initial data. We first provide er-

ror estimates for the so-called slowly varying envelope, full dispersion, and
Schrödinger approximations in a Wiener algebra; this functional framework

allows us to give precise conditions on the validity of these models; we give in

particular a rigorous proof of the “practical rule” which serves as a criterion for
the use of the slowly varying envelope approximation (SVEA). We also discuss

the extension of these models to short pulses and more generally to large spec-

trum waves, such as chirped pulses. We then derive and justify rigorously a
modified Schrödinger equation with improved frequency dispersion. Numerical

computations are then presented, which confirm the theoretical predictions.

1. Introduction

1.1. General setting. The nonlinear Schrödinger equation has been derived as an
asymptotic model for many physical problems involving the propagation of slowly
modulated oscillating plane waves. Typical examples are water-waves [16, 23] or
ferromagnetism [20] and of course nonlinear optics (see e.g. [10, 21]) for which it
plays a central role. It is aimed at approximating the solution u of a nonlinear
hyperbolic system with fast oscillating initial condition, say,

(1)

 ∂tu+A(∂)u+
1
ε
Eu = εF (u),

u|t=0 = U0(x)ei
k·x

ε + c.c.;

here ε� 1 is a small parameter corresponding to the wavelength of the oscillations
in dimensionless variables (see Assumption 1 below for more precisions). The so-
called Schrödinger approximation can be decomposed into two steps:

-a- Slowly Varying Envelope Approximation (SVEA): one writes the solution
u as the product of a fast oscillating wave train and an envelope U :

(2) u(t, x) ∼ U(t, x)ei
k·x−ω(k)t

ε + c.c.,

where (ω(k),k) solves the dispersion relation (or, equivalently, belongs to
the characteristic variety, see (13) below).

-b- The envelope U(t, x) is approximated by the solution of the nonlinear
Schrödinger equation

(3) ∂tU + (cg · ∇)U − ε i
2
R(∂, ∂)U = εF̃ (U), U|t=0 = U0,

where the group velocity cg, the second order differential operator R(∂, ∂)
and the nonlinearity F̃ can be explicitly given in terms of the data.
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The Schrödinger approximation (2)-(3) has been rigorously justified [14, 15, 17]
for times of order O(1/ε) in the usual situation where the typical scale for the
space variations of U0 is of order 1. This means that the number of oscillations (or
optical cycles) in the laser pulse is of order O(1/ε). Recently, however, lasers with
ultrashort pulses have been developed, for which the number of optical cycles is
much smaller; for such pulses, the Schrödinger equation proves completely inaccu-
rate and various authors proposed other ways of describing the asymptotics of (1)
when ε → 0. Some of these results are briefly recalled below; their common point
is that they all abandon the SVEA, because the widely accepted “practical rule”

(4) The SVEA (2) is valid if |∇U0|∞ �
1
ε

is enforced when the pulses get very small.
Alterman and Rauch [1, 2, 3] modeled short pulses by replacing the fast oscillating
term in the initial condition by a fast decaying one; more precisely, they modified
the initial condition for (1) as follows:

(5) u|t=0 = U0(x)ei
k·x

ε + c.c.  u|t=0 = U0(x,
k · x
ε

),

with U0(x, z)→ 0 as z →∞, and the SVEA (2) is consequently replaced by

u(t, x) ∼ U
(
t, x,

k · x− ω(k)t
ε

)
,

with U(t, x, z)→ 0 as z →∞. The Schrödinger equation (3) is then replaced by

(6) ∂t∂zU + (cg · ∇)∂zU + ε
1
2
R(∂, ∂)U = ε∂zF̃ (U), U|t=0 = U0;

this approximation (rigorously justified) uses the fact that the group velocity cg

does not depend on |k| and is therefore only valid in nondispersive media (E = 0
in (1)). Alterman and Rauch’s approach has been generalized in [13, 22] taking
into account the particularities of the optical susceptibility of some cubic nonlinear
media such as silica, and finally obtaining a quasilinear variant of (6), which is
rigorously justified in the linear case.
In order to model the propagation of ultrashort pulses in dispersive media, Barrailh
and Lannes [6] chose another approach based on the functional tools developed in
[18], which consist in replacing the initial condition for (1) as follows

u|t=0 = U0(x)ei
k·x

ε + c.c.  u|t=0 = U0(x, 0,
k · x
ε

),

where the Fourier transform of the initial profile U0(x, T, Z) with respect to T and
Z is an Hs-valued measure of bounded variation. This general framework allows one
to consider initial data of the form (1) –for which the bounded variation measure
is obviously U0(x)δ(ω(k),k)– and of the form (5). A generalization of (6) is then
derived and rigorously justified; this equation however has the drawback of being
quite complicated because the transport operator ∂t + cg · ∇ must be replaced by
a nonlocal operator modeling the fact that the group velocity cg depends on the
frequency in dispersive media.

An important characteristic of ultrashort pulses that we did not mention so far
is that their frequency spectrum is broad (while for usual wave packets as the initial
condition of (1), and taking the Fourier transform with respect to the fast scale x/ε,
it is essentially contained in a O(ε) neighborhood of k; see for instance [4]). Since
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the dispersion relation of the Schrödinger equation (3) is a second order Taylor
expansion of the exact dispersion relation of (1) at k, the error is quite important
if frequencies far from k must be taken into account; in addition to the violation
of the practical rule (4), this is another reason why the Schrödinger approximation
breaks down for short pulses. This phenomenon is not specific to short pulses since
it occurs for all pulses with large frequency spectrum (typical examples are chirped
pulses).
An alternative way to replace the NLS approximation for such pulses is therefore to
focus on the dispersive properties of the asymptotic model. Instead of abandoning
the SVEA (2) as in [1, 2, 3, 22, 13, 6], various authors [11, 12] chose to make this
approximation but kept the full dispersive properties of the original equations (1),
thus avoiding the disastrous (for large spectrum pulses in dispersive media) second
order Taylor expansion of the dispersion relation. Consequently, the approximations
thus obtained might have a slightly smaller range of validity, but are undoubtly
simpler and moreover provide a more precise approximation (O(ε) versus o(1)).
For instance, the equation derived in [12], and which we call full dispersion model
here, reads

∂tU +
i

ε
(ω(k + εD)− ω)U = εF̃ (U), U(x) = U0(x),

where ω(·) parameterizes the graph of the relevant sheet of the characteristic variety
(quite obviously (3) can be deduced from this equation by Taylor expanding ω(·)
at k). This model is much simpler than the one derived in [6] and furnishes very
satisfactory results; however it is still a nonlocal equation and its resolution requires
spectral methods. One of the goals of this paper is to derive a new approximation,
with, in practical, the same dispersive qualities as the full dispersion model, but
keeping the same level of complexity as the usual Schrödinger equation (3).

