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The short range part of the interaction between non-strange baryons (N and ) is studied
in a nonrelativistic quark model. The mass of a quark is assumed to be about one-third of the
nucleon mass and the quark-quark interaction consists of a confinement term and the one gluon
exchange potential. Baryons are described as clusters of three quarks and the resonating group
method, which has been extensively developed in the nuclear cluster model, is used to treat the
bound state and scattering problems of two baryons. This paper discusses the formal aspects
of the present approach, while the numerical results will be given in the subsequent paper.

§1. Introduction

One of the most promising model for hadrons is the quantum chromo-
dynamics (QCD), which has been especially successful in explaining high energy
phenomena. (For references see the reviews of Refs. 1) and 2).) According to the
model, hadrons consist of colored quarks and antiquarks, which interact with
each other through the gauge field of the color SU(3), i.e,, gluon field. In the low
energy phenomena, the “color singlet” hypothesis seems to be hopeful for the
problem of the quark confinement and some phenomenological models,”™ con-
structed on the basis of the QCD, are seen to give quite satisfactory explanations
of the low lying hadron spectra. The problems of the strong interactions be-
tween hadrons, however, have not been well clarified on the basis of their quark
structure. The nuclear force, which is a typical one, has been phenomenologi-
cally described by a potential which has a repulsive (hard or soft) core at short
distance and an attractive part in the intermediate range. The latter has been
explained by several different meson exchange contributions, while the former
has either been introduced phenomenologically or been attributed to the vector
meson exchange.®”™ The radius of the core is, however, of the order of or
smaller than the size of the nucleon in which quarks are confined, and therefore
it would be more natural to understand it on the basis of the quark structure of
nucleons. Some recent attempts in this direction®™'" have suggested that the
short range repulsive force might be explained as the effect of quark exchange
induced by the antisymmetrization.

*) Present address, Graduate School of Science and Technology, Kobe University, Kobe 657.
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Short Range Part of Baryon-Barvon Intevaction in a Quark Model. 1 557

Recent observations of dibaryon renonances'®'® also require a more funda-
mental approach to the interaction between two baryons. Two possible interpre-
tations of the dibaryon resonance are suggested, that is (1) a potential resonance
of the two baryons and (2) a six-quark state which cannot be regarded as (1).
The former picture has been employed in the case of the lowest “dibaryon bound
state”, that is, deuteron, while the latter might be a better picture for the dibaryon
resonances recently found. These two distinct pictures can be compared by
considering the quark structures and dynamics. It is noteworthy that a similar
situation was seen in the relation between the nuclear cluster model and the shell
model. We will be able to study the two-baryon problems with the help of
techniques developed in the nuclear cluster model.

In this series of papers, we will apply a simple nonrelativistic quark model to
the bound state and the low energy scattering problems of two baryons. QOur
main concern is the role of the quark exchange interaction induced by the
antisymmetrization. A very simple dynamical model is used, which has been
adopted by several authors*”® in their studies of the low lying spectra of mesons
and baryons. We assume that quarks in a color singlet system have a finite non-
zero (effective) mass and can be treated nonrelativistically. There is a favorable
feature of using nonrelativistic kinematics that there is no ambiguity in separat-
ing the center of mass motion from the internal motion, which is especially
important in scattering problems. It is also assumed that quarks interact with
each other by a two-body local potential, which confines the quark in a color
singlet system and also has the effect of one gluon exchange between the quarks.
The confinement of quarks by a two-body potential is known to have the difficulty
céncerning the long range van der Waals force.!” Here, we consider the con-
finement part of the potential only as an agent providing with localized wave
functions for quarks and formulate the problem in such a way as to make its
dynamical effects as small as possible.

The interaction between two baryons in the present model is the exchange
effect of two quarks induced by the antisymmetrization. This is certainly an
oversimplified picture of baryon-baryon interaction. An actual baryon is con-
sidered to have meson cloud surrounding the cluster of three quarks and it will
induce the meson exchange interaction between two baryons, which cannot be
described by the quark exchange in a nonrelativistic model. In this series of
papers, we are mainly concerned with the short range part of the baryon-baryon
interaction for which the quark exchange interaction is expected to dominate.
The effect of the meson exchange will be discussed only in a phenomenological
way.

