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Short-Range Order for the Triangular and Honeycomb 
·Ising Nets in Ferro- and Antiferromagnetic Cases*) 

Kenzi KANO 

Raculty of Engineering, Tokushima University, Tokushima 

The short-range order parameters are evaluated for the triang~lar and honeycomb Ising 
nets in ferro- and antiferromagnetic cases by the method of Kaufman and Onsager.l) For 
the antiferromagnetic triangular net we also evaluate the probabilities for the various spin 
configurations. When the three spins are located at the vertices of the smallest regular 
triangle, the probability that three neighbouring spins are all parallel is zero at T=O. 
However, it is 0.035120 or 0.202998 respectively at T=O according as the vertical angle of 
the three neighbouring spins is 120° or 180°. Making use of these values, the configurational 
probabilities corresponding to four or five neighbouring spins are also evaluated at zero 
temperature. 

§ I. Introduction 

1 

The spin correlation functions for the various Ising nets have been studied 
by Kaufman and Onsager/) Sekiya and Naya,2

) Montroll, Potts and Ward,3
) and 

Hurst and Green.4
) Even in the present age the spin configurations for the 

antiferromagnetic triangular net are an interesting problem at low temperature, 
and spin correlations for rather small distances between the lattice sites will 
tell us several characteristic properties5

) for the net. In the present paper, we 
derive the spin pair correlations among a site and the next, · · ·, the fifth nearest 
neighbouring sites for the ferro- and antiferromagnetic honeycomb and triangular 
net by the method of Kaufman and Onsager.1

) The critical values for T= Tc 
or T= 0 are exactly solved by the elliptic substitutions. Our resulting curves 
are checked by the high-temperature expansions. ·Finally we find the family of 
curves for the probabilities corresponding to three neighbouring spin configura
tions and four or five neigbouring spin configurations at zero temperature. 

§ 2. The. calculation of the correlation functions 

. We will follow Kaufman and Onsager's1
) notation through this section. 

Now let us consider a lattice which is a triangular or honeycomb lattice ac
cording as a parameter H' tends to infinity or zero. (See Fig. la.) For the 
eigenvalue problem of this lattice, " Kaufman~Onsager's 1) characteristic operator 
V " is written as 
-~-----

ot) Based partly on a dissertation submitted in 1961 to Osaka University. Quite recently the 
spin correlations on the triangular lattice have been published by ]. Stephenson using the Paffian 
method, and their results are consistent with this paper.6> 
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2 K. Ka~o 
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Fig. la. The lattice is reduced to a triangular 
or honeycomb lattice according as a para
meter H 1 tends to infinity or zero. 

Fig. lb. The isotropic honeycomb net, H1=0 
in Fig. la. 

where 

V 1 == exp (--:-~iH · Pr+l Qr- ~iH' · Pr+l Qr) · exp (~iL * · Pr Qr) , 
r=odd r=even r=all 

V 2 = exp (- ~iH' · Pr+l Qr-~iH · Pr+l Qr) · exp C'LiL * · Pr Qr), (1) 
r=odd r=even - r=all 

where L * is a "dual" parameter in Onsager's paper.1
) The operator V is re

presented by a 2n-dimensional cyclic matrix. In general a cyclic matrix can 
be diagonalized easily. In order to facilitate the calculation it is convenient to 
deal with the problem in subalgebra in (1- U) /2, where U= (iP1Q1) · CiP2Q2) · · · 
(iPnQn). According to Kaufman-Onsager /) the two spin correlations are connected 
to the average values of the 2nd rank spinor or 2-spinor quantity as follows: 

(S1S2) = (S/ Sa')= ( -iP2Q1), 

(S2Sa)= (S/ Sa')= ( -iPaQ2), 

(S1S/) = (S2S/) = cosh2H*-'- sinh 2H* · (iP1Q1), 

(S1S/) = (S2Sa') = cosh2H* · ( -iP2Q2) + sinh2H* · (PaP2), 

(S2Ss') = (- iPaQ2) · cosh2H* + sinh2H* · (P3P 1), (2) 

(SlSa) = (S/ Ss') = ( :_ iP2Q1) · (- iPaQ2) + (PaP2) · (Q2Ql)- (iP2Q2) · (iPaQl). 