Before describing with more details the results of this paper, let us introduce
here two kinds of initial data for (1), which we will often refer to throughout the
article:

• Short-pulses: the initial profile U0(x) in (1) is taken of the form

(7) U0(x) = f(
x− x0

β
),

with 0 < β ≤ 1 and f a smooth function; the case β = 1 corresponds to
classical laser pulses, and short pulses to β � 1 (see Fig. 1); the number
of optical cycles for such a short pulse is thus O(ε/β);
• Chirped pulses: the initial profile U0(x) in (1) is taken of the form

(8) U0(x) = f(x− x0) cos(
1
β

cos(
x− x0

β
)),

with 0 < β ≤ 1 and f a smooth function; the case β = 1 corresponds to
classical laser pulses, and chirped pulses to β � 1 (see Fig. 2).

More precisely, we propose here to:
(1) Provide a framework simpler than [6] but general enough to handle any kind

of large spectrum pulses (such as ultrashort and chirped pulses). The idea
here is to keep the SVEA and to work with envelopes which are in a Wiener
algebra. The reason of this choice is that when β → 0, the Wiener norm
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Figure 1. Initial condition U0(x)ei
k·x

ε +c.c. with U0 as in (7) and
f = e−x

2
, x0 = 5, ε = 0.01, and for β = 1 and β = 0.1

2
3

4
5

6
7

8
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

2
3

4
5

6
7

8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Initial condition U0(x)ei
k·x

ε +c.c. with U0 as in (8) and
f = e−x

2
, x0 = 5, ε = 0.01, and for β = 1 and β = 0.1

(which controls the L∞-norm) of the initial envelopes (7) remain bounded
while any Sobolev norm controlling the L∞-norm grows to infinity;

(2) Rigorously prove the “practical rule” (4). We show that the SVEA (2)
makes sense if |∇U0|W � 1

ε , where | · |W is the Wiener norm (see (16)
below); in the case of short-pulses (7), this condition is equivalent to ε� β;

(3) Establish precise error estimates for the full dispersion and Schrödinger
models. This allows us to give precise estimates on the range of validity of
these models;

(4) Derive and rigorously justify a new family of Schrödinger equations with
improved frequency dispersion and whose formulation is purely differential
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(without nonlocal operator). The idea is to approximate the nonlocal op-
erator of the full dispersion model by a suitable rational function, following
an idea which proved very useful in water-waves theory (derivation of the
BBM equation from the KdV equation [7], derivation of Boussinesq models
with improved frequency dispersion [8, 9]). These equations read

(9)

(
1− iεb · ∇ − ε2∇ ·B∇

)
∂tU + (cg · ∇)U

− ε i
2
R(∂, ∂)U + iε∇ · (∇ω1(k)bT )∇U + ε2C(∇)U = F̃ (U),

where b ∈ Cd, B ∈ Md×d(R) and C : Cd × Cd × Cd → C is a trilinear
mapping (taking b = 0, B = 0 and C = 0 gives therefore (3));

(5) Present some numerical comparisons between the different asymptotic mod-
els, for ultrashort and chirped pulses.

1.2. Organization of the paper. Section 2 is devoted to the derivation and jus-
tification of the different asymptotic models. Basic assumptions, definitions, and
tools are first given in §2.1 and we then proceed to prove the envelope approxima-
tion (2) in §2.2; in particular, precise error estimates are established which allow
one to give a rigorous proof of the practical rule (4). In §2.3, we then derive and
give precise error estimates in a Wiener algebra setting of the full dispersion model
(§2.3.1) and the Schrödinger model (§2.3.2). Finally the new Schrödinger equations
(9) are derived in §2.3.3.

In Section 3, we present numerical computations in order to make a comparison
of the different asymptotic models.

1.3. Notations. - We denote generically by Cst a constant whose value may
change from one line to another;
- We use the abbreviation c.c. for “complex conjugate”, so that for all a ∈ C,
a+ c.c. = a+ a;
- If a,b ∈ Cd then a · b denotes the scalar (not hermitian) product: a · b =∑d
j=1 ajbj .

- For all x ∈ Rd, we write x = (x1, . . . , xd), and ∂j stands for ∂j = ∂xj
; we also

write ∇ = (∂1, . . . , ∂d)T and, for all multi-index α ∈ Nd, ∂α = ∂α1
1 . . . ∂αd

d ;
- For all j = 1, . . . , d, we write Dj = 1

i ∂j and D = (D1, . . . , Dd) = 1
i∇

T ;
- The Fourier transform of a distribution u ∈ S(Rd) is denoted either by Fu or û;
- We use the classical notation for Fourier multipliers:

f(D)u = F−1
(
ξ 7→ f(ξ)û(ξ)

)
;

- If f ∈ L∞(Rd), we simply write |f |∞ = |f |L∞ .

2. Asymptotic results

This section is devoted to the study of the asymptotic behavior when ε goes to
zero of the solution to the initial value problem (ivp)

(10)

 ∂tu+A(∂)u+
E

ε
u = εT (u, u, u),

u|t=0 = U0(x)ei
k·x

ε + c.c.,

where A(∂), E and T (·, ·, ·) are defined in the next section.
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2.1. Basic assumptions and tools. We make the following assumption on the
operators A(∂), E and T (·, ·, ·) which appear in (10):

Assumption 1. i. The system (10) is symmetric hyperbolic in the sense that for
some n ≥ 1:

• One has A(∂) =
∑d
j=1Aj∂j, and the Aj are n× n symmetric, real-valued,

matrices;
• The n× n matrix E is real and skew-symmetric;

ii. The mapping

T =
C3n → Cn

(u1, u2, u3) 7→ T (u1, u2, u3),
is linear with respect to u1, u2 and u3.

Example 1. A standard model for the propagation of a beam in a Kerr medium is
the Maxwell-Lorentz system which can be written in dimensionless form as

(11)


∂tB + curl E = 0,
∂tE − curl B + 1

εQ = 0,
∂tQ− 1

ε (E − P ) = |P |2P,
∂tP − 1

εQ = 0,

where (E,B) is the electromagnetic field, P the polarization and Q = ε∂tP . This
system is of the form (10) and satisfies Assumption 1 with n = 4d and

A(∂) =


0 ∇× 0 0
−∇× 0 0 0

0 0 0 0
0 0 0 0

 and E =


0 0 0 0
0 0 Id×d 0
0 −Id×d 0 Id×d
0 0 −Id×d 0


(the entries in the above matrices are d×d matrices); denoting uj = (Bj , Ej , Qj , P j)
(j = 1, 2, 3), the nonlinearity is given by

T (u1, u2, u3) =


0
0

(P 1 · P 2)P 3

0

 .

Example 2. A simple toy model is the following Klein-Gordon system

(12) ∂tu+
(

0 ∇T
∇ 0

)
u+

1
ε

(
0 −v
vT 0

)
u = |u|2

(
0 −v
vT 0

)
u,

with u : R+
t × Rdx 7→ C1+d and v ∈ Rd\{0}.