This paper discusses the formal aspects of the present work, while the
numerical results on the S wave baryon-baryon interaction are given in the
subsequent paper.”” In §2, the symmetry structures of two baryon states are
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558 M. Oka and K. Yazaki

discussed. Our model of the quark dynamics is given in § 3, where the origins of
the interaction between two baryons are also discussed. Bound state and the
scattering problems for two baryons are formulated by the resonating group
method in §§ 4 and 5, respectively, and some comments upon the special features
for the present case appear in § 6. A brief summary is given in § 7.

§ 2. Symmetry properties of two-baryon states

In this paper, only the lowest non-strange baryons N and 4 are considered
and therefore up (#)- and down (d)-quarks with three color states are necessary.
We can then classify multi-quark states by the irreducible representations of the
spin-isospin SU(4) (D SU(2)isosein® SU(2)spin) group. Orbital and SU(4) wave
functions of N and 4 are known to be both totally symmetric (denoted by the
partition number [3]), while their color states are totally antisymmetric (denoted
by [111]). The other non-strange baryons are considered to belong to excited
orbital configurations.

The symmetry properties of two-baryon states have already been Studigd in
Ref. 8). The color singlet six quark state has a definite symmetry [222]=[33] in
the color space (tilde denotes the conjugate representation), while four choices
are possible for the orbital and the spin-isospin SU(4) symmetry, that is

[3]x [3]=[6]+[42]+[51]+[33].

Among the four, [6] and [42] ([51] and [33]) representations are symmetric
(antisymmetric) with respect to an exchange of the two baryons, which means a
simultaneous exchange of the three quarks. Total six-body states must be
totally antisymmetric and possible combinations of the orbital and the SU(4)
symmetries are limited as given in Table L

It should be noted that the [51] symmetric SU(4) state cannot couple to the
[6] symmetric orbital state, which contains the (0s)° configuration in the quark
shell model. This implies that the Os state is forbidden for the relative motion of
the two baryons in the [51] symmetric SU(4) channel. Such a forbidden state is
familiar in the nuclear cluster model (for instance, a-a scattering) and is known

Table 1. Possible combinations of the orbital and the spin-isospin
SU(4) symmetries for two-baryon states.

L orbital SU(4)
even (6] or [42] [33]
[42] [51]
odd [51] or [33] [42]
[33] (6]
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Short Eange Part of Baryon-Baryon Inleraction in a Quark Model. I 559

Table I Classification of two-baryon states in terms of the S{/{4) symmetry for
L=even(a) and odd(h) (.‘Tnitary transformation between the particle representa-
tion and the symmetry represem'ﬁion is also given.

me II{a)

(331 (3,0,.44) (0,3, d4)
(3,2,44) (2,3, 44)
12,2, Nda) (1,1, Ndu)

[33]+[51] A,I,Ad4 Ndo) (1,2, 44+ Nde)
(1,0, NN+44) (0.1, NN+ 44)

<[51]>,7/2/3 v3/3 )_1“ >
) \srs 23 va

<2/3 V5/3 )(]\’]\7>
VB3 —2/3/7\44

Table II(b)

[61 (3,3, 44)
[42] (3.1,44) (1,3,44) (2,0,.44)
(0,2, 44) (2.1, Nds) (1,2, NA,)
[6]+ [42] i (2,2, Nds+44) (9,0, NN +4)
<[6] >,,<2/«/5 1/V5 )(N_/;'s\ .<J\°'J\'>
(421 \1/v5 —2//5M\ 44 )‘“ 44
[6]+[42]? (1,1, 44+ NA«+ NN)
6] \ /1/3 2/3 2/3 \ /44 \
[42]1) 4/v18 —1//18 —1//18 (Ads
[42]. 0 1/V2 71//2 NN |

to be responsible for a short range repulsive core.'” In our problem, it will
produce a repulsive core in the pure [51] symmetric SU(4) channel. The spin-
isospin SU/(4) symmetry, however, is actually broken and therefore [51] and [33]
symmetries mix with each other in several channels including those of the *S and
'S two nucleons. Later, we will find another cause of the repulsive core between
two nucleons. Table Ila (IIb) gives the relations between the particle represen-
tation (NN, N4 and 44) and the symmetry representation for L =even (odd)

states.
§3. Dynamics

The following total hamiltonian for quarks is used in the present calculation:

H=K+V, (3-1)
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560 M. Oka and K. Yazak:

where
2
K:g—ZB,;Z—KG (3+2)
and
V= Z} Vii= g( WSONF+ VS’GEP). (3'3)

In Eq. (3+2), # and d quarks are assumed to have the mass mq,=300 MeV/c? and
K¢ is the kinetic energy for the center of mass motion of the total system. The
first term V5N of the two-body potential (3-3) is responsible for confining the

quarks in a color singlet hadron and is assumed to be either

SN = —al(Ai=2) ris (3-4)
or
=—a (A A;)rh (3-5)
where
(/1,-%]—)5; A4 (3-6)

and A% is the a-th generator of the color SU(3) for the /-th quark.

The second term in Eq. (3-3) has its origin in the exchange of a single gluon
which belongs to an octet representation of the color SU(3). According to
De Rujula et al., we will employ the following potential:

[;__2& 1

Vi; 3 qu

SGEP:(/L'AJ-)ZS (Gi-dj)é(rij)]+(tensor term), (3-7)
where as is the quark-gluon coupling constant and ¢; is the Pauli spin operator
for the i-th quark. The tensor term is omitted in the present treatment. The
second term of V9" in Eq. (3-7), i.e. spin-spin contact interaction, is not
invariant under the spin-isospin SU(4) group, while the other terms of the present
hamiltonian are invariant. Only the SU(4) breaking interaction can give the
mass difference between N and 4. Thus, we can determine «s from the observed
mass difference. We neglect the Coulomb interaction and the other electro-
magnetic interactions in the present calculations.

Many studies”® have already been done on the spectra of hadrons by using
this kind of hamiltonian. Those analyses have concluded that the excitation
spectra of low lying mesons and baryons can be explained fairly well by a
suitable choice of parameters, although another constant is necessary to fit the
observed masses of hadrons. Many of them have assumed the harmonic oscilla-
tor wave functions for the orbital part of the quark wave functions. In the
present calculation, we also assume that the orbital part is the 0s harmonic
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Short Range Part of Barvon-Baryon Intevaction in a Quark Model. T 561

oscillator wave function. This enables us to separate the center of mass motion
in a clear way and to use many techniques which have been developed in the
nuclear cluster model calculations.

Now we consider the interaction between two baryons on the basis of the
above quark hamiltonian. The potential V;; does not contribute to the interac-
tion between two solated baryons in the first order, since the matrix element of
(A:+A;) vanishes when the 7-th quark is in a baryon and the j-th in the other.
This can be easily understood by an analogy with the system of two neutral
atoms, where no Coulomb force exists. However, once the electron wave func-
tions of the two atoms overlap with each other, the well-known exchange force
appears due to the antisymmetrization between the electrons. The situation is
the same for the quarks in the two baryons and as the results we expect a quark
exchange interaction, the range of which is given by the extension of the quark
wave function in a baryon.

The hamiltonian (3-1) is known to give a long range force which is the
analogue of the van der Waals force between two neutral atoms. This is due to
the simultaneous excitations of the color octet dipole states in both of the two
baryons, and the corresponding potential behaves like 1/R* (1/R*) at long
distance for the linear (quadratic) confinement. With the estimated strength,
such a long range force clearly contradicts with the nucleon-nucleon data.’”
This difficulty is a common feature of the potential model for confinement and has
not been overcome. We will see, however, that the baryon-baryon interaction, as
given by the present treatment, is almost independent of the confinement potential
VV€ONF - We can thus expect that the results of this work will remain essentially
unchanged, even if the mechanism of confinement is quite different from that of
the potential model.

In the present work, we will mainly concentrate on the quark exchange
interaction by using the resonating group method. The effect of the meson
exchange will be briefly discussed by simulating it with an additional local
potential between two baryons, which we call “effective meson exchange poten-
tial” (EMEP).