The next step is to evaluate the average valu~s of the 2-spinor quantities P1c · Pz, 
P1c · Qz, Qk · Qz etc. The average value of P1c · Pz is given by the formula 

(PkPz)= ----2---lim_Q_ trace{exp(8 ~ Pk+i.pl+i) · V}n, (3) 
n2. trace yn p~o 8 8 i=even 

where 8 is a parameter and n is the number of the parallel chains for th~ lattice. 
The translational symmetries are available, i.e. 

(P1cPz) = (P!c+2 · Pl+2) = (PkH · PzH) = · · ·. 
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Short-Range Order for the Triangular and Honeycomb Ising Nets 3 

The corresponding equations are applicable to the average values of P1cQz, QTcQz. 
It is feasible to carry out the calculation of trace [exp (/1 ~ Pk+i · Pz+i) · VJ n 

i=even 

when the eigenvalue problem of the operator exp (/1 ~ Pk+iPz+i) · V is solvable. 
i=even 

These eigenvalue problems are in general reduced to 2n-dimensional eigenvalue 
problems. For our lattice, the eigenvalue problem of the operator exp (/1 ~· Pk+i 

7=even 

· Pl+i) · V is decomposed into the eigenvalue problem based on the Kano and 
Naya method7

) which uses the shift operator. 
For example we show the formulae for the case /1=0. Then the four

dimensional matrix is written as 

- S' S*s-\ -iS'C*s-\ C'C*s-r, iC' S*s-\ 

iSC*s, -SS*s, -iCS*s-\ CC*s- 1 

i C* s, iCS*s, -SS*s-1 -iCS*s-I, 
(4) 

-iC' S*s, C'C*e, iS'C*e, - S' S*s, 

where c=exp iw=exp 2nir/n, (r=l, 2, 3, ···~ n) and C, S, C', S', C*, S* 'are 
defined as follows : 

C=cosh 2H, C' =cosh 2H', C*=cosh 2L*, 

S = sinh 2H, S' = sinh 2H', S * = sinh 2L *. (5) 

The eigenvalue Ar of the matrix ( 4) is determined by 

-}-CAr-f-Ar - 1
) = - ~--S* (S + S') • COS {1) -f- -~~- { (S*)2 

• (S- S'Y • COS
2
{1) -f- ,U} 1/

2 

=cosh r, (6) 

,a= 2 (C*)2 
• (1 + CC' + SS'), (0 < w < 2n). 

n 

Now we consider the case /1~0, and let the largest eigenvalue be exp(~ri). 
j=1 

Then Eq. (3) becomes 

or 

<PTcPz) =lim-~-t __ (YrL =lim-_!_\ (dw/sinh Yi) · (- 8_-cosh ri) . 
fl-O Jl j=l 0 p fl~O 'Jr ) 0 p (7) 

With the aid of Eq. (7) we can get the average value of the operator - iP1Q1, 

- iP2Q2, -- iPsQs, etc. After some lengthy algebra we have 

< -iP2Q1)= (C*Y· (C' S+CS') Sa-2(S*)2 S'CS1-2S*C.S2, 

<-iPsQ2)= (C*Y· (C'S+CS') So-2(S*l SC'l.\-2S*C'S2, 

<iP1Q1) = <iP2Q2) 

= S*C*(l +CC' + SS')Sa-2SS' S*C* S1 -C*(S+ S')S2, (8) 
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4 K. Kana 

<PzPt)=- S*C* (C' S+CS')l:o+2S'CS*C* l:1 -C* (C' -C)l:2 , 

<PsP2)=- S*C* (C' S+CS')l:o+2SC' S*C* J.:1 +C*(C' -C)l:2 , 

<QzQl)= S*C* (C' S+ CS') l:o-2S'CS*C* l:1 -C* (C' -C) 1:2 , 

<QsQ2)= S*C* (C' S+ CS')l:o-2SC' S*C* .J:1 +C* (C' -C)l:z, 

<iP4Pz) = <iPsQl), 

where l.:o, J.:h Zz are defined by the following integrals : 
,.. 

l.:o = _l_} 1 I D · dw , 
7r 0 

,.. 