Quite obviously, (12) is of the form (10) and satisfies Assumption 1 with n = 1+d,

A(∂) =
(

0 ∇T
∇ 0

)
, E =

(
0 −vT

v 0

)
and T (u1, u2, u3) = (u1 · u2)

(
0 −vT

v 0

)
u3.

Under Assumption 1, the matrix A(k) + E
i =

∑d
j=1Ajkj + E

i is hermitian for
all k ∈ Rd, and thus diagonalizable, with real eigenvalues. We can therefore define
the characteristic variety as

(13) C := {(ω,k) ∈ R× Rd, ω is an eigenvalue of A(k) +
E

i
};
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introducing

(14) L(ω,k) := −ωI +A(k) +
E

i
,

one can equivalently define C as the set of all (ω,k) ∈ R× Rd such that L(ω,k) is
not invertible.

It is classical and not restrictive for our present concern to make the following
assumption on C:

Assumption 2. There exists m ∈ N and m different smooth functions ωj ∈
C∞(Rd\{0}) (j = 1, . . . ,m), such that for all k ∈ Rd\{0}, the eigenvalues of
A(k) + E

i are exactly ωj(k) (j = 1, . . . ,m).

Under this Assumption 2, one can write, for all k ∈ Rd\{0},

(15) A(k) +
E

i
=

m∑
j=1

ωj(k)πj(k),

where πj(k) denote the eigenprojector associated to ωj(k) (in particular, πj ∈
C∞(Rd\{0};Mn(C)).

We finally need a last assumption on the wave number k of the initial data of
the ivp (10) in order to justify the asymptotic equations derived in this article.

Assumption 3. One has k 6= 0 and, with ω = ω1(k):

• One has (3ω, 3k) /∈ C;
• With the notations of Assumption 2,

∃c0 > 0, ∀j = 2, . . . ,m, inf
k∈Rd\{0}

∣∣ω − ωj(k)
∣∣ ≥ c0.

Remark 1. The first part of the assumption excludes resonances with the third har-
monic. The results presented here could easily be extended to cover such a situation,
but it is not restrictive at all to make this assumption.

Example 3. For the Maxwell equations (11), one can check after some computa-
tions that Assumption 2 is satisfied with m = 7 and

ω1(k) =
1
2
(√

2(1 + |k|) + |k|2 +
√

2(1− |k|) + |k|2
)
,

ω2(k) =
√

2,

ω3(k) =
1
2
(√

2(1 + |k|) + |k|2 −
√

2(1− |k|) + |k|2
)
,

ω4(k) = 0,

and ω5 = −ω3, ω6 = −ω2, ω7 = −ω1 (so that ω1 > ω2 > · · · > ω7 on Rd\{0}); one
can therefore take c0 = ω1(k)−

√
2 > 0.

Example 4. For the Klein-Gordon system (12) one readily checks that Assumption
2 is satisfied with m = 2, ω1(k) =

√
|k|2 + |v|2 and ω2 = −ω1. One can then

remark that Assumption 3 also holds for all k 6= 0 and c0 = ω1(k) + |v|.
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We finally end this section with some results on the Wiener algebras. First
recall that W k(Rd; Cn) (k, n ∈ N) and W (RdX × Tθ; Cn) (which will be denoted by
W (Rd × T; Cn) in the sequel) are defined as

(16) W k(Rd; Cn) := {f ∈ S ′(Rd)n,∀α ∈ Nd, |α| ≤ k, |∂αf |W <∞},

with |f |W := |f̂ |L1(Rd;Cn), and

W (Rd × T; Cn) := {f =
∑
n∈Z

fn(X)einθ, |f |W (Rd×T) :=
∑
n

|fn|W <∞}

(when k = 0, we write W (Rd; Cn) instead of W 0(Rd; Cn)).
The classical properties of the Wiener algebras used in this article are recalled in
the following proposition.

Proposition 1. i. The space W k(Rd; C), k ∈ N, (resp. W (Rd × T; C)) is an
algebra in the sense that the mapping (f, g) 7→ fg is continuous from W k(Rd; C)2

into W k(Rd; C) (resp. W (Rd × T; C)2 into W (Rd × T; C)).
ii. If M is a skew-symmetric, real valued n× n matrix, then exp(−iM) is unitary
on W k(Rd; Cn) (resp. W k(Rd × T; Cn)).
iii. If f ∈ W (Rd; C) then for all β > 0, one has f( ·β ) ∈ W (Rd; C) and |f( ·β )|W =
|f |W .

Remark 2. As said in the introduction, the third point of Proposition 1 is the main
motivation to work with Wiener algebra rather than Sobolev spaces, because the
W (Rd; Cn)-norm of initial conditions of the form (7) remains bounded (constant)
while its Hs-norm is of size O(βd/2−s) as β → 0. This framework is somehow a
simplified version of the functional setting of [6] (where the SVEA is not made) and
has also proved useful in the study of wave-packets [5].

2.2. The envelope approximation. This section is devoted to the justification
of the envelope approximation which states that the exact solution to (10) can be
described at leading order by uεapp defined as

(17) uεapp(t, x) = U(t, x)ei
k·x−ωt

ε + c.c.,

where the envelope U solves the envelope equation

(18)
{
∂tU + i

εL(ω,k + εD)U = εT (U)
U|t=0(x) = U0(x),

with L(·, ·) given by (14) and T is defined as

T (U) = T (U,U,U) + T (U,U, U) + T (U,U, U).

The interest of the envelope equation (18) with respect to the original ivp (10)
is that the fast oscillating scale has been removed from the initial data. The main
result of this section is the following theorem.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied, and let a, b ∈ W 1(Rd; Cn),
and

U0 = π1(k)a+ εb (Polarization condition).

i. There exists a time τ0 > 0 such that for all 0 < ε < 1, there is a unique solution
U ∈ C([0, τ0ε );W (Rd; Cn)) to (18);
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ii. For all 0 < τ < τ0, there exists ε0 such that for all 0 < ε < ε0, there is a unique
solution uεex ∈ C([0, τ/ε]× Rd)n to (10), and one has

|uεex − uεapp|L∞([0,τ/ε]×Rd)n ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ),

where uεapp is as defined in (17).

Remark 3. Assuming that |U0|W and |b|W are O(1) quantities –which is of course
the case for short pulses–, one deduces the following result

The SVEA is valid if |∇U0|W �
1
ε
,

and Theorem 1 thus provides a rigorous basis for the “practical rule” (4). When
working with short pulses with initial condition (7), it is easy to check that this
condition reads simply ε� β.

Remark 4. Working in the more classical framework of Sobolev spaces, one could
establish an error estimate similar to the one given by the theorem, but with Hs-
norms (s > d/2) instead of W -norms in the rhs of the estimates. For short pulses
with initial data (7), the control would therefore be of the form εC(τ, 1

βs−d/2 ) 1
βs+(1−d)/2 ,

which is obviously useless when β → 0.

Proof. Let us prove the following lemma, which implies the first point of the theo-
rem.

