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Abstract

The short-range order (SRO) present in disordered solid solutions is classi-

fied according to three characteristic system-dependent energies: (1) forma-

tion enthalpies of ordered compounds, (2) enthalpies of mixing of disordered

alloys, émd (3) the energy of coherent phase separation, (the composition-
weighted energy of the constituents each constrained to maintain a common
lattice constant along an A/B interface). These energies are all compared
against a common reference, the energy of incoherent phase separation (the
composition-weighted energy of the constituents each at their own equilibrium
volumes). Unlike long-range order (LRO), short-range order is determined by
energetic competition between phases at a fized composition, and hence only
coherent phase-separated states are of relevance for SRO. We find five dis-
tinct SRO types, aﬁd show examples of each of these five types, including

Cu—A‘u, Al-Mg, GaP-InP, Ni-Au, and Cu-Ag. The SRO is calculated from




first-principles using the mixed-space cluster expansion approach combined
with Monte Carlo simulations. Additionally, we examine the effect of inclu-
sion of coherency strain in the calculation of SRO, and specifically examine

the appropriate functional form for accurate SRO calculations.




I. INTRODUCTION: SHORT-RANGE ORDER AND COHERENT PHASE

STABILITY

The equilibrium regions involved in solid-sfate binary alloy phase’diagrarﬁs are ordered
phases, two-phase regions, and disordered solid solutions. The latter form at elevated tem-
peratures, and consist of an A;_;B; phase in which the A and B atoms of the alloy are
distributed in a disordered fashion on the sites of a single, underlying lattice (often a Bra-
vais lattice, e.g., fcc). In the disordered phase, the atomic-scale occupation of sites of the
lattice by A andB atoms does not occur perfectly randomly, nor does it occur with any
long-range atomic ordering. Instead, local ordering or local clustering takes place in this
solid solution, and is collectively referred to as short-range order (SRO). The degree and
tyvpe of SRO in a solid solution can be quantified by specifyiﬁg the Warren-Cowley SRO

parameters, agm, for a given composition (z) and temperature (7'):

pAB) z, T
Cmn (2, T) =1 — ﬂ%———) ' (1)

Here, Bf,ff ) (z,T) is the conditional probability that given an A atom at the origin, there
is a B atom at shell (lImn). This probability is necessarily dependent on composition and
temperature, thus giving an z— and 7—dependence to a. If the lattice sites are occupied
completely at random, the conditional probability P(z,T) is equal to z, and thus a=0.-
Therefore, the departure of « from zero indicates the extent to which atom-atom correlations
exist within disordered alloys. Ordering-type correlations (the predominance of A;B bonds)
manifest themselves as @ < 0 while clustering-type correlations (the predominance of A — A
and B — B bonds) manifest themselves as a > 0. |

In diffraction experiments, short-range order does not give rise to superstructure reflec-
tions (as in the case of long-range order), and hence one must look “under” or “between” the
Bragg diffraction peaks to observe SRO. The SRO gives rise to modulations in the mono-
tonic Laue background, and using diffuse scattefing techniques, (e.g., see Refs. [1-7]) one

can examine these modulations between the Bragg peaks. By analyzing the diffuse scattered




intensity, one can extract the portion, ISR . of the diffuse scattering due to SRO, which is

proportional to the lattice Fourier transform of the Warren-Cowley parameters:

ng )
I(?i%?se & CY(JI, k) = Z Qimn (z)elk.len. (2)
Ilmn .

The connection between high-temperature SRO in the disordered phase and the low-
temperature structures is fascinating. [3,8,9] As one cools the disordered phase, it eventually
gives way to long-range order (LRO), either in the form of ordered compounds or phase-
separation. Are the SRO fluctuations of the high-temperature disordered phase simply
“precursors” or “remnants” of the underlying LRO in the low-temperature phase, or can
there be a competition between local ordering/clustering vs. long-range ordering/clustering?
This question can be phrased more quantitatively as follows: The maximum of Eq. (2)
indicates the dominant wavevector k3*° for SRO fluctuations in the disordered phase. Long-
range order at low-T is often similarly characterized by an ordered structure composed of
a dominant composition wave, k5RO, [10,11] The question is then: What is the relationship
between k3RC and kiRC? Although in many cases, k3F° = kRO, there are many examples
[3,8,9] where the dominant wavevector of SRO and LRO do not coincide. [12] Some of these
cases of distinct wavevectors can be explained [8] by noting that whereas SRO is determined
by the energetic competition between all possible phases at a fized composition, LRO stability
is determined by the energy relative to all possible mixtures of phases, even those at different

compositions.

II. QUALITATIVE UNDERSTANDING OF LRO VS. SRO

To understand the distinction between fixed-composition and global stability, and the
concomitant differences between SRO and LRO, we define three characteristic energies:

(a) The formation enthalpy of an ordered (O) structure is the total energy Eo(o,a,) of
the ordered phase ¢ with lattice constant a,, taken with respect to equivalent amounts of
the A and B constituents, each at their “natural”, equilibrium lattice constants a4 and ag,

respectively




AHo = Eo(0,a,) — [(1 — 2)Ea(ea) + zE5(as)]- (3)

(b) The mizing enthalpy of a random (R) alloy is the analogous energy difference for the

random alloy:

AHg = Egr(R,a,) — [(1 — z)Ea(aa) + zEp(ap)] @)

Notice that in both Egs. (3) and (4) the reference energies are A at its lattice constant a4
and B at ap. For alloys with lattice mismatched constituents (a4 # ap), incoherent mixtures
of phases with different volumes often contain misfit dislocations at the interfaces between
the two phases to relieve strain. Thus, the reference energies of Egs. (3) and (4) involve a
 state of phase separation (A+B) which is incoherent. Thus, we define the incoherent phase

separated (IPS) state as

Elps = [(1 - .’II)EA(GA) + .'L‘EB(GB)] (5)

and is simply chosen as the zero reference energy for our comparisons. In contrast, coherent
two-phase mixtures contain no such misfit dislocations, and thus both phases are somewhat
strained due to this constraint of coherency. This leads to:

(c) The Coherent Phase Separated State or coherency strain (CS), which involves strain
in the plane of the interface and relaxation of the atoms perpendiqular to the interface.
Thus, the strain energy necessary to maintain coherency at an interface between A and B
(called the “coherency strain”) is necessarily dependent on the orientation of the interface
k. AE{;S(E, z), the coherency strain energy, is defined as the energy change when the bulk
solids A and B are deformed from their equilibrium cubic lattice constants a4 and ap to a
common lattice constant @ in the direction perpendicular to &, while they are relaxed in

the direction parallel to k: [13]
AEcs(k,z) = min (1 = 2)AEF (k,a1) + zAEF (k,0.)] (6)

where AEP(k,a,) is the energy required to deform A biaxiaily to ay. Each of the energies
AEY and AEY are positive definite, and hence, the coherency strain of Eq. (6) is positive

definite. Of particular importance is the lowest attainable coherency strain



AESR(z) = min AEcs(k,z) - (7)

where the minimization is performed over all directions k. AEZin(z) then gives the formation
enthalpy of the energetically most favorable coherently phase-separated state.

Using the definitions of Egs. (3)-(6), we can now note that:

(1) Long-range order is determined by incoherent phase stability: for a long-range ordered
coinpound to be a ground state (a zero—temp‘erature stable phase), it must be lower in energy
than any other compound at that composition, as well as lower in energy than any incoherent
two-phase mixture of phases at other compositions, including a mixture of the constituent
elements. Thus, a necessary condition for a ground state structure is that AHgp < 0. The
formation energy AHo of Eq. (3) demonstrates clearly that the long-range order, and hence
the equilibrium phase diagram behavior is determined by incoherent phase stability.

(2) Short-range order is determined by coherent phase stability: The short-range order
involves a single-phase field (disordered solid solution) of the phase diagram, and thus does
not pertain to incoherent two-phase mixtures. {12] In fact, two crucial quantities towards
determining the types of fluctuations which develop in disordered alloys are the “ordering

energy”
0FEya=AHp— AHp (8)
and the “coherent phase-separation energy”
§Ecps = AEZ® — AHp (9)

0Eora (0 Ecps) represent the energy required to form the ordered (coherent phase-separated)
state, starting from the random alloy of the same composition. Both §E,4 and § Ecpg are
fixed-composition energy differences and are independent of the energy of incohérent phase
separation.

Figure 1 illustrates five possible relative orders of the energies AHp, AHp, and AEgg of
Egs. (3)-(6). The ordered structures “O” in Fig. 1 are representative of the lowest-energy

coherent configurations, i.e., structures with dominant composition waves at the Brillouin
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zone boundary (e.g., the L1y, L1y, or L1, structufes). It should be noted that in cases (e.g.,
Al-Cu) where the lowest-energy coherent configurations correspond to ordered compounds
which have a large degree of “clustering”, one can obtain clustering-type SRO even in a
“Type I” alloy (see Ref. [14]). | In this paper, we study these types I-V 'of LRO/SRO behavior
in real alloy systems using a first-principles total energy technique for calculating AHp and
AFEcs, and a cluster expansion method for calculating AHp and SRO.

The salient features of the SRO are decided by the quantities d Forq and 6 Ecps, so we
examine the qualitative possibilities for these two quantities; defining the five alloy types of
Fig. 1:

Tvpel: bdE,a<0< (5ECPSI (e.g., Cu-Au)

Type II.  §Eoqq <0~ d8Ecps (e.g., Al-Mg)

Type IIl:  §Fyqa < 0Ecps < 0 (e.g., GaP-InP)

Type IV:  §Equq ~ 6Ecps <0  (e.g., Ni-Au)

Type Vi 8FEcps < 0E,q <0 (e.g., Cu-Ag)

The arrows in Fig. 1 show schematically the fluctuations in the random alloy which are
~energetically most favorable. In “Type I”, “Type II”, and “Type III” alloys, the ordered
alloy is lower in energy than both the random alloy (6E.4 < 0) and the coherent phase
separated state (0Foq < 0Ecps). Therefore, energetic fluctuations of the random alloy are
expected to be be of ordering type, depicted as R — O in Fig. 1. Thus, the SRO of solid
solutions of Types I, I, and III alloys are all ordering type (ksro # 0), éVen though the LRO
is ordering only in Types I and II, but phase-separating (incoherently) in Type III. On the
other hand, a “Type V” alloy is a prototypical “clustering” alloy, where the coherent phase
separated state is lower in energy than both the random alloy (0 Ecps < 0) and the ordered
alloy (6Ecps < 0Eorq). Hence, the SRO is expected to be of clﬁstering—type (ksﬁo = 0),
represented by R — CS in Fig. 1. Since phase separation is the lowest-energy incoherent
state in a “T'ype V" alloy, the LRO of this alloy is also phase separation. “Type IV” alloys,
are intermediate between “Type III” and “Type V”. In type IV, there is strong competition

between ordering and coherent phase separation (6E.q ~ 6 Ecps), and thus, it is difficult to
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predict even the qualitative behavior of the SRO for this case, since there are expected to
be competitiye energetic fluctuations simultaneously towards ordering and phase separation
in these alloy\s (illuétrated by both R — O and R — CS arrows in Fig. 1). As shown below,
the SRO of the “Type IV” alloy, Ni-Au, is intermediate between a strongly ordering alloy

(Types 1, I, and III) and a strongly clustering alloy (Type V).