7C 

1:1 = __l_ ~ COS
2{J)I D. d(J), 

7r 0 

J.:2 = _l_ ~ cos w ·cosh r ({)))I D · dw, 
7r 0 

D=sinh r({J)) {2 cosh r(w) +S*(S+S') ·COS{))}, 

(9) 

An elliptic substitution is available for computing the integrals .l:o, '1:1, J.:2. Let 
us choose for the elliptic modulus k and the complementary modulus k'. The 
expressions for k and k' are as follows : 

k =a {a2 + J.LI 4} -1/2' k' = /.Ll/2. {az + f.LI 4} -t;z 12' 
where 

a= ls*(s-s') 112. 
We will define the Jacobian elliptic functions by 

cos w =en (u, k), sin{))= sn (u, k), 

{1- k2 
• sin20} 112 = dn (u, k). 

Then in terms of the Jacobian elliptic functions we have 

where 

and 

cosh r= 3._. dn(u, k)- b· en (u, k), 
k 

b= S* (S+ S') 12 

dwiD=kdul2a sinh r, 
2K 

l.:o=kl2na·) dulsinh r' 
0 

2K 

1:1=kl2na· ~ cn2 (u, k)dulsinh r' 
0 

(10) 

(10') 

(11) 
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Short-Range Order for the Triangular and Honeycmnb Ising Nets 5 

2K 

.22 ~ - b.S1 + -l;r- ~en (u, k) dn (u, k) du/sinh r, 
0 

K = F c-z -, k) . 

The elliptic modulus k is equal to zero, unity or finite (k<1/3) according as 
the lattice is rectangular, triangular or honeycomb. From formulae (10), (10') 
and (11) we have 

sinh r= {A·cn2 (u, k) +B·cn(u, k) ·dn(u:, k) +E} 1
1

2
• 

where 

A=a2 +b2
, B= -2ab/k, E=a2

• (k'/kY-1. 

We will write Xo by these elliptic functions as; 

2K 

.So= k/2rca. ~ du/ sinh r 
0 

2K 

= k/2rca· ~ {A cn2 (u, k) /dn2 (u, k) +Ben (u:, k) /dn (u, k) 
0 

+E/dn_2 (u, k)}- 112 ·du/dn(u, k). 

Then we can make use of the following formulae : 

sn(u+ K, k) = cn(u, k) /dn(u, k), 

dn(u+K, k) =.k'/dn(u, k). 

Then introducing a variable x defined by x = sn (u + K, k), we have 

where 

1 

Zo= -k/2rcak'·~ J- 1 ·dx, 
-l 

dn(u+K, k) ·d(u+K) =- (1-x 2)1f2 ·dx, 

11= {(1-x2
) [ {b2 + (k/k') 2}x2 -2ab/k·x+ {(a/k) 2

- (1/k') 2
} ]}

1
1

2
, 

K<x<3K. 

By a similar way we can replace 1:1 , 1:2 as follows : 

1 

Z1 = - (k' /k) 2 
• Xo + k' /2rcak · ~ (1- k2x 2

) -l. J- 1
• dx, 

-1 

1 

Z2= -b171+1/2rc· ~ (1-k2x 2
)-

1 ·L1- 1 ·dx. 
' -1 

(12) 

(12') 

(13) 

(14) 

(15) 
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6 K. Kana 

These formulae are also written by the Legendre elliptic integrals, and we shall 
deal with these integrations in a compact way or in a good approximation. 

§ 3. Isotropic honeycomb net 

In this chapter we consider a case IHI =ILl with H' = 0 in Fig. la. (See 
Fig. lb.) For this case the calculations of the foregoing integrations are greatly 
simplified by virtue of the following relations: 

SS*=l, S*C=C*, SC*=C, 

k 2 = {1 + 2C 2* (1 +C)} -l < 1/9, 

cosh r=l/2k·dn(u, k) -1/2·cn(u, k). 

Especially at the critical temperature Tc, the integrals (14) and (15) can be 
expressed in a closed form, and k and sinh r become 

k=l/3, C=2, S= v3, C*=2/v3, S*=1/v3, 

sinh r = v3/2v2. {dn (u, k) -en (u, k)} l/2
• {3 dn (u, k) -en (u, k)} 1/

2
• 

For this case the integrals are easily evaluated as follows: 

2K 

So- Z1 = 2v3/n · ~ {1- cn2 (u, k)} du/ {dn (u, k) -en (u, k)} 1;
2 

0 

X {3dn (u, k) -en (u, k)} 112 

1 1 

= 2v3/n. ~ dx/ (3- x) (1 + x)112 (3- x)112 - v3/n. ~dx/ (3 + x) (1 + x)lf2 (3- x)112 

-1 -1 

=vB/n-1/3, 
2K 

Zo-Z2=2v3/n· ~{1-cn(u, k) ·cosh r}du/ {dn(u, k) -cn(u, k)} 1
/
2 

. 0 

X {3dn (u, k) -en (u, k)} 112 

1 

=v3/n· ~dx/(3+x) (l+x)112
• (3-x)112 

-1 

=1/3. 