§4. Bound state problem

In this section, we present the formulation of a method for solving the bound
state problems of two composite particles (we denote them as the cluster A4 and
B). The method used here is the resonating group method (RGM ), which was
first proposed by Wheeler'” and has been developed in the nuclear cluster model
calculations. In the present application, all constituents are quarks instead of
nucleons and a baryon is treated as a single cluster which is made of three quarks.
In order to avoid unnecessary complexities, we will give here the expressions in
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562 M. Oka and K. Yazaki

which spin, isospin and color degrees of freedom are dropped. Besides the
straightforward generalization due to these degrees of freedom, the possible
coupling between particle channels (NN, N4 and 44) is taken into account in
the actual calculation.

We take the following choice of the coordinates to construct the total wave
function of the system:

+
El:h—rz, Ez:rs"'m“;z"t, R/\:%’(P"14‘5"2+l‘3),
— _ ratrs _ 1
Sg—h”?‘s, éa*ref””f)*”’, R/s*'é(NJFrsﬂ-Lre),
Ris=Ri— Rsr N ,R(;::"%’“(RA'+ RB). (41)

Here, r; is the coordinate of the 7-th quark, & and & (& and &.) are the internal
coordinates for the cluster A(B), R4 (R5z) is the center of mass coordinate of the
cluster A(B), R.s is the relative coordinate between A and B, and R¢ is the
center of mass coordinate of the total system.

Following the cluster model calculation, the RGM wave function is written as

W(:‘,&m EI)‘, RAB):L_/ZZ [¢A<§A)¢B(éb’)%(RAB)}. (4'2)

Here ¢a(€.)(ps(&s)) is the internal wave function of the cluster A(B), &
=(&, &), €s=(&s, &), x(Rap) is the relative wave function between A and B
and A is the antisymmetrizing operator defined as

JTEl——JZ’ElePﬁ. (4-3)

e
jen

Note that exchanges of more than one particle are redundant in the present case
sirice the exchange of three particles such as P PsPse are interpreted as the
exchange of two baryvons, ie.,, Pas and the exchanges of two particles can be
expressed as the one particle exchanges times Pas.

When one knows the internal wave functions ¢4 and ¢s, the equation of
motion for x(Ras) can be obtained as follows:

(6. (80da" (BN H — E) W(Ea, §s. Rup)dErds=0. (4-4)

{1 order to rewrite Eq. (4-4) into a more convenient form, let us define RGM
hamiltonian and normalization kernels as follows:

H{R R)=K(R',R)+ V(R', R), (4+5)

KR, Ri=K7(R)S(E —RE)- K" (R R), (4-6a)
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V(R R)=VP(R)S(R —R)~ V& (R R), (4-6b)
N(R, R)=N(R)S(R' —R)—N" (R, R), -
where
A/'(D)
K(D))(R):fgbﬁ(&ﬂﬁbze*(58)
1/7(1:)/,
/ 1\
><([{)‘NR*RA13)¢A(EA)d’B(EB)dEAdEBdRAB
L7
( ! 1
= *2‘{/77/( \ [(mt ’ (4(8)
VG (R)+ Vier |
NED 1\
K& (R R)= /qu 3) P (Es)S (R — Ras) K)
L {EX}) V/
XA [ &) $n(E5)S (R~ Rax)|dEadEpdRas . (4-9)

In Eq. (4:3), u(= § mq) is the reduced mass of A and B, Kin is the internal kinetic
energy

mefvfm »<ﬂ~-z T lZp))a(EA)dEAJr(AHB) (4-10)

2 Weq zeA 6 Waq

and Vi and VI&(R) are, respectively, the internal potential energy and the direct
interactioys between A and 5 defined as

vmtﬁfqﬁﬁ(é ) 31 Vibul € dEut(A~ B), (411)
rel }‘_ ¢ EB/Z “lj()( - RAB)

f ]&b

X (8l Es)dEdERdR A5 . (4-12)

Using these kernels, we obtain the following integro-differential equation
{called RGM equation):

JL R R)x(R)IR=0 (4:13)

with
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564 M. Oka and K. Yazaki

Il

L(R,R)=H(R',R)~EN(R', R)

[2—17 2y Vr(epn)(R)—Erel]S(R—R')