Lemma 1. Let U0 ∈W (Rd; Cn), and assume that Assumption 1 is satisfied.
There exists τ0 > 0 such that for all 0 < ε < 1 one has a unique solution U ∈
C([0, τ0ε );W (Rd; Cn)) to (18). For all 0 < τ < τ0, one has

(a) sup
0≤t≤τ/ε

|U(t)|W ≤ C(τ, |U0|W );

if moreover U0 ∈W 1(Rd; Cn) then one also has

(b) sup
0≤t≤τ/ε

|∇U(t)|W ≤ C(τ, |U0|W )|∇U0|W .

Proof. Uniqueness is obvious, and to prove existence, we use a classical iterative
method: let U0 = U0 and, for all n ∈ N,

Un+1(t) = S(t)U0 + ε

∫ t

0

S(t− t′)T (Un)dt′,

with S(t) = exp(− itε L(ω,k + εD)).
Since L(ω,k+εξ) is real and skew-symmetric for all ξ ∈ Rd, we can use Proposition
1 and the trilinearity of T to get

sup
[0,t]

|Un+1|W ≤ |U0|W + εCst t
(

sup
[0,t]

|Un|W
)3
,

and

sup
[0,t]

|Un+1 − Un|W ≤ εCst tC
(

sup
[0,t]

|Un|W , sup
[0,t]

|Un−1|W
)

sup
[0,t]

|Un − Un−1|W ,

and it follows easily that the sequence (Un)n converges in C([0, τε ];W 0(Rd; Cn))
(for some τ > 0) to a solution U of

(19) U(t) = S(t)U0 + ε

∫ t

0

S(t− t′)T (U)dt′;
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the solution can then be extended to a maximal time interval [0, τmax(ε)
ε ) and one

can show with classical arguments that τ0 := inf0<ε<1 τmax(ε) > 0. The estimate
(a) of the lemma also follows easily from (19) and a Gronwall-type lemma.
Differentiating (19) with respect to xj (j = 1, . . . , d) and using Proposition 1 to
control the W (Rd; Cn)-norm, one gets

|∂jU(t)|W ≤ |∂jU0|W + εCst
∫ t

0

|U(t′)|2W |∂jU(t′)|W dt′,

and the estimate (b) follows from Gronwall’s lemma and the estimate (a). �

Before going further in the proof of the theorem, let us introduce some notation.
We decompose the solution U of (18) provided by Lemma 1 as

U = U1 + · · ·+ Um, with Uj = πj(k + εD)U,

and we also write UII = U2 + · · ·+ Um.
The first step of the proof of the second part of the theorem consists in controlling
∂tU1 uniformly in ε –which is much better than the O(1/ε) estimate on ∂tU one
can deduce directly from the equation (18).

Lemma 2. If Assumptions 1 and 2 are satisfied, then for all 0 < τ < τ0,

sup
0≤t≤τ/ε

|∂tU1|W ≤ C(τ, |U0|W )
(
1 + |∇U0|W

)
.

Proof. Multiplying the envelope equation (18) by π1(k + εD), one gets

(20) ∂tU1 +
i

ε

(
ω1(k + εD)− ω

)
U1 = επ1(k + εD)T (U).

Recalling that ω = ω1(k), a first order Taylor expansion shows that∣∣(ω1(k + εD)− ω
)
U1

∣∣
W
≤ ε|∇ω1|L∞ |∇U1|W

(note that one infers |∇ω1|L∞ < ∞ from the observation that for all k 6= 0,
∂jω1(k)π1(k) = π1(k)Ajπ1(k)). It follows therefore from (20), the trilinearity of
T , and Proposition 1 that

|∂tU1|W ≤ |∇ω1|L∞ |∇U1|W + Cst ε|U |3W ,

and the result follows from Lemma 1. �

We now prove that the components Uj (j ≥ 2) remain of size O(ε) if this is
initially the case.

Lemma 3. If Assumptions 1, 2 and 3 are satisfied, and if U0 = π1(k)a+ εb, then
one has, for all 0 < τ < τ0,

sup
t∈[0,τ/ε]

|UII(t)|W ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ).

Proof. Multiplying (18) by πj(k + εD) (j ≥ 2) gives

∂tUj +
i

ε

(
ωj(k + εD)− ω

)
Uj = επj(k + εD)T (U)

= επj(k + εD)T (U1) + επj(k + εD)
(
T (U)− T (U1)

)
.
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With Sj(t) = exp
(
− i tε (ωj(k + εD)− ω)

)
, one gets therefore

Uj(t) = Sj(t)U0
j + ε

∫ t

0

Sj(t− t′)πj(k + εD)T (U1)dt′

+ε
∫ t

0

Sj(t− t′)πj(k + εD)
(
T (U)− T (U1)

)
dt′.(21)

We now bound the W -norm of the three terms of the r.h.s. of (21):
• Estimate of Sj(t)U0

j . Since Sj(t) is unitary on W (Rd; Cn), one has

|Sj(t)U0
j |W = |U0

j |W = |πj(k + εD)U0|W .

Since moreover one can write

πj(k + εD)U0 = (πj(k + εD)− πj(k))U0 + πj(k)U0,

it follows from the orthogonality of the projectors πj (j = 1, . . . ,m) that

πj(k + εD)U0 = (πj(k + εD)− πj(k))U0 + επj(k)b.

Since the derivatives of πj(·) are in general not bounded near the origin,
we cannot control the first term of the rhs by a Taylor expansion and we
thus write

πj(k + εD)U0 = (πj(k + εD)− πj(k))1{ε|D|≤|k|/2}U0

+ (πj(k + εD)− πj(k))1{ε|D|≥|k|/2}U0 + επj(k)b,

where 1{ε|ξ|≤|k|/2} = 1 if ε|ξ| ≤ |k|/2 and 0 otherwise.
Using the fact that πj(·) is C∞ on the ball of center k and radius |k|/2, we
can bound the first term of the rhs in W (Rd,Cn)-norm by εCst |∇U0|W ;
one can also check that a similar estimate holds for the second term of the
lhs since one has 1 ≤ 2ε

|k| |ξ| for all ε|ξ| ≥ |k|/2. We can thus conclude that

(22) |Sj(t)U0
j |W ≤ εCst (|b|W + |∇U0|W ).

• Estimate of A := ε
∫ t
0
Sj(t − t′)πj(k + εD)T (U1)dt′. Taking the Fourier

transform of this term and integrating by parts yields

ε

∫ t

0

exp
(
− i t− t

′

ε
(ωj(k + εξ)− ω)

)
πj(k + εξ)T̂ (U1)dt′

= −iε
∫ t

0

ε exp
(
− i t−t

′

ε (ωj(k + εξ)− ω)
)

ωj(k + εξ)− ω
πj(k + εξ)∂tT̂ (U1)dt′

+iε
[ε exp

(
− i t−t

′

ε (ωj(k + εξ)− ω)
)

ωj(k + εξ)− ω
πj(k + εξ)T̂ (U1)

]t
0
.