Thus we have the critical data 

(P3P2)= -4/1/3· (.Sa-1:1) +2/v3· (.So-1:2) = -0.118 538, 

(iP3Qt) = - y3(P3P2) = 0.205 314, 

(iP1Q1) = 2 (.So- Zz) = 2/3, 
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Short-Range Order for the Triangular and Honeycomb Ising Nets 7 

<Q2Ql) = 2/ v3. (.So- 22) = 0.384 900, 

<SlS2)=4/v3· (.So-22) =0.769 800, 

<S2Sa) = 2/ v3 · (l:o- .£1) + 2/ v3 · (l:o- X2) = 0.636 619, 

<SlS/) = <S2Sa') = 2/3, 

<SlSs) = 0.581 321. 

The dependence of the spin pair correlation upon ten1perature is shown in Fig. 2. 

-0.5 

Fig. 2. 
Short-range order of the plane Ising net 

(a:), Honeycomb net a:1 :(Sl Sz), a:z :(Sl Sl>, a:3 :(Sz S3), a 4 :(S1 S 3), 
([j), Square net 
(r), Triangular net (Ferromagnetic case) 

exact r1 :(Sl Sz), rz :(S1 S3), r3 :(Sl Sg'), 
high temperature approximation n' :(Sl Sz),rl :(Sl 83), ra' :(Sl Sl>, 

(o), Triangular net (Antiferrimagnetic case) 
exact o1 :(Sl Sz), oz :(Sl 8 3), o3:(81 Sa'), 

high temperature approximation o/ :(81 Sz>, ol :(S1 8 3), oa' :(81 83'>. 

§ 4. Isotropic triangular net (ferromagnetic net) 

On this lattice it is simpler to discuss the lattice in Fig. 3 than in Fig. 1a 
for the calculation. (See Fig. 3a.) We can treat the problem on the analogy 
of the procedure of the foregoing section. Instead of formulae (2) , we have 
for this lattice 
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8 K. Kano 

L II H fl L "' 5, 52 53 
H H I H 

' L H H 
5; 

I 

5~ 52 
H I H H 

L H L 

5, 52 53 
H H H 

Fig. 3a. Fig. 3b. 
The lattice is reduced to a triangular lattice 

as a parameter H 1 tends to infinity. 
For H1~oo, S 2, Sl can be regarded as the 

same spm. 

<81S2) = C*- S*<iP2Q2), 

<SlSs) = <S1S2)<S2Sa) + <PsP2)<Q201)- <iP2Q2)<iPaQ1), 

<S1Ss') = C*<SlSs) + S* {<iP1Q1)<P4P2)- <P2P1)<iP2Qs) 

+ <PsP2)<- iP2Q1)} . 

Moreover we must change formulae (8) for the following formulae : 

<- iP2Q1) = C ( C + S) Zo * - C* Z2 *, 

<iP101) = CC* Zo*- 2SZ1* -2SZ2*, 

<iP202) = CC * Zo *- 2CZ2 *, 

<P2P1) = - <Qs01) 

= - C Zo * + 2C .J:1 * - C ( C * - 1) .J:2 *, 

<iP2Q3) = C(C + S) l:a*- 2C(S+ C) .J:1* + C* l:2*, 

<P4P2) = 41:a *, 

<PaP2)= -<02Q1)= -Cl:o* + C(C* -1)1:2*, 

cosh r* = 1/2k* · dn (u, k) + 1/2 ·en (u, k), 

where k*, Zo *, .J:1 *, l:2 *, Za * are as follows : 
7<: 

k* = {1 +2C2 (1 + C*)}, l:o* = -}Jdw/D*, 
0 

7< 

.J:1 * = 1/n~ cos2w/D* · dw, 
0 

"' 
l:2*= 1/n~ cosh r*·cos w/D*·dw, 

,.. 

1:3 * = 1/n ~ cosh r* · sin2w ·cos w/D* · dw, 
0 

(16) 

(17) 

(18) 
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Short-Range Order for the Triangular and Honeycomb Ising Nets 9 

D* = sinh r* · (2 cosh r* + cos (J)) . 