III. THE MIXED-SPACE CLUSTER EXPANSION - A DESCRIPTION OF

ATOMICALLY-RELAXED, COHERENT ALLOY ENERGETICS
A. General Formalism

Caiculating the equilibrium SRO in solid solutions from an energetic approach requires,
in principle, a statistical sampling of all configurations ¢. Even a binary alloy system with
a modest number of sites N poésesses 2" possible configurations, and hence the number of
configurations for which we need to know the energy quickly becomes impractically large.
Hence, one method used to obtain finite-7' thermodynamics is to perform statistical calcu-
lations by means of a Moyn‘te Carlo algorithm using an energy functional which describes
the alloy in question. The Monte Carlo calculétions efficiently sample the energy in regions
of configuration space where the energy is close to its thermal average. Still, Monte Carlo
calculations require the alloy energy fﬁnctional be sufficiently computationally inexpensive
so that it is easily evaluated for very large unit cells and for many different configurations.
Hence, we wish to use a method whereby one maps first-principles alloy energetics onto
an energy functional which is sufficiently éimple so that Monte Carlo simulations become
possible, but also sufficiently accurate to reflect the atomically-relaxed energetics of a wide
variety of alloy configurations. Such a method, the mixed-space cluster expansion (CE), has
been developed [15,16] and applied to several alloy systems. [17-21] The CE method relies
on (i) a separation of formation enthalpy into strain and chémical contributions, and (ii)

a mapping of the chemical term onto a generalized Ising-like model: One selects a single,




underlying parent lattice (in the case of this paper, fcc) and deﬁneé a configuration, o, by
specifying the OCCupaﬁOIlS of each of the N Iatticé sites by an A-atom or a B-atom. For
each conﬁgugation, one assigns the spin-occupation variables, S; = 1 to each of the N sites.
Within the Ising-like description of the mixed;space CE, the positional degrees of freedom
are integrated out, leaving an energy functional of spin variables only S; which reproduces
for each configuration o the energy of the atomically relazed structure, with atomic positions
at their equilibrium (zero-force, zero-stress) values.

The details of construction of this energy .functional within the LDA are discussed else-
where, [15,20] and thus we give here only the salient points. We have used full-potential,
fully-relaxed, linearized augmented plane wave method [22] (LAPW) total energies in the
construction of the mixed-space cluster expansions. (In the case of GaP-InP, LAPW en-
ergies were used to fit a ternary valence-force-field functional, which was in turn used to
construct the mixed-space cluster expansion. [23]) Details of the LAPW method typically
used in these calculations, as well as the number and types of alloy structures used in the
CE fit aré described in Ref. [20].

The expression used for the formation energy (the energy with respect the the compo-

sitional average of the alloy constituents) of any configuration ¢ in the mixed-space CE

is

AH(o) = Zk: J(&)[S(k, o)[* + Xf: Dy J; Tis(o)

1

e ; AEcs(k, z)|S(k, o) 2. (10)

J(k) is the Fourier transform of the pair interaction energies, S(k, o) is the structure factor
for o, f is a symmetry-distinct figure comprised of several lattice sites (pairs, triplets, etc.),
Dy is the number of figures per lattice site, J¢ is the Ising-like interaction for the figure
f, and the “lattice-averaged product” II; is defined as a product of the variables 5;, over
all sites of the figure f with the overbar denoting an average—.over all symmetry equivalent
figures of lattice sites. Our approach is based on the fact that for simple configurations o we

know the left-hand side of Eq. (10) quite accurately from first-principles LDA total energies,
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so we can solve for the intéractio‘n energies {J¢} and J(k). Thus, we incorporate at the
outset, a detailed quantum mechanical picture (LDA) for interactions, and hence for SRO.
Also, we noté that the total energy includes eigenvalue (or one-electron), electrostatic, and
exchange-correlation terms.- | -

The mixed-space CE of Eq. (10) is separated into three parts:

(i) The first summation includes all pair figures corresponding to pair interactions with
arbitrary separation. These pair interactions are conveniently summed using the reciprocal-
space concentration-wave formalism. [10,11] J(k) and S(k, o) are the lattice Fourier trans-
forms of the real-space pair interactions and spin-occupation variables, J;; and S;, respec-
tively.

(iiy The second summation includes only non-pair figures. The real-space summation of
Eq. (10) is over f, the symmetry-distinct non-pair figures (points, triplets, etc.).

(iii) The third summation involves AFEcg(k,z), the coherency strain energy, defined

above.

B. The Attenuated Coherency Strain Term

The reason to include a AFE¢s term in Eq. (10) is to describe the elastic strain effects be-
tween lattice-mismatched phases brought into contact and strained as a result of coherency.
To understand the need for this term in the cluster expansion, consider a subset of coherent
two-phase configurations: Long period n — oo superlattices A, /B, with layer orientation
along k. These long-period structures possess small (k — 0) dominant wavevectors, but their
strain energy depends on the layer orientation, thus the direction of k, as seen in Eq. (6).
However, the cluster expansion of Eq. (10) without AEcg and with finite-ranged interactions
will give (24] AH(n) ~ 1/n as n — oo, independent of k. Thus, one must include a AFEcg
term in Eq. (10) since this introduces the orientation dependence in coherently-strained
two-phase configurations, which cannot be described by short-ranged real-space interactions

J(R). Further, because long-period superlattices possess k — 0 dominant wavevectors, but

10




the strain energy is dependent on the direction of IE, there is a k — 0 non-analyticity in the
reciprocal-space description of the coherency strain. Thus, the coherency strain cannot be
described evérywhere by reciprocal-space interactions J(k) which are analytic.