One deduces therefore, using Assumption 3, that

sup
t∈[0,τ/ε]

|A(t)|W ≤ Cst
ετ

c0
sup

[0,τ/ε]

|U1|2W sup
[0,τ/ε]

|∂tU1|W + Cst
ε2

c0
sup

[0,τ/ε]

|U1|3W ,

so that, owing to Lemmas 1 and 2,

(23) sup
t∈[0,τ/ε]

|A(t)|W ≤ εC(τ, |U0|W )(1 + |∇U0|W ).
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• Estimate of B := ε
∫ t
0
Sj(t− t′)πj(k+εD)

(
T (U)−T (U1)

)
dt′. First remark

that owing to the trilinearity of T , one has for all t ∈ [0, τ/ε],∣∣T (U)(t)− T (U1)(t)
∣∣
W
≤ Cst sup

[0,τ/ε]

|U |2W |UII(t)|W ;

using Lemma 1, we obtain therefore

(24) sup
t∈[0,τ/ε]

|B(t)|W ≤ εC(τ, |U0|W )
∫ t

0

|UII(t′)|W dt′.

It is now a direct consequence of (21)j (j = 2, . . .m) and (22)-(24) that for all
t ∈ [0, τ/ε],

|UII(t)|W ≤ ε(|b|W + C(τ, |U0|W )(1 + |∇U0|W ) + εC(τ, |U0|W )
∫ t

0

|UII(t′)|W dt′,

and the result follows therefore from Gronwall’s lemma. �

We are now set to conclude the proof of the theorem. We look for an exact
solution uεex to (10) under the form

uεex(t, x) = Uex(t, x,
k · x− ωt

ε
),

with Uex ∈W (Rd × T; Cn) itself of the form

Uex(t, x, θ) = Uapp(t, x, θ) + εV (t, x, θ),

with Uapp(t, x, θ) = U(t, x)eiθ + c.c. and V bounded in W (Rd × T; Cn). With U as
given by Lemma 1, the equation that V must solve is

∂tV +
i

ε
L(ωDθ,kDθ + εD)V = T (U,U, U)ei3θ + c.c.

+
(
T (Uapp + εV, Uapp + εV , Uapp + εV )− T (Uapp, Uapp, Uapp)

)
.

Owing to the first part of Assumption 3, we can look for V under the form

V (t, x, θ) = V0(t, x, θ) + εV1(t, x)ei3θ + c.c.,

with V1 = −iL(3ω, 3k)−1T (U1, U1, U1); the resulting equation on V0 is

(25) ∂tV0 +
i

ε
L(ωDθ,kDθ + εD)V0 = I1 + I2 + I3,

with

I1 =
(
T (U,U, U)− T (U1, U1, U1)

)
ei3θ + c.c.

I2 = −ε
(
∂t +A(∂)

)
V1e

3iθ + c.c.

I3 =
(
T (Uapp + εV, Uapp + εV , Uapp + εV )− T (Uapp, Uapp, Uapp)

)
.

Let us now bound Ij (j = 1, 2, 3) in W (Rd × T; Cn) and for all t ∈ [0, τ/ε]:
• From Lemmas 1 and 3, one gets

(26) |I1(t)|W (Rd×T) ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ).

• From the definition of V1 and Lemmas 1-2, one has directly

(27) |I2(t)|W (Rd×T) ≤ εC(τ, |U0|W )(1 + |∇U0|W ).

• From the trilinearity of T and Lemma 1, one gets

(28) |I3(t)|W (Rd×T) ≤ εC(τ, |U0|W )(1 + |V0(t)|W + ε|V0(t)|2W + ε2|V0(t)|3W ).



SHORT PULSES APPROXIMATIONS IN DISPERSIVE MEDIA 13

By Proposition 1, the semigroup S(t) = exp(−i tεL(ωDθ,kDθ + εD)) is unitary on
W (Rd × T), so that the estimates (26)-(28) allow one to conclude to the existence
of a solution V0 ∈ C([0, τ/ε];W (Rd × T)n) to (25) using a fixed point formulation
similar to the one used in the proof of Lemma 1. After a Gronwall argument, one
also gets

(29) sup
0≤t≤τ/ε

|V0(t)|W ≤ C(τ, |U0|W )(1 + |b|W + |∇U0|W ).

Remark 5. In fact, one finds that V0 exists a priori on a time interval [0, τ ′/ε],
with τ ′ ≤ τ . However, by a classical procedure of continuous induction (such as
in the proof of Theorem 3 in [19] for instance), one can get τ ′ = τ , provided that
0 < ε < ε0 with ε0 small enough.

It follows from the above that

sup
t∈[0,τ/ε]

|Uex(t)− Uapp(t)|W (Rd×T) ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ),

and the theorem follows therefore from the observation that

|uεex − uεapp|L∞([0,τ/ε]×Rd) ≤ sup
t∈[0,τ/ε]

|Uex(t)− Uapp(t)|W (Rd×T).

�

2.3. Approximations by scalar equations.

2.3.1. The full dispersion model. The full dispersion model consists in approximat-
ing the exact solution to (10) by uεapp,1 defined as

(30) uεapp,1(t, x) = U(1)(t, x)ei
k·x−ωt

ε + c.c.,

where U(1) solves the full dispersion scalar equation

(31)
{
∂tU(1) + i

ε (ω1(k + εD)− ω)U(1) = επ1(k)T (U(1))
U(1) |t=0(x) = U0(x)

and with ω1(·) as in Assumption 1.
The following corollary shows that the full dispersion scalar equation yields an
approximation of same precision than the envelope equation for times t ∈ [0, τ/ε].

Corollary 1 (Full dispersion model). Under the assumptions of Theorem 1, and
for all 0 < ε < ε0 (ε0 > 0 small enough), there exists a unique solution U(1) ∈
C([0, τ0/ε);W (Rd; Cn)) to (31).
For all 0 < τ < τ0, one also has

|uεex − uεapp,1|L∞([0,τ/ε]×Rd) ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ),

where uεapp,1 is as defined in (30).

Remark 6. The quantity U(1) remains Cn-valued, but we call (31) a scalar ap-
proximation because the operator i

ε (ω1(k+ εD)−ω) is scalar, which is not the case
of i

εL(ω,k + εD) in the envelope equation (18). The interest of the FD model is
that i

ε (ω1(k+ εD)−ω)u remains bounded for spectrally localized functions u, while
i
εL(ω,k+ εD)u is of order O(1/ε). The fast oscillations of the nonpolarized modes
must therefore be taken into account with the envelope approximation, and the dis-
cretization step must therefore be much smaller in numerical computations than for
the FD model.
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Remark 7. i. Performing the same analysis as in Remark 3, one can check that
the “practical rule” also applies for the FD model.
ii. The FD model has been derived and studied in [12] (it is called “intermedi-
ate model” in that reference) for the study of chirped pulses with initial data (8).
However the error estimate provided in [12] is of the form εC(τ, |U0|Hs), with s
large, which, as explained in Remark 4 is not small for short pulses (or more gen-
erally large spectrum –including chirped– pulses). Note that a variant of the FD
model with the orthoganal projector π1(k) replaced by π1(k + εD) in front of the
nonlinearity is also studied in [12] and gives very good results.