The integration of Xo *, .J:1 * · and .J:2 * is similar to the cases of honeycomb net. 
In the previous section P is equal to {1 + 2C2* (1 +C)} - 1 but in this case (k*Y 
is equal to {1+2C2(1+C*)}-1. Now C and C*, Sand S* are replaced with 

each other, respectively. The so-called dual relation appears in this replacement 
and it is easy to evaluate Xo*, .J:1*, .J:2* from the values of l:o, l:1, l:2. (Cf. 
Figs. 1a and 3a.) The dependence of the spin correlation upon temperature is 
shown in Fig. 2. Then we consider the correlation at the critical temperature 
in a closed form. The integration for 1:0 *- l:1 *, .1:0 *- .J:2 * is known from the 

values Io- l:1, l:o- l:2 and the integration for 1:3 * is reduced to the Legendre 
elliptic integrals of the three kinds. The elliptic modulus k* is .equal to 1/3 

at T = Tc, and we have 

7{ 

l:a*= 1/n·) sin2(J)·cos {l)·cosh r·dw/sinh r*· (2cosh r*+cos w) 
0 

1 

=40/3v3· ~ x[(1 +x) (3-x)]I12·dx/(3+xY· (3-x)2 

-1 

= 4/3- 5y3j2n 

C=2jy3, S=1/v3, C*=2, S*=v3. 

Thus we have the critical values for the ferromagnetic triangular lattice: 

(S1S2) = 2 (l:o *- l:2 *) = 2/3, 

(S1Sa)=8(l:o*-};1*) · (1:0*-1:2*) =8/3· (1/'3/n-1/3) =0.581 321, 

(S1Sa') = 8 (l:o *- l:1 *) · l:a * + 8 (l:o *- l:2 *) · l:a * + 16 (l:o *- l:1 *Y 

= -12/n2-16/9=0.561 924. 

§ 5. An isotropic triangular net (antiferromagnetic net) 

We consider the lattice, H=L, H<O, H'= oo in Fig. 3a; and in this case 
we shall change L and H for - L and - H respectively. This transformation 
corresponds to 

c~c, s~-s, c*~-c*, s*~-s*, 

r*~rt, .Zo*~Iot, .Z1*~.J;1t, l:2*--->.J:2t, l:a*---->1:/, 

where rt, .J:0t, .Z1t, Z2t, .1:/ are similar to the c~se of ferromagnetic triangular 
net. In general, rt becomes a complex number and we shall evaluate the in

tegral in a somewhat different way. We have 
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10 K. Kana 

~' 

~ot = 1/27r ·) {1/ D1t -1/ D2t} dw, 
0 

11' 

.21t= l/2n·) {1/D1t + 1/D2t}cos wdw, 
0 

7r 

.22t = 1/27! ·){cosh r// D1t +cosh r2t/ D2t} cos wdw, 
0 

7t' 

1:/ = 1/2 7r.) {cosh r1t; D1t +cosh r2t I D2t} sin2cu. cos ()). dw' 
0 

where 

, D1t =sinh r1t · {2cosh r1t +cos w}, 

D/ =sinh r} · {2cosh r2t +cos w}, 

cosh r1t = -1/2 ·cos w + i/2 · {,a- cos2w} 1;2
, 

cosh r2t = -1/2 ·cos w- i/2 · {tl- cos2w} 1;2, 

tt = 2C 2 
• ( C * - 1) , 

We define cn(u, kf), sn(u, kt) and dn(u, kt) by 

cos w = sn (u, kt), sin w =en (u, kt), 

Now let us put· 

sinh r1t=A+iB, A<O, B>O, O<w<n/2; 

sinh r2T =A- iB, A>O, B>O, n/2<w<n, 

where A and B are real. Then we can get the following relations : 

{,a- cos2w} 112 =.1/ kt · {2kt -1 + dn (u, kt)} 112 · {1- 2k + dn (u, kt)} 1;\ 

2A = ± 1/ kt · {1- dn (u, kt)} 1/
2 

• {1- 2kt + dn (u, kt)} 11\ 

2B= 1/ kt · {1 + dn (u, kt)} 112 
• {2kt -1 + dn (u, kt)} 112

, 

A 2 +B 2 =1/kt·dn(u, kt). 