Laks et al. [15] formulated AEcs by insuring that it retained the correct n — co super-

lattice limit:

ABes(0) = 4x(11— z)

5 Ak, 25k, o) (1)
Laks et al. demonstrated that this form gives the correct orientation- and composition-
dependence in the long-period limit of the coherency strain. [15] Furthermore, it was shown
that this form is uniquely defined for short-period superlattices and non-superlattices. How-
ever, this form treats short-period superlattices (k — 27/n) the same way that long-period
superlattices (k — oo) are treated. To generalize Eq. (11), we note that the k — 0 non-

analyticity could still be satisfied if we were to multiply Ecs by a function F(k):

1

ABes(0) = =

5" AEes(h, )k, o) PF(K) (12)
k ’ ’

so long as F(k) — 1 as k— 0 for all directions. However, the introduction of F'(k) enables
different treatments of short- vs. long-period systems. So, the question is: Which F(k) is
best? |

We exploit the inherent flexibility in the choice of the form of F(k) to improve the
convergence of the cluster expansion. Intuitively, one might expect that AEcs of Eq. (12)
should be related to the strain energy inherent in the structure, and thus related to the

relaxation energy
6 E.. = Erelaxed _ Eunrela.xed : (13)
rel — LLDA LDA .

Indeed, consider the following decomposition of the formation enthalpy of any configuration

o (either ordered or random):

AH(o) = AEyp(o) + 6Egn (0) + 6 Era(o) (14)

chem
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T he‘ﬁrst term on the right-hand side is the “volume deformation energy”, i.e., the energy
required to deform the alloy constituents hydrostatically from their equilibrium lattice con-
stants to thai: of the alloy structure o. The sécond term is the “chemical energy”, i.e.; the
energy difference between the unrelaxed (UR) structure (with all atoms at iead lattice sites)
and AEyp, so that AEyp + 6ESR = §EPE,. The third term, the “relaxation energy”, is
the energy gained upon atomic and cell-shape distortions.

In systemé where JE is small, the CE is rapidly convergent. [20] However, large re-
laxations lead to long-ranged pair and multibody interactions. For an A, B, long-period

superlattice,
§Ecet(AmBn, k) = AEcs(k, z) — AEyp(z) (15)
Substituting Eq. (15) into Eq. (14), we find that
AH(ApBy, k) = AEcs(k,7) + AESE, (16)

in accordance with Eq. (10). Eq. (15) holds for infinte superlattices only, but we want a
form which gives a reasonable relaxation energy for short-period ordered structures and
disordered alloys as well, i.e., we want to introduce a wavevector-dependence into Eq. (15).

Within a second-order expansion of the elastic energy, 6 Ee can be written as [10,11]

rel Zv;el [S k g | (17)

where Viq(k) can be related to the lattice Fourier transforms of the Kanzaki forces and
dynamical matrix. [10,11] We will retain the form of Eq. (17), but we will generalize V¢ (k)
to accomodate some of the shortcomings of the second-order expansion derivation.

To gain insight into the Wavevector-dépéndence of the relaxation energy, consider the

following breakdown of the relaxation energy:
§Ere(o) = 0Eg(0) +8E (o) - . (18)

The cell-internal relaxation §E% is the energy gained when atomic positions within the unit

cell are relaxed, but the unit-cell vectors maintain their ideal angles and lengths, whereas
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the cell-external relaxation  ESS* is the energy gained when the unit-cell vectors are allowed
to relax. For some high—symmetry structures, JE;‘;f = 0 by symmetry: Structures with.
dominant cofnposition wavevectors at the Brillouin zone boundary often possess only cell-
external degrees of freedom. For example, the A;B; superlattice along (001) is tetragonal,
composed of k = (001) waves, and possesses only the tetragonality ratio ¢/a as a symmetry-
allowed degree of freedom. However, the A;B, (001) superlattice is composed of k = %(001)
waves, and in addition to the c/a ratio, also possess a cell-internal degree of freedom.
It is interesting to 1%now the extent to which cell-internal and cell-external relaxations
' afe energetically important in various alloy systems. Table I shows the LAPW calculated
relaxation energy for A2B> and A;B; (001) superlattice structures for é variety of size-
mismatched noble-metal and aluminum—alldy systems: Ni-Au, Cu-Au, Cu-Ag, Ni-Al, Cu-Al,
and Al-Mg. The relaxation energy is decomposed into ‘cell-internal and cell-external pieces.
Table I demonstrates that (i) when symmetry does not prohibit cell-internal relaxation, this
mode of relaxation is dominant (e.g., 100% in AlbMg,). Yet, (ii) cell-ezternal relaxation
is not negligible: It is 100% (by symmetry) .for A; B; along (001) or (111); it is ~50% for
(001) CupAl,, and ~10-15% for NipAu, and CupAu,. (iii) The AyB; structure has much
larger (mostly cell-internal) relaxation than the A;B; structure. Similar étudies [15] on
longer-period A, B, superlattices confirm that § E\ increases with.n. Thus, the cell-internal
relazation decays as the dominant wavevector k ~ 1 /n increases towards the Brillouin zone
boundary (small period. superlattices). However, cell-external relaxation does not. In the
second-order expansion approaches, it can be shown [10] that the relaxation energy decays
precisely to zero at the Brillouin zone boundary. Thus, these types of approaches do not
account for energy lowering due to cell-ezternal relaxations. For some systems (Al-Mg), this
is probably an adequate assumption, while for others (Ni-Al, Cu-Al) it is not. It is possible
to introduce macroscopic elastic strain into the first-principles linear response approaches,
[25] however, to our knowledge this approach has not been applied to studies of bulk alloy
systems. In this vein, we also note that linear response and alchemical calculations have

been extended to third order. [26,27] However, to our knowledge, none of these third-order
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approaches treats the effects of macroscopic elastic strain, required to describe cell-external
relaxations. To obtain a non-zero relaxation energy at the Brillouin zone boundary, Vie(k)
will be given by