~[K"(R', R)+ V(R R)— EN*"(R', R)), (4-14)

where Erei=FE — Eint=FE —( Kine + Vint) is the energy of the relative motion.
In the actual calculation, weAtake the internal wave functions ¢4 and ¢z as
Gaussian, i.e,

st en=(55:) " (55) oo~ (5 +55)) (4-152)

et (5 oo (G B

One can then solve the RGM equation (4-13) for the bound state problem by a
method familiar in the nuclear cluster model calculation, in which the wave
function of the relative motion x{R) is expanded by similar Gaussian functions
with their peaks at R=R; ({=1,2,--, N), i.e,

(R =(52) " exo| -~ (R— R} (416)

Expanding it into partial waves, one obtains

HR)=S 7 (R) Yiu(R), (4-17)
)CL(R):Z\/]]C:‘X:'L(R), (4-18a)
HHR) = 4er<2 b2>3l4 eXp{—43bz(R2+Ri2)}z'L<243H“RiR>, (4-18b)

where 7. is the L-th modified spherical Bessel function. For L =0, one has z(x)
=(sinh x/x). Minimizing the energy with respect to the coefficients c.’s, one
obtains a linear eigenvalue problem,

z,f”cj (4-19)
where /% is defined by
b= [2ROLHR, R) (R AR dR (4-20)
with

LHR,R)= [Yiu(R)L(R, R) Yiu(R)dR dR . (4-21)
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Short Range Part of Baryon-Baryon Intevaction in a Quark Model. 1 565

The calculation of .£'% becomes easier by introducing another Gaussian
function of the center of mass coordinate Rg,

#o(Ro)=(-55)

Since our hamiltonian H is independent of R, one has

3/4

exp<*—b37R(,-2>. (4-22)

g‘j:'/‘[¢A+(SA)¢B+(EB)‘XiLéA¢;B) L*M(EAB)]QéG(Ro)(H‘E)

xJJ[@(&)%(&)%Q Viw(Rous) |

X ¢c(Rc)dEadEsdRasdR . (4-23)

Noting that the product y:(Rar)dc(Rc) can be written as

p R R~ ) ol S (R B (e BV o

and that

R 3/2 S \2
3M<r1,rz, r3;%>E¢A(EA)<%> eXD{‘2—?;z‘<RA“I§I> } (4‘25)
is nothing but the shell model wave function with (0s)® configuration in the

harmonic oscillator potential with its origin at R./?2, the expression (4-23) for
L% can be written as

Ifj:/quw'(h'“rs;Ri)YL*M(Ri)(H—E)
. 6 . .
X Q/'SM(rl---rs; RJ) YLM(Rj)kf:Ila’rdez-de R (4'26)

where ¥ is an antisymmetrized wave function for two clusters A and B
situated at R.:/2 and — R./ 2, respectively, i.e.,
5]

(4-27)

TM(pieere; Rz—)EuZZ[ngﬁM(rl, re, rs; Igi >‘¢1§M<r4, rs, re; —

[\

and #"is the normalization factor. The expression (4-26) is more convenient for
the actual calculation, since the antisymmetrization operator A, which gives
main cause of difficulty in the calculation of the RGM kernel, is much easier to
handle in this form. _[% with arbitrary values of R: and R; is called the kernel
of the generator coordinate method (GCM).'¥
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566 M. Oka and K. Yazaki

§ 5. Scattering problem

The scattering problems can be solved by a variational method formulated
by Kamimura et al.,’” which is analogous to that for the bound state problem
stated in the previous section. The wave function of the relative motion x*(R)
is now expanded as

PHR)= 2 i (R), (5-1)

1oy @i (R)  R<R '
X (R)‘{<h‘L-)(kR%Si/z(L*’(kR))R R=Re o

with the condition 23i~i1c:=1. Here x:."(R) is defined in Eq. (4-18b), Af” is the
L-th spherical Hankel function, #=+2¢Fre and @: and S: are parameters deter-
mined by the smooth continuity condition at R=K.. The matching point R.
must be chosen so that the interaction between the clusters can be safely neg-
lected for R> R.. (Recall that we are neglecting the Coulomb interaction.) We
define a functional J by*”