Proof. We omit the existence/uniqueness part of the corollary, since it is obtained
with the same tools as for Theorem 1 (in particular, taking a smaller ε0 if necessary,
the existence time of the envelope equation is larger than the existence time for (31)
and we can thus take the same τ0 as in Theorem 1), and we thus focus on the error
estimate.
Denoting as in the proof of Theorem 1 U1 = π1(k + εD)U , where U is the solution
of the envelope equation, one gets from Lemma 3 that

sup
t∈[0,τ/ε]

|U(t)− U1(t)|W ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ),

so that it suffices to control |U1(t) − U(1)(t)|W to prove the corollary. Applying
π1(k + εD) to (18), one gets

∂tU1 +
i

ε
(ω1(k + εD)− ω)U1 = επ1(k + εD)T (U),

so that the difference V = U1 − U(1) solves

(32)
{
∂tV + i

ε (ω1(k + εD)− ω)V = επ1(k + εD)T (U)− επ1(k)T (U(1))
V|t=0(x) = π1(k + εD)U0 − U0.

Remark now that

π1(k + εD)T (U)− π1(k)T (U(1)) =
(
π1(k + εD)− π1(k)

)
T (U)

+π1(k)
(
T (U)− T (U1)

)
+ π1(k)

(
T (U1)− T (U(1))

)
.(33)

Since |(π1(k + εD) − π1(k))T (U)|W ≤ εCst |∇T (U)|W (see the proof of (22)),
one can use Lemma 1 to bound the first component of the rhs of (33) from above
by εC(τ, |U0|W )|∇U0|W . The second component of (33) can be estimated exactly
as the term I1 in (26), while the last one is bounded from above in W (Rd; Cn)
by C(|U1|W , |U(1)|W )|V |W . Since moreover |U1|W is controlled by Lemma 1 and
that a similar estimates also holds obviously for |U(1)|W , one deduces that for all
0 ≤ t ≤ τ/ε,

|T (U(t))−T (U(1)(t))|W ≤ εC(τ, |U0|W )(1+ |b|W + |∇U0|W )+C(τ, |U0|W )|V (t)|W .

This inequality, together with an energy estimate on (32) and a Gronwall argument
shows that

sup
t∈[0,τ/ε]

|V (t)|W ≤ εC(τ, |U0|W )(1 + |b|W + |∇U0|W ),

where we also used the estimate |π1(k+εD)U0−U0|W ≤ εCst (1+ |b|W + |∇U0|W )
(which is proved with the same arguments as (22)). �
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2.3.2. The nonlinear Schrödinger equation. In the Schrödinger approximation, the
exact solution to (10) is approximated by uεapp,2 defined as

(34) uεapp,2(t, x) = U(2)(t, x)ei
k·x−ωt

ε + c.c.,

where U(2) solves the nonlinear Schrödinger equation

(35)

{
∂tU(2) +

(
∇ω1(k) · ∇

)
U(2) − ε

i

2
(
∇ ·Hk(ω1)∇

)
U(2) = επ1(k)T (U(2))

U(2) |t=0(x) = U0(x),

and where Hk(ω1) stands for the Hessian of ω1(·) at k. One then has

Corollary 2 (Schrödinger approximation). Under the assumptions of Theorem 1,
and for all 0 < ε < ε0 (ε0 > 0 small enough), there exists a unique solution
U(2) ∈ C([0, τ0/ε);W (Rd; Cn)) to (35).
If moreover U0 ∈W 3(Rd; Cn) then for all 0 < τ < τ0, one also has

|uεex−uεapp,2|L∞([0,τ/ε]×Rd) ≤ εC(τ, |U0|W )(1+ |∇U0|W + |b|W + |cSchrod|∞|U0|W 3),

where uεapp,2 is as defined in (34) and

cSchrod(ξ) :=

(
ω1(k + εξ)−

(
ω + ε∇ω1(k) · ξ + ε2 1

2ξ ·Hk(ω1)ξ
))

ε3(1 + |ξ|3)
.

Remark 8. i. A third order Taylor expansion of ω1(k + εξ) at ξ = 0 shows that
|cSchrod|∞ is finite and can be bounded from above independently from ε.
ii. The component |cSchrod|∞|U0|W 3 of the error estimate does not appear for
the full dispersion model. It is due to the approximation of the nonlocal operator
i
ε (ω1(k + εD)−ω) (lhs of (31)) by the differential operator ∇ω1(k) · ∇U(2)− ε i2∇ ·
Hk∇U(2) (lhs of (35)). This error term is thus a linear effect.
iii. This additional term is responsible for the bad behavior of the Schrödinger equa-
tion to model short pulses (and more generally large spectrum waves such as chirped
pulses). For instance, for initial data like (7), the precision of the Schrödinger
approximation is of order O(ε( 1

β + |cSchrod|∞
β3 )) when β � 1. In order for the

Schrödinger approximation to keep the same order of precision as the full dis-
persion model, one needs therefore to have |cSchrod|∞

β3 . 1
β , which requires that

β2 ≥ |cSchrod|∞. This condition is far much restrictive than the practical rule
β � ε.
iv. The Schrödinger approximation has been rigorously justified for systems of the
form (10) (and also for some quasilinear generalizations) by Donnat, Joly, Métivier
and Rauch [14, 15] and Lannes [17] but in the Sobolev framework which we saw is
not adapted for the study of large spectrum pulses.

Proof. As in the proof of Corollary 1, we focus on the error estimate and omit the
existence/uniqueness part of the proof.
The difference V = U(1)−U(2) of the solution of the full dispersion and Schrödinger
equations solves the initial value problem
(36){

∂tV + i
ε (ω1(k + εD)− ω)V = επ1(k)

(
T (U(1))− T (U(2))

)
− ε2R2(D)U(2)

V|t=0(x) = 0.

where for all ξ ∈ Rd,

R2(ξ) =
1
ε3
(
iω1(k + εξ)− iω − iε∇ω1(k) · ξ − ε2 i

2
ξ ·Hk(ω1)ξ

)
.
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Remark now that one has for all 0 ≤ t ≤ τ/ε,
|R2(D)U(2)(t)|W ≤ |cSchrod|∞|U2(t)|W 3 ,

with cSchrod(·) as in the statement of the corollary; differentiating the Schrödinger
equation (35) and estimating the W -norm of the solution, one also gets easily

sup
t∈[0,τ/ε]

|U(2)(t)|W 3 ≤ C(τ, |U0|W )(1 + |U0|W 3).