AEyp(z) — AEcs(z, k) g
L e _x)c F(k) (19)

where F(k) is chosen so that the relaxation energy from Eq. (19) matches the first-principles

Vrel(k) =

values obtained from Eq. (13). We have selected [28]
Fk) = e~ (Ikl/ke)? ' (20)

with k. being an adjustable parameter. We ﬁnd that

6 Era(o ——ZAEVD (Af)cs(m’k)IS(a,kM?e““"/’%)Z (21)

with k. ~ 0.6(27/ao) matches the LDA relaxation energies (e.g., Table I) of many compounds

very well, hence we will use

Zm_(li__;j zk: AFEcs(k, 2)|S(k, o) [Pe(Ikl/ke)® o)

AECS (0’ ) =
in our cluster expansion instead of Eq. (11) of Ecs(c). The resulting mixed-space cluster
expansion then is

AH(o) =3 J(k)IS(k,0)]* + ff: Dy J; T4(o)
k

+mfl_—z)§AECs('%m)iS(k, o) e /Y )

We refer to Eq. (22) as the “attenuated coherency strain”. It differs from previous calcula-
tions in the choice of F(k) of Eq. (20) rather than F(k) =

To summarize this section, we find that Eq. (23) improves the conventional cluster ex-
pansion since the effect of strain for large-k (small-period) structures is attenuated. This
will turn out to be important when enharmonic strain s ldfge and when the relaxation
energy of short-period, k — I structures is particularly small relative to that of long-period

k — 0 structures, so treating them equally [as is the case if F'(k) = 1] is unbalanced. Since
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attenuation does not affect k — 0 energetics, it is unimportant. for phase-separating systems
where the SRO peaks near k=0.

We next discuss the F (k) = 1 form of the coherency strain energy [Eq. (11)] used in the
mixed-space CE of Eq. (23) and show how it can fail for some short-period superlattices
in systems which possess strongly anharmonic strain. The failures include prediction of
spurious ground state structures, and incorrect short-range order patterns (when compared
with measured patterns). Attenuating the form of the coherency strain energy via Eq. (20)

is shown to rectify these problems.

C. Attenuating the coherency strain for short-period superlattices

T};e problems which can arise with the unattenuated form of the CS are most easily
explained with an example: Cu-rich Cu-Au alloys. This system has a very large lattice con-
stant mismatch (12%), and thus anharmonic strain effects are significant. First-principles
calculations of the coherency strain in Cu-Au alloys [20] have shown that the strong an-
harmonic strain of Au results in a low CS for the-(201) directioﬁ in Cu-rich alloys. This
simply means that (201) long-period superlattices (small k) will be lower in energy than
differently-oriented long-period superlattices. However, this energetic preference for (201)
structures does not necessarily hold for short-period superlattices (large k), due to the first
two terms of Eq. (10) which describe interfacial energies of atoms near the Cu/Au inter-
faces. But the unatteﬁuated form of the coherency strain energy given in Eq. (11) will give
a large energy lowering to any Cu-rich structure which possesses composition waves lying
along the (2i0) direction, regardless of the magnitude of the wave (the superlattice period).
Thus, the short-period CusAu; superlattice along (210), which is a structure composed of
composition waves at the origin and k = 2/5(210) (a rather large k, 80% of the way to the
Brillouin zone boundary) will be given a low energy by Eq. (11) due to the low energy of
the small-k long-period (210) superlattices. [29] This is illustrated in Fig. 2 which shows

the unattenuated (F = 1) and attenuated cluster expansion predictions for the formation
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enthalpy of this CusAu structure as well as the directly-calculated LAPW formation en-
thalpy. The SRO of CuggAug; is shown in Fig. 3 as calculated by the unattenuated and
attenuated CE, as well as obtained from diffuse scattering measurements. [30] The F =1
unattenuated CE has the following features: (1) The CuyAu; (210) superlattice is artificially
low in energy due to the low (210) CS energy (Fig. 2). (2) The F =1 4c1uster expansion
incorrectly predicts this structure’s energy to lie below the tie-line connecting CuzAu (L1,)
and Cu, in disagreement with both experiment and direct LAPW calculations. (3) As we
see from Fig. 3, the unattenuated F = 1 cluster expansion predicts (210)-type SRO in the
solid solution for Cu-rich alloys. The predicted SRO along the (210) direction is due to the
low (210) long-period superlattice energy for Cu-rich alloys. However, the measured SRO
pattern [30] shows peaks at the (100) points. |

The effects of attenuating the CS are significant: (1) The form of F(k) of Eq. (20)
progressively attenuates the CS for structures with larger wavevectors. Thus, in our ex-
ample, the energy of the short—period’ CugAu; superlattice is not given an artifically la;ge
relaxation energy due to the large relaxation energy of the long-period (210) superlattices.
Consequently, its energy is raised signiﬁcantly, in excellent agreement with direct LAPW
calculations (Fig. 2), despite this fact that this energy was not used in fitting either the
attenuated or unattenuated CE. (2) The energy of CusAu; is brought above the tie-line
connecting CuzAu + Cu; thus, attenuating the CS solves the problem of false ground states
due to low energy long-period strain energies. (3) Fig. 3 shows that the SRO pattern is
brought into quantitative agreement with experiment by the attenuation. Calculated peaks
in the SRO move from the (210) direction to the (100) direction upon attenuation of the CS.
Thus, we see that the form of the attenuated coherency sfrain is most likely to be crucial
in ordering systems (where wavevectors away from the origin are important) which possess
highly anharmonic strain energies (where the soft elastic direction can shift as a function of
composition). i

Next, we discuss the short-range order behavior for a series of alloys classified according

to their energetics as in Figure 1. We show that the Al-Mg system represents a Type II
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alloy, which has not previously been discussed. We specifically point to the strong effect
of attenuating the CS for the Cu-Au and Ni-Au systems, and show that the attenuated
strain leads to SRO in Cu-rich Cu-Au alloys in agreement with experiment and significantly

changes the predicted SRO in Ni-rich Ni-Au, for which there are currently no measurements.