(19) 

(20) 

(21) 

(22) 

Using the relations (21) and (22), .Sot, J:1t, .S2t, .S3t can be reduced to the Leg
endre elliptic integral of three kinds: 

Kt 

.Sot= kr /n ·) {1 + dn (u, kt)} 112 · {1- 2kt + dn (u, kt)} -lf2du 
0 
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Short-Range Order for the Triangular and Honeycomb Ising Nets 11 

1 

= Mjn · ~ {[x+ (kt) '] [x-:- (kt) '] [1- x] [1- 2kr + x]} - 1;2 · du, 
(kty 

1 

Z/=1/n(kty. ~ (1+x)lf2{[x 2
- (kr)'2] [1-2kt +x]}- 112 ·dx, 

(kty 

1 

.S/= -1/2·Z/-kr/2n· ~{x 2 - (M)' 2
}

112 {(1-x) (1-2kt+x)} 112dx, 
(kt)' . 

1 

Z/ = .S/ + 1/2n (kt)3 
·) (1- x 2Y [x 2

- (kt)' 2
] -

1;2 
[ (1- x) (1- 2kt + x) J -l/

2 · dx, 
(kt)' 

1 

+1/2n,(kt)3· \ (1-x 2
) [x 2 ~ (kr)'2]-112[{1-x) (1-x-2kr)rl2·dx, 

(kty 

where x= dn (u, kt), and (kt)' is a complementally modulus for kt. Especially, 
near the zero temperature, we have the following approximate formulae : 

where 

<8182):::::::. -1/2 · (kt 0"1 + -r1), 

<SlS3)::::::.<S1S2)2 + (kr0"1 + -r1) (ktal- -r1), 

<SlS/):::::::.- <S1S3) + 2<81S2)2 

+ (ki· a1- r1) {2 • (kta2- -r2) -1/2 (kt al- -r1)}, 

1 

kta1 = 1/nkt · ~ [x 2
- (kt)'2] { [x 2

- (kt)'2] [1- x] [1- 2kt + x]} -li2 · dx, 
(kt)' 

1 

(23) 

/?,t(J2=1/n(kty. ~ [x 2
- (kt)'2] 2

• {[x2- (kt)'2
] [1-x] [1-2kt +x]}- 112 ·dx, 

(k.r)' 

1 

z-1 = kt/n. \ { [x2- (kt) '2] -1/2 [1- x] 1J2 [1- 2kt + x] lf2} dx' 
(kt)' 

. 1 

-r2 = l/nkt · \ [x 2
- (kr)2r 12 {[1- x] [1- 2kt + x] } 1

/
2 dx. 

(kt)' 

At zero temperature, 

k1 = 4/5, (kf)' ==: 3/5, -1 + 2k= (kt) ', 
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12 K. Kano 

ktO""l+r1=1l3, ktO""l-rl=v3ln, 

kt 0""2- r2 = 113- v31 4n. 

The approximations (23) are exact at T = 0, and we have 

(S1S2)= -1/3, <S1S3)=1I9+2Iv3n=0.478 664, 

<SlSa') = 1/9- 3/n2 = -0.192 852. 

The curves for the antiferromagnetic triangular net are plotted in Fig. 2. Lastly 
the family of the curves of the short-range order for the ferromagnetic and 
antiferromagnetic triangular nets. has been checked by the high-temperature 

. . 
expansiOn senes : 

<SlS2)=k+2k2 +4k3 +9k4 + ... , 

<SlS3) = 2k2 + 5k 3 + 16k4 + ... , 

<SlS/) = P + 6k3 + 18k4 + · · ·, 

k= ±e-2H* (H=L). 

These curves are shown in Fig. 2, and the comparison with the exact curve IS 

quite satisfactory at high temperatures. 

§ 6. The probabilities of the spin configuration between three, 
four and :five neighbouring sites (an antiferromagnetic triangular net) 

First we consider the probability p that the neighbouring two spins are 
parallel ; it is written as 

(24) 

The probability that the neighbouring two spins are anti-parallel IS denoted by 
q; it is given by 

q=1-p. (25) 

Farther we consider the probability a on condition that three neighbouring spins 
located at the vertices of the smallest regular triangle are parallel to each other. 
(See Fig. 4.) We also consider the probability b on condition that the neigh
bouring two spins are parallel but the third spin is anti-parallel to others. 
(See Fig. 4.) Then we easily get the following relations : 

a+113·b=p, 

a= (1 + 3(S1S2)) I 4, 

2/3·b=q, 

b = 3 (1- (S1S2)) I 4. (26) 