T )= S+ z'%fo(R')I"(R’, RYx"(R)dRdR’ (5-3)
and
SI=> ¢S (5-4)
Making J stationary with respect to the variation of ¢:'s (i=1,2,--, N—1; cw

being eliminated by the condition 2}~1¢:=1), one obtains

B Lo (55)

with
[ = K=Ky =K ks + Kk (5-6a)

and
M=K — K, (5-6b)

where
K= [ZHROL AR, RV GHR) AR dR (5:7)

can be easily calculated by using Eq. (4-26). Note that we must modify the outer
part of the integral (R > R.) because of the difference between y:“ and x:" in this

220z 1snBny Lz uo 1senb Aq |1 281/9G6/2/99/a10Me/d1d/Woo"dnooluepesey/:sdjy woij pepeojumoq



Short Range Fart of Baryon-Baryow Intevaction in a Quevk Model. 1 567

region, which is fairly simple since no exchange term contributes there. With ¢
given, S-matrix is given by Eq. {(5-4)

Extension to the case of the coupled channels is quite easy. We regard all
the kernels as matrices such as Npgs(R', R), where 5{(8") indicates the initial
{final) channel. The boundary conditicn (5-2) for the scattering problem must
be slightly modified.

The function x(R) obtained by the present variational method cannot be
interpreted as a usual relative wave function of two baryons, since it has an
ambiguity of including the forbidden states, which are eigenstates of the normal-
ization kernel N associated with vanishing eigenvalues. No physical observ-
ables can be altered by adding the forbidden states with an arbitrary amplitude
to x(#£). This ambiguity can be eliminated by using the following renormalized
wave function:

wl R)= [NVH(R, R)2(R)dR' (5-8)

where N'?is the square root of the RGM normalization kernel. 1t can be easily
seen that yr becomes orthogonal to any forbidden states and satisfies the follow-
ing ordinary non-local Schridinger type eguation:

JIH(R, B2l R )AR = Exe(R), (5-9)
where # is the renormalized effective hamiltonian defined by

f/\/ YHR, RH(R', RN 'R", RYR dR" .
{5-10)
We may then interpret xr as a relative wave function of two baryons.

In order to understand the results of calculation intuitively, let us define the
equivalent local potentia! (EQLP) V% R) as follows:

F-J,,,,ﬂlz ; ,L,U;,,t,lf Y ] I - L LfT R
L [)ﬂ {]]€2 - 2 R_ 1%4 R xR (R)AEI'BI‘){R (1\)) (S'Ll)

o1

e

|

_ r
1 . (1 7,2

o ! }?) - 30
T 7Y A - I 4 o > Y
vV (1\) o iL ez 7\3 i (b 12/

R (
Note that this local potential in general, depends on the energy fre

As has been described in § 3, the quark exchange interaction does net include
the effect of the meson exchanges, which are atiributed to the interaction of
meson cloud in the present modei. In order to simulate it, we will add an
effective local potential and investigate its influence upon the quark exchange

?){ I
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568 M. Oka and K. Yazaki

interaction. It will be most appropriate to assume an additional local potential
CUEMEP( R which we call “effective meson exchange potential“ (EMEP), in the
renormalized effective hamiltonian # (R, R’). The corresponding resonating
group method interaction kernel V™™* is obtained as

VEMER( R R'):fN”Z(R,R")CVEMEP(R”)NW(R", R)dR" . (5-13)

§6. Some comments on the kernels

We discuss here some features of the RGM integral kernels. First, we can
express the direct and exchange kernels in terms of diagrams as illustrated in
Figs. 1~3. Figures 1 and 2 show the normalization and kinetic energy kernels,
respectively. Interaction parts, V? and V*¥, are somewhat more complicated
and are listed in Figs. 3(a) and 3(b), where wavy lines denote the two-body
potential. The second diagram of Fig. 3(a) does not contribute in our case,
because the direct matrix element of (A;-A;) vanishes when the ¢-th and the j-th
quarks belong to different color singlet baryons. In other words, VA (R)=0in
Eq. (4-8) and it corresponds to the fact that isolated hadrons cannot exchange a
single gluon from the field theoretical aspects. Therefore, the only interaction is
the exchange interaction of two quarks induced by the antisymmetrization.