IV. SHORT-RANGE ORDER TYPES

We now investigate the SRO/LRO types of Fig. 1. The calculations of some of these
alloy systems (Cu-Au, Ni-Au, and Cu-Ag) have been discussed previously [17] using the
unattenuated F' = 1 form of the coherency strain. Thus, for these alloys, we do not provide
a detailed account of the experimental and theoretical literature on the SRO of these solid
solutions. Rather, we discuss the effects of attenuating the coherency strain on the SRO,

and compare with experimental diffuse scattering measurements where appropriate.

A. Type I alloy, Cu-Au: 6E,q < 0 < §Ecps

Cu-Au is the prototypical ordering alloy system. Its compounds exhibit negative forma-
tion and mixing enthalpies, AHp < 0, AHg < 0 (see Ref. [20] for a recent compilation of
the mixing and formation enthalpies in this system). The ordering energies are negative,
0Eyq < 0 as is the coherent phase separation energy dEcps < 0, placing this alloy into
“Type I’ of Fig. 1. [31] Figure 3 shows the calculated SRO a(k) for CuggAug;. The SRO
of this system has recently been measured [30] by diffuse x-ray scattering, and the measured
results are also shown in Fig. 3 for comparison. As expected for a “Type I” alloy, the SRO
shows ordering type fluctuations (peaks in the SRO off the I point) consistent with the

R — O arrow schematically illustrated in Fig. 1. The calculated SRO pattern with atten-

uated SRO is in quantitative agreement with the measured results [30], which also shows

(100)-type SRO.




B. Type II alloy, AI-Mg: §E;q <0~ dEcps

The Al-Mg phase diagram shows a series €>f complex ordered compounds. Calculations
of ordered Al-Mg compounds show [32,33] that the low-energy fce-based compounds have a
negative formation enthalpy, AHp < 0, whereas the mixing enthalpy of the solid solution
phase is positive, AHg > 0, both from experiment [34] and theory. [33] First-principles
calculations of the heat of solution of Mg impurities in Al also show a positive formation
enthalpy. [35] Thus, the ordering energy is negative, and because the coherency strain energy
is comparable to the mixing energy éEcps ~ 0, and thus Al-Mg is a Type II alloy. The
calculated SRO of an AlggsMgg.15 solid solution is shown in Fig. 4. Table I shows that
the cel}-external relaxation energy of ordered Al-Mg compounds is nearly zero and that the
relaxation is almost completely due to cell-internal relaxations. But, for structures with
rwavevectors near the Brillouin zone boundary such as an Al;Mg, (001) superlattice, there
are no cell-internal degrees of freedom, and thus the total relaxation energy is nearly zero
(despite the fact that this cell is tetragonal). Hence, the relaxation tendencies in this system
follow the attenuated form of Eq. (20), and thus we have performed the calculations for
this system using the attenuated CS. The calculated SRO shows a clear ordering tendency
with peaks at (100), despite the fact that AHr > 0. These (100) fluctuations in the solid
solution are interesting since aged Al-Mg alloys show the existence of an ordered Al;Mg
(L1,) phase in the precipitation sequence, [36,33] with this structure being composed of (100)
composition waves. The metastable L1, phase does not appear in the Al-Mg phase diagram
because the equilibrium phases are incoherent with the fcc Al matrix; however, based on the
existence of L1, in coherent precipitation experiments, one might expect that the metastable
coherent phase diagram contains this phase. Thus, the (100)-type fluctuations in the SRO
are a reflection of the underlying coherent phase stability of the (100)-type AlzMg phase.
Note that the calculated SRO fluctuations follow the R — O schematic of Fig. 1. To our
knowledge, there have been no measurements (diffuse scattering or otherwise) of the SRO

in Al-Mg solid solutions.
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C. Type III alloy, GaP-InP: §Eyq < 6Ecps < 0

The GaP-InP alloy system possesses positive formation enthalpies for all bulk structures,
AHp > 0,AHg > 0, but a negative ordering energy, 6Eqq < 0. [8,18,23] In other words,

the formation enthalpy of low-energy ordered compounds is below that of the random alloy

~ (6Eya < 0) as is the coherency strain energy (§Ecps < 0). (Surface ordering [37,24] is

another effect whereby AHZ'™ > 0 in bulk but the constraint of coherent epitaxy (epi)
changes the sign of Angi < 0 near the surface.) Further, Lu et al. [18] have shown that
the SRO in this system is ordering, thus making it a Type III a.iloy._ Another previous
study [38] suggests that Ti-V might be a Type III alloy. Figure 5 shows the SRO calculated
for GagslngsP using the cluster expansion of Ref. [23]. The calculations of Fig. 5 were
obtained from a cluster expansion constructed from a “ternary” valence force field model
which was carefully fit to a large database of LAPW formation enthalpies. [23] In contrast,
the cluster expansion of Ref. [18] was directly fit to LAPW energetics, with no force field as an
intermediate step. Other than the GaP-InP cluster exbansion used in Fig. 5, all other cluster
expansions in this paper were constructed directly from first-principles total energies. The
SRO of GagsIngsP clearly shows an ordering tendency, with peaks at the (130) positions,
as found by Lu et al. [18] The lowest-energy coherent ordered structures in the GaP-InP
system correspond to (210)-type short-period superlattices, as these structures possess the
optimal geometry for relaxation of tetrahedrally-coordinated systems. The calculated SRO
is a manifestatioﬁ of these low-energy (210) structures, and corresponds to the R — O

fluctuations, schematically illustrated in Fig. 1 for “Type III” alloys.