Now let us introduce more complicated probabilities by the similar defini
tions. According to the schematic representation in Fig. 4, we can define 
the probabilities c, c', d, d', e and e', and their definitions are exactly similar 
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, 
c 51 o----o---o 53 

52 --

, 
d 51 0 • 0 53 

52 

a e 51 o---o---e 
, 

53 
52 

b ~' ' ' ' c' 52 ' -

s, ~:>' 

Fig. 4. The schematic representations of the two-spin probabilities p, q 
and three-spin probabilities a, b, c, d, e, c1, d1, e1

. 

to that of a and b. It is easily shown that these probabilities are satisfied by 
the following relations : 

c+d+e= 1, c' +d' +e' = 1, 

c + d = (1 + (S1Ss')) 12, c' + d' = (1 + (SlSa)) 12, 

c + el2 = (1 + (S1S2)) 12, c' + e' 12 = (1 + (S1S2)) 12, 

c = (1 + 2(S1S2> + (SlSa')) I 4' 

d = (1- 2(SIS2) + (SISs')) I 4, 

e= (1- (S1Ss')) 12, 

c' = (1 + 2(SIS2) + (SISa)) I 4, 

d' = (1- 2(S1S2) + (SISa)) I 4, 

e' = (1- (SISa)) 12. 

(27) 

The dependence of these probabilities upon temperature is shown in Fig. 5. 
The probability a is zero at T= 0. However, c and c' are finite even at zero 
temperature and 0.202998 and 0.035120 respectively. At high temperature the 
curves for c and c', d and d', e and e' are almost equal to each other, 
respectively, but this is not so -for a and b. But they are considerably different 
from each other at low temperaure, and it is seen that e'>d>d'>e>c>c'. 

We will consider the probabilities of the four-spins configurations f, gh g2, 
h1 and h2 at T= 0. (See Fig. 6.) At zero temperature the probability that 
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!.Or----

b 

/ e 
0.5 e 

d 

d' \ 

Fig. 5. The probabilities a, b. c, d, e, c1, d1, e1 versus l/2H. 

three neighbouring spins are located at the vertices of the smallest regular 
triangle are zero. By this fact it is easily shown that the probabilities f and 
gl are zero at T= 0, and g2, hh h2 are equals to 0.07024, 0.59642, 0,33333, re
spectively, by the following relations : 

f+gl/2=ao=O, f>O, g1>0, 

f +g2/2=co', g2j2 + ht/2= ho/3, h2= bo/3, 

where ao, bo and co' are the values of a, b and c' at T = 0. 
Lastly we will consider the probabilities of the five-spins configurations i,. 

j, kh k2, k3, land m at T=O. (See Fig. 6.) It is known that i=j=k1=a0 =0, 
k2 = 0.40599, k3 = 0.07024, l = 0.38085, m = 0.14290 by the following relations: 

i + j/2+kt/2= ao=O, kt/2+l/2+m= bo/3, 

kl/2+ ka/2 + j/4 + Z/ 4=eo/2, 

i + j/2 + ka/2=co', k2/2 + l/2 +m=do, 

where e0 and do are the values of e and d at T= 0. We can show that n>0.60899 
at T= 0, and this probability is largest among the probabilities of the seven
spins. Through these values of probabilities the antiferromagnetic charactor of 
this lattice is indicated fairly well. 

Acknowledgements 

We would like to express our sincere thanks to Professor K. Husimi, 
Professor I. Syozi and Professor S. Naya for their kind interest and discussions 
about this work. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/35/1/1/1890715 by guest on 16 August 2022



Short-Range Order for the Triangular and Honeycomb Ising Nets 15 

f = gl = 0 g2 = 0.07024 hi= 0.59642 h2 = 0.33333 

.t m 

zz 
i = j = k1 = 0 

k2 = 0.40599 k3 = 0.07024 

.e = 0.38085 m = 0.14290 

n 

n > 0.60899 

Fig. 6. The schematic representation of the four-spins probabilities f, 
91> 92 hr, h2 and the five or seven-spins probabilities i, j, kt. k2, k3, 

l, m or n at zero temperature. The values of these probabilities at 
T=O are given. We can show that n>0.60899 at T=O and this 
probability is largest among the probabilities of the seven-spins. 
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