The second point is that the forbidden state can be explicitly seen as an
eigenstate associated with a vanishing eigenvalue of the normalization kernel.
A Gaussian function (that is, the 0s harmonic oscillator wave function) x(R)

given by

—

N TN T
N N e T
-+
S SN
~— ((D) (EX)
(u) (EX)
Fig. 2. The kinetic energy kernel. The symbol X

i 1i kernel. L. . .
Fig. L The porma 1zat10n denotes the kinetic energy insertion.

N~ ~— N Nt N N SN N N N \./Fﬂ_/
V(D) {EX}

Fig. 3. The direct (a) and the exchage (b) parts of the interaction kernel. The wavy line
denotes the two-body potential.

220z 1snbny Lz uo 1senb Aq Lyl /81/95G/2/99/0l01e/d)d/woo"dno-olwepeoe/:sdRy Wwoly pepeojumoq



Short Range Part of Baryon-Baryown Interaction in a Quark Model. 1 569

(R . 3 3/4 3 RZ
Xo F(—Zﬁbz) exp(*“m ) (6-1)
actually satisfies

[Nenw(R', R)z( R)AR=10, (6-2)

where N denotes the normalization kernel for the [51] symmetric SU{4)
channel. It is consistent with the fact that the [6] symmetric (0s)® orbital
configuration in the quark shell model is forbidden for the [51] spin-isospin
symmetry as discussed in § 2.

A special simplification appears for the quadratic confinement potential.
For this potential, the interaction kernel V is found to be proportional to the
normalization kernel N,?V ie.,

V= VOt VEI= Y (NO+ NE9), (6-3)

For the direct term, the relation holds in general with the potential of the form
(3-3), since Vi®=0in Eq. (4:8) as mentioned previously. The relation (6-3) for
the exchange term implies

V(EX)OC<¢A¢35(R,‘RAB)II§ VijP14|¢A¢35(R‘RAB)>
= Vim‘<¢A¢33(R/*RAB)lPMlCISAgéB@(R*RAB)> y (6'4)

where the bracket denotes the integration over the internal variables and the
relative coordinate Ras. This can be shown by the observation that the quadra-
tic confinement potential does not affect the relative motion between two color
singlet clusters. In fact, the relevant part of the potential can be written as

@

3 6
3 F =

4(/1i-/1j)(rz-* rj)Z:lZ! (A AN ri— Ra—r;+ Rs+ Ras)*

15=4

17

it

(6+5)

and the terms depending on R.z have either the factor >i{-:1A; or the factor
S¢_,A; or both, which annihilates a color singlet state. Since ¢4 and ¢5 are the
lowest harmonic oscillator states, the only possible terms in V" other than the
term Viner N are due to that part of the potential X):<; Vi which increases the
oscillator quanta by 2, when multiplied to the left in Eq. (6-4), which however
gives zero when multiplied to the right because it commutes with Pi.. This fact
is remarkable because the part of the interaction kernel which is proportional to
the normalization kernel cannot contribute to any scattering processes. This is
strictly true only for the quadratic confinement potential, but we shall find a very
similar situation for the linear confinement potential through numerical calcula-
tions. The special feature of the interaction kernel is very favorable since we
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want to get the results least dependent on the effect of the confinement term

VCONF
§7. Summary

We have formulated the interaction between non-strange baryons (N and 4)
in a nonrelativistic quark model, using the resonating group method (RGM ) which
has been developed in the nuclear cluster model calculation. The symmetry
properties of six-quark systems, in the spin-isospin SU(4) space and the orbital
space are discussed and the relation between the symmetry classification and the
particle classification of the two-baryon states are studied.

The norm kernels of the RGM reflect the symmetry properties and, with the
harmonic oscillator model for the baryon internal wave functions, the Os state
with [51] SU(4) symmetry and the 0p state with [6] SU(4) symmetry are iden-
tified as the Pauli forbidden states in the relative motion.

The interaction kernels are found to have a remarkable feature of being
almost independent of the confinement term V™ in the quark-quark interaction.
This implies that the confinement term contributes very little to the baryon-
baryon interaction in the present RGM, which is quite favorable in the light of the
remark on potential models of the confinement mentioned in § 1. Numerical
results for the relative S state will be given in the subsequent paper.””
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