D. Type IV alloy, Ni-Au: 6Eyq ~ 6Ecps < 0

Ni-Au alloys show positive formation enthalpies AHp > 0, positive mixing enthalpies
AHpg > 0, a miscibility gap in the phase diagram, and yet both measurements [4] and cal-

culations [8,17,39] of the SRO of Nig4Aug¢ show peaks off the I' point, just like GaP-InP.
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However, in contrast with GaP-InP, the CS energy in Ni-Au is slightly lower than the lowest-
energy ordered phase. Thus, as illustrated in Fig. 1, there will be energetically favorable
fluctuations i\n the random alloy towards both ordering (R — O) and coherent phase sep-
aration (R — CS). The competition between these two types of fluctuations distinguishes
“Type IV” Ni-Au from “Type III” GaP-InP. In GaP-InP, only R — O fluctuations are
energetically favorable, as the CS energy is much higher in energy than the lowest-energy
ordered phase.

Using an unattenuated form for the CS, we previously [17] calculated the SRO of Ni-Au
alloys for the Nig4Augg composition (where we could compare with experiment) as well as
for other compositions where there are currently no measurements. Like the Cu-Au system,
the CS energy of Ni-Au shows strong anharmonic effects, and the soft elastic direction for
Ni-rich alloys is (210) due to the elastic responée of Au under compression. Thus, just as
in Fig. 3 for Cu-Au, we found the unattenuated SRO calculation for Ni-rich Ni-Au alloys
produced SRO peaks along the ((£50)) direction. Because we have found this SRO to be

. incorrect for the Cu-Au alloys, we also want to re-examine the SRO for Ni-rich (and Au-
rich alloys) and evaluate the effects of attenuating the CS for these alloys. Figure 6 shows
the calculated SRO for NigrsAugos both for unattenuated and attenuated CS. The SRO
peaks change position when the more correct, attenuated form of the CS is used. The SRO
shows peaks along the (£00) line, in accordance with the measured (and calculated) SRO
peaks for Nigg9Augge. Thus, the SRO in Fig. 6 With attenuated CS is a more accurate
prediction of the SRO for Ni-rich Ni-Au alloys than our pfevious calculations. {17} However,
the previous calculations of the SRO in Au-rich Nig,mAuO_so were in qualitative agreement
with experiment. Thus, it is important to see that attenuating the CS does not change the
SRO peak position for Au-rich alloys. Figure 7 shows the calculated SRO for Nig.4oAugeo-
Clearly, for Au-rich alloys, the attenuation of the CS does not affect the SRO in a qualitative

way, and leaves the calculated SRO in agreement with diffuse scattering measurements. [4]
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E. Type V alloy, Cu-Ag: dEcps < 6Eyq <0

Cu-Ag is a prototypical “phase-separating” alloy, which exhibits positive formation en-
thalpies AHp > 0, positive mixing» enthalpies AHg > 0, a miscibility gap, and the coherent
phase-separated state is lower in energy than both the random alloy and ordered compounds.
This latter fact distinguishes Cu-Ag from GaP-InP and Ni-Au. In GaP-InP, the CS energy
is above that of ordered compounds, and in Ni-Au the CS energy is slightly below, but very
close in energy to that of ordered compounds. The calculations of SRO in Cu-Ag have been
discussed previously and the SRO was shown to be clustering (with peaks at I'). [17] In Fig.
8 we show the SRO for a Cug gsAgo.os alloy at T=480K. Although this is a different composi-
tion and temperature than the calculations of Ref. [17], the SRO still shows clustering-type
peaks at (000). The effect of attenuating the CS is not likely to have a significant effect
since the attenuation does not affect the energetics near the I' point, where the SRO shows

peaks. Thus, for clustering alloys, the attenuated CS is likely to be unimportant.

V. SUMMARY

Short-range order reflects an energetic competition between perfectly random and imper-
fectly random alloys at the same composition. In contrast,'long-range order reflects not only
this iso-compositional competition, but also an energetic competition between a corﬁpound
at composition z, and its constituents at compositiohs z = 0 and z = 1 (and, more gener-
ally, between two-phase mixtures of compounds at any compositions). This simple picture
enables us to divide SRO ws. LRO behavior of alloys into five generic groups:

(1) Type I (most compound-forming systems, e.g., Cu-Au), where AHp < 0 (i.e., ordering
type LRO) and where AHy < AHp so the random alloy caﬁ lower its energy by developing
ordering-type SRO (Fig. 3). Thus, the dominant wavevectors k po and ksgo are both
ordering type (k # 0).

(i) Type II (e.g., Al-Mg), where AHp < 0 (i.e., ordering type LRO) but AHr > 0
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(unstable random alloy). Here too, the random alloy can lower its energy by developing
ordering-type SRO patterns, even though AHgr > 0 (Fig. 4). Again, both kiro and ksro
are ordering—i‘:ype.

(iii) Type III (e.g., most semiconductor alléys and perhaps Ti-V), where AHp > 0 (i.e.,
phase-separating LRO) and AHp > 0 (unstable random alloy), but AHp < AH r. Here, the
random alloy can lower its energy by adopting ordering-type SRO (ksro # 0) even though
the LRO is phase-separating krro = 0. Thus, kiro # ksro. ’

(iv) Type IV (e.g., Ni-Au), where AHp > 0 (i.e., phase-separating LRO) and AHg > 0
(i.e., unstable random alloy), but AHp < AHg (as in Type III) and AEcs < AHp. Here,
the random alloy can lower its energy in two channels: by developing fluctuations akin to
the ordered phase (ksro # 0) or fluctuations corresponding to phase-separation (ksgo = 0).