Since the first term of the r.h.s. of (36) can be bounded as in (26), one gets from
Gronwall’s lemma applied to (36) that

sup
t∈[0,τ/ε]

|V (t)|W ≤ C(τ, |U0|W )(1 + |cSchrod|∞|U0|W 3)

which, together with Corollary 1, yields the result. �

2.3.3. The nonlinear Schrödinger equation with improved dispersion relation. As
said in the introduction, we propose in this paper new approximations based on a
family of modified Schrödinger equations, whose dispersive properties are closer to
the exact model. Such an approximation uεapp,3 is defined as

(37) uεapp,3(t, x) = U(3)(t, x)ei
k·x−ωt

ε + c.c.,

where U(3) solves the nonlinear Schrödinger equation with improved dispersion re-
lation:

(38)


(
1− iεb · ∇ − ε2∇ ·B∇

)
∂tU(3)

+
(
∇ω1(k) · ∇ − iε∇ · (1

2
Hk(ω1) +∇ω1(k)bT )∇+ ε2C(∇)

)
U(3)

= επ1(k)T (U(3))
U(3) |t=0(x) = U0(x),

where b ∈ Cd, B ∈ Md×d(R) and C : Cd × Cd × Cd → C is a trilinear mapping.
We assume moreover that

(39) B is symmetric positive, b ∈ Range(B), and 4− b · (B−1b) > 0

(note that even though B−1b is not unique when B is not definite, the scalar
b · (B−1b) is uniquely defined). One then has the following result:

Corollary 3 (Improved Schrödinger approximation). Under the assumptions of
Theorem 1, and for all 0 < ε < ε0 (ε0 > 0 small enough), there exists a unique
solution U(3) ∈ C([0, τ0/ε);W (Rd; Cn)) to (38).
If moreover U0 ∈W 3(Rd; Cn) then for all 0 < τ < τ0, one also has

|uεex−uεapp,3|L∞([0,τ/ε]×Rd) ≤ εC(τ, |U0|W )(1+|∇U0|W+|b|W+|cimproved|∞|U0|W 3),

where uεapp,3 is as defined in (37) and

cimproved(ξ) :=
ω1(k + εξ)−

(
ω + ε

∇ω1(k)·ξ+εξ·( 1
2Hk(ω1)+∇ω1(k)bT )ξ−ε2C(ξ)

1+εb·ξ+ε2ξ·Bξ
)

ε3(1 + |ξ|3)
.

Remark 9. i. As for the Schrödinger equation, one can check by a simple Taylor
expansion that |cimproved|∞ is finite and uniformly bounded with respect to ε.
ii. Taking b = 0, B = 0 and C = 0 (this choice satisfies (39)), one recovers the
usual Schrödinger equation (35).
iii. The interest of (38) with respect to (35) is that one can choose b, B and
C such that cimproved � cSchrod, thus improving considerably the accuracy of the
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Figure 3.
cimproved(ξ)
cSchrod(ξ) for ε = 0.01 with the coefficients (40).

approximation. In the one dimensional case d = 1, it is possible to choose b, B and
C in such a way that the dispersion relation for (38) is the [3,2]-Padé expansion of
the dispersion relation of (31). For the case of the Klein-Gordon system (12), this
leads to

(40) b =
2k

v2 + k2 , B =
v2 + 4k2

4(v2 + k2)2
, C =

k(3v2 + 4k2)
4(v2 + k2)5/2

;

we illustrate in Figure 3 how much one gains by working with (38) instead of (35)
for the Klein-Gordon system (12) with v = k = 1.

iv. The same analysis as is Remark 8.iii shows that the approximation provided
by (38) is of the same order as the envelope approximation if β2 ≥ |cimproved|∞.
Since |cimproved|∞ � |cSchrod|∞, this condition is much weaker than the correspond-
ing one for the usual Schrödinger model. In some particular cases, this condition
can even be weaker than the “practical rule” ε� β.

Proof. Choosing ξ0 ∈ − 1
2B
−1b, one can check that

1 + b · ξ + ξ ·Bξ = 1− 1
4
b · (B−1b) + (ξ − ξ0) ·B(ξ − ξ0),

so that it follows from assumption (39) that 1 + b · ξ + ξ ·Bξ > 0 (uniformly with
respect to ξ ∈ Rd). The operator 1− εib− ε2∇ ·B∇ is therefore invertible, and its
inverse is the Fourier multiplier (1 + εb ·D + ε2D ·BD)−1. The equation (38) can
therefore be rewritten as

∂tU(3) + i
∇ω1(k) ·D + εD · ( 1

2Hk(ω1) +∇ω1(k)bT )D − ε2C(D)
(1 + εb ·D + ε2D ·BD)

U(3)

= (1 + εb ·D + ε2D ·BD)−1π1(k)T (U(3)).

Since (1+εb ·D+ε2D ·BD)−1 is regularizing (of order −2) and acts on W (Rd; Cn)
uniformly with respect to ε > 0, the proof of the result follows exactly the same
lines as the proof of Corollary 3 and we thus omit it. �
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3. Numerical simulations

3.1. The equations. This section is devoted to the comparison of solutions of the
different asymptotic equations derived in Section 2 with the solutions of the full
system (10). In particular, we want to check numerically the results proved in
Corollaries 1, 2 and 3.
We consider both short pulses (§3.3) and chirped pulses (§3.4); for the numerical
computations, we use the toy model (12) with dimension d = 1 and v = 1 (this is
also the model used in [12] for the study of chirped pulses). Writing u = (f, g)T ,
this model reads

(41)

 ∂tf + ∂xg −
g

ε
= −ε(|f |2 + |g|2)g,

∂tg + ∂xf +
f

ε
= ε(|f |2 + |g|2)f.

The initial conditions are taken of the form

(42) f|t=0(x) = f0(x)ei
x
ε + c.c., g|t=0(x) =

1− i√
2
f0(x)ei

x
ε + c.c.

(which, with the notations of Theorem 1, corresponds to k = 1, b = 0 and a =
π1(k)a = (f0, 1−i√

2
f0)T ).

The asymptotic models derived in Section 2 read in this particular case as follows:
• The full dispersion model. The exact solution to (41) is approximated by

uεapp,1(t, x) = U(1)(t, x)ei
x−
√

2t
ε + c.c.,

where U(1) = (f(1), g(1)) solves (recall that D = −i∂x) ∂tf(1) + i
ε

−D+εD2√
1+(1+εD)2+

√
2
f(1) = 4iε√

2
|f(1)|2f(1),

g(1) = 1−i√
2
f(1) (polarization condition).

(43)

• The nonlinear Schrödinger equation. The exact solution to (41) is approx-
imated by

uεapp,2(t, x) = U(2)(t, x)ei
x−
√

2t
ε + c.c.,

where U(2) = (f(2), g(2)) solves{
∂tf(2) + 1√

2

(
∂xf(2) − ε

4∂
2
xf(2)

)
= ε 4i√

2
|f(2)|2f(2),

g(2) = 1−i√
2
f(2) (polarization condition).