(v) .T ype V (most phase-separating materials, e.g., Cu-Ag), where AHp > 0 (i.e., phase-
separating LRO), AHg > 0 (unstable random alloy) and AEcs << AHp. Here, the random
alloy can lower its energy only by developing phase-separating fluctuations, so both kiro
and kgsro are clustering-type.

This classification scheme (Fig. 1) enables one to guess the qualitative SRO behavior
of an alloy given the measured or calculated enthalpies of ordered and random systems. It
introduces three unusual cases (Types II, III, and IV), in addition to the usual ordering
(Type I) and phase-separating (Type V) cases. By noting that SRO reflects a constant-
composition energy balance between two phases, one recognizes the possibilities of having
ordering SRO coexisting with phase-separating LRO (Type III).

To accurately calculate the short-range order profile we utilize the first-principles mixed-
bases cluster expansion [Eq. (10)], where the coherency strain energy is first separated out
from the total energy, and the remainder (“chemical energy”) which reflects the constant
composition term is expanded in (a momentum-space series of) pair interactions and in (a
real-space series of) many-body interactions. We found hefé that in those alloy systems
where the long-period structures (corresponding to k — 0) have very different relaxation

energies for some ordering directions than the short-period structures (corresponding to
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k — I), a wavevector-dependent term F(|k[) must be introduced into the coherency strain to
produce a balanced description. Examples include structurés with very large size mismatch
such as Cu-A\Lu and Ni-Au, where anharmonic effects lead to large relaxation energies for
a particular ordering direction in long-period structures, while short-period structures do
not have such a large relaxation. F(|k|) then attenuates the k — I relaxation energy with
respect to that of k — 0. For phase-separating systems, where the SRO occurs near k = 0,
the function F(|k|) makes no change. Similarly, at the compositions where anharmonic
effects are weak (Au-rich Ni-Au or Cu-Au), the F(|k|) function makes no changes even for
size-mismatched alloys. We find that this new, attenuated form of the coherency srain, when
combined with our first-principles cluster expansion, produces SRO patterns in excellent
agreement with diffuse-scattering experiments.
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TABLES

TABLE I. LAPW calculated relaxation energies [Eq. (13)] in a variety of noble metal- and

aluminum-alloys. Shown are the relaxation energies for A2By (001) and A;B; (001) superlattices.

The former possesses both cell-internal and cell-external degrees of freedom; and the latter possesses

only a cell-external degree of freedom. The fraction of the relaxation energy which comes from the

cell-internal relaxation is shown, and to give some idea of the scale of the relaxation energy, the

ratio between the relaxation energy and the formation enthalpy of the structure is also given.

Ao Bs (001) Superlattice

Suﬁerlattice §E.q SE /5 Erg |0Ere)/ AH (A2 By)|
NigAuy -216.5 0.88 3.08
CusAuy -143.1 0.84 21.36
CugAgo -96.7 0.90 1.24
NigAly -303.9 0.50 0.69
CusAly -88.2 © 0.80 | L9
AlLMg, -34.6 1.00 2.52

A3 B; (001) Superlattice

Superlattice 6F.q SED [ Eg |0E/AH(ALB)|
Ni;Au; -22.0 0.0 0.29
CujAuy; -12.1 0.0 0.25
CuAg; -7.1 0.0 0.07
Ni; Al -141.7 | 0.0 0.21
Cu;Aly -115.9 0.0 0.71
Al Mg, ~0 - ~0
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FIGURES

FIG. 1. Schematic illustration of the classification of alloy types in terms of energies of ordered
(O) compounéis, random (R) alloys, and coherent phase separation, or coherency strain (CS)
minimized with respect to orientation. Note that the energy difference O—R and O—CS give the
ordering energy and the coherent phase separation energy, 0 E,q and 6 Ecps, respectively. Energies
are shown relative to the reference state of incoherent phase separation (IPS) A + B, labelled as
“0.0” to indicate the zero of energy. The ordered structures “O” are meant to be representative
of the lowest-energy structures with dominant composition waves at the Brillouin zone boundary
(e.g., the L1y, L1y, or L1; structures). It should be noted that in cases (e.g., Al-Cu) where the
lowest-energy coherent configurations correspond to ordered compounds which have a large degree

of “clustering”, one can obtain clustering-type SRO even in a “Type I” alloy (see Ref. [14]).

FIG. 2. Energetics of CugAu; (210) superlattice relative to CugAu (L1s) and Cu.

FIG. 3. The calculated and measured [30] SRO patterns a(k) in CuggoAug19. Shown are the
calculated results for both (a) non-attenuated coherency strain, (b) attenuated coherency strain,
and (c) the experimentally measured pattern extracted from diffuse x-ray scattering. SRO is shown

in the (hk0) plane, and peak contours are shaded black.

FIG. 4. The calculated SRO patterns a(k) in AlpssMgp.15. SRO is shown in the (hk0) plane,

and peak contours are shaded black.

FIG. 5. The calculated SRO patterns a(k) in Gag soIngsoP. SRO is shown in the (hk0) plane,

and peak contours are shaded black.

FIG. 6. The calculated SRO patterns a(k) in Nig 75Augos. Shown are the calculated results
for both (a) non-attenuated coherency strain and (b) attenuated coherency strain. SRO is shown

in the (hk0O) plane, and peak contours are shaded black.
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FIG. 7. The calculated SRO patterns a(k) in Nig 40Aug.60. Shown are the calculated results
for both (a) non-attenuated coherency strain and (b) attenuated coherency strain. SRO is shown

in the (hk0) p\lane, and peak contours are shaded black.

-

FIG. 8. The calculated SRO pattern a(k) in CuggsAgo.05. SRO is shown in the (hk0O) plane,

and peak contours are shaded black.
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Short-Range Order of Ni, Ay, s
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