(44)

• The nonlinear Schrödinger equation with improved dispersion relation. We
approximate the solution of (41) by

uεapp,3(t, x) = U(3)(t, x)ei
x−
√

2t
ε + c.c.,

where U(3) = (f(3), g(3)) solves

{ (
1− iε∂x − ε2 5

16∂
2
x

)
∂tf(3) + 1√

2

(
∂x − iε 5

4∂
2
x + ε2 7

16∂
3
x

)
f(3) = 4iε√

2
|f(3)|2f(3),

g(3) = 1−i√
2
f(3) (polarization condition);

(45)

note that this modified Schrödinger equation corresponds to the set of co-
efficients (40).
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3.2. The numerical scheme. We use a spectral method in space and a splitting
technique in time for all the equations introduced in the previous section. We give
here some details on the numerical scheme used for (41); for (43), (44) and (45),
we use straightforward adaptations of this scheme.
Let us denote by SL(t) and SNL(t) the evolution operator associated respectively
to the linear and nonlinear part of (41); namely,

SL(t)u0 = (f(t), g(t)), with

 ∂tf + ∂xg −
g

ε
= 0

∂tg + ∂xf +
f

ε
= 0

and (f(0), g(0)) = u0,

and

SNL(t)u0 = (f(t), g(t)), with
{
∂tf = −ε(|f |2 + |g|2)g
∂tg = ε(|f |2 + |g|2)g

and (f(0), g(0)) = u0

(and with periodic boundary conditions).
The numerical computation of SL(t) is made through an FFT-based spectral method
while an explicit integration is used for SNL(t); we then use a second order split-
ting scheme to compute un+1 ∼ u((n + 1)∆t) in terms of un ∼ u(n∆t) (where ∆t
denotes the time step):

un+1 = SL(
∆t
2

)SNL(∆t)SL(
∆t
2

)un.

3.3. Numerical results for short pulses. In this section, we are interested in
short pulses, that is we consider initial conditions for (41) of the form (42), with

f0(x) = G(
x− x0

β
),

where G is a smooth function. In the present numerical computations, the compu-
tational domain is [0, L] with L = 30π, and we take x0 = 15 and G(x) = e−x

2
.

The accuracy of the approximations (43), (44) and (45) is checked using the
following quantity:

(46) E(j)(ε, β) = sup
t∈[0, 1ε ]

|f(t, ·)− (f(j)(t, ·)ei
kx−ωt

ε + c.c.)|∞
|f(t, ·)|∞

,

where j = 1 for the full dispersion model (43), j = 2 for the usual Schrödinger
approximation (44), and j = 3 for our new modified Schrödinger equation (45).
The exact solution and the difference between the exact solution with the approx-
imation furnished by the FD, Schrödinger and improved Schrödinger models are
plotted in Figure 4 for ε = 0.01, β = 0.075 and at time T = 50 on the domain
x ∈ [0, 30π]. The following computations are also performed to test the accuracy
of the approximate models:
• Test 1: With β = 1 fixed, we let ε vary from ε = 0.001 to ε = 0.1. This configu-
ration corresponds to usual wave packets for which the three models should have a
comparable accuracy of O(ε) when ε is small enough. One can indeed observe on
Figure 5 that the errors E(j)(ε, β) (j = 1, 2, 3) grow linearly with ε. One will also
check that when ε is too large (ε ∼ 5.10−2 for a rough precision of 20%), none of
the models furnishes a good approximation.
• Test 2: Here, we look at the same configuration as in Test 1 but with β = 0.1,
that is, we investigate here short pulses. We can observe on Figure 6 that the
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Figure 4. Short pulses: the exact solution, and the difference
between the exact solution and the FD, Schrödinger and improved
Schrödinger models (from left to right and top to bottom) with
ε = 0.01, β = 0.075 and T = 50.
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Figure 5. The errors E(j)(ε, β) for β = 1 and ε ∈ [0.001, 0.1];
j = 1 corresponds to FD, j = 2 to Schrödinger and j = 3 to the
improved Schrödinger.

FD and improved Schrödinger models provide a good approximation, but that the
usual Schrödinger approximation is completely inaccurate.
• Test 3: Here, ε = 0.01 is fixed and we let β vary from β = 0.01 (short pulses)
to β = 1 (wave packets). It can be checked that the FD model furnishes a correct
approximation for β & 0.03 and that for such values of β, the improved Schrödinger
approximation has the same precision. This is to be contrasted with the usual
Schrödinger approximation which is completely inaccurate until β ∼ 0.2.

3.4. Numerical results for chirped pulses. In this section, we are interested in
chirped pulses, that is we consider initial conditions for (41) of the form (42), with

f0(x) = G(x− x0) cos(
1
β

cos(
x− x0

β
)),
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Figure 6. Short pulses: The errors E(j)(ε, β) for β = 0.1 and
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Figure 7. Short pulses: The errors E(j)(ε, β) for ε = 0.01 and
β ∈ [0.01, 1]; j = 1 corresponds to FD, j = 2 to Schrödinger and
j = 3 to the improved Schrödinger.

where G is a smooth function. In the present numerical computations, the compu-
tational domain is [0, L] with L = 30π, and we take x0 = 15 and G(x) = e−x

2
.

The accuracy of the approximations (43), (44) and (45) is checked using the
quantities E(j)(ε, β) (j = 1, 2, 3) defined in (46).
The exact solution and the diffenrence between the exact solution and the FD,
Schrödinger and improved Schrödinger models are plotted in Figure 8 for ε = 0.01,
β = 0.3 and at time T = 1/ε = 100. The following computations are also performed
to test the accuracy of the approximate models:
• Test 1: With β = 0.1 fixed, we let ε vary from ε = 0.001 to ε = 0.1. We can
observe on Figure 9 that the FD and the improved Schrödinger models are good
approximations for ε ≤ 0.003. Above this value, the approximation is no longer
pertinent. Furthermore, the classical Schrödinger model is inapropriate for this
range of parameters.
• Test 2: Here, ε = 0.01 is fixed and we let β vary from β = 0.01 (chirped pulses)
to β = 1 (wave packets). We observe on Figure 10 that both FD and improved



22 M. COLIN AND D. LANNES

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60  70  80  90  100

exact solution

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  10  20  30  40  50  60  70  80  90  100

error full dispersion

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  10  20  30  40  50  60  70  80  90  100

error Schrodinger

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  10  20  30  40  50  60  70  80  90  100

error improved Schrodinger

Figure 8. Chirped pulses: the exact solution, and the difference
between the exact soloution and the FD, Schrödinger and improved
Schrödinger models (from left to right and top to bottom) with
ε = 0.01, β = 0.3 and T = 100.
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Figure 9. Chirped pulses: The errors E(j)(ε, β) for β = 0.01 and
ε ∈ [0.001, 0.1]; j = 1 corresponds to FD, j = 2 to Schrödinger and
j = 3 to the improved Schrödinger.

Schrödinger models become appropriate for β ≥ 0.1 whereas the Schrödinger ap-
proximation is acceptable for β ≥ 0.4.
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