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An approach to the short range part of baryon-baryon interaction based on a non-relativis-
tic quark model, proposed and formulated in the previous paper, is applied to the case of S-wave
relative motion. Repulsive core like interactions appear in most of the spin(.S)-isospin( T)
states, including the NN system with (S, T)=(1, 0) and (0, 1), while attractive interactions are
predicted for the 44 system with (S, T)=(3,0) and (1, 0). The interaction is mostly due to
the Pauli principle between quarks and the spin-spin term in the quark-quark force, and is
insensitive to the confinement term. The effect of meson exchanges, which is not included in

- the present non-relativistic quark model, is studied by simulating it with a phenomenological
local potential. Qualitative behaviours of the S-wave NN phase shifts are reproduced in this
way.

§1. Introduction

In the previous paper,” hereafter referred to as (I), we proposed to explain
the short range part of the baryon-baryon interaction, on the basis of non-relativ-
istic quark model. The bound state and scattering problems of two baryon
systems were formulated by the resonating group method (RGM),? which had
been extensively developed in the nuclear cluster model calculations. A baryon
is considered as a three quark cluster and is described by a wave function of the
form

¢A(5A): C([lll] : EAC).?([?)]STZ rf_AS) ¢A($1, Ez), (1'1)

where C is the color part and is assumed to be a totally antisymmetric [111] color
singlet state, while S is the spin-isospin part and is given by a totally symmetric
[3] state with S=T=1/2 for nucleon (N) and S= T=3/2 for isobar (4 ). The
orbital part ¢, is taken to be of the Gaussian form,

eull £0=(552) () el (G (1-2)

*) Present Address: Graduate School of Science and Technology, Kobe University, Kobe 657.
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Short Range Part of Baryon-Baryon Interaction 573

where & and & are the internal coordinates of the three quarks defined by (see
Eq. (4-1) of (I))

§i=ri—r., Ez’:‘rsf%. (1-3)

The RGM assumes that a system of two baryons, A and B, is described by a wave
function of the form

(&, EB,RAB):uZZ[¢A(EA)¢B(§B)?C(RAB)], (1-4)

where y is a wave function for the relative motion and £ is the anti-symmetriza-
tion operator for the six quarks.

The hamiltonian for the quark system
and the interaction, V, i. e,

% consists of the kinetic energy, K,

H=K+V, (1:5)
where
_< b’
K=> 9 1 Ke,
1/ = 1/CONF 1 1/0GEP (1-6)
with
VN = g,("d)(/lz“/ij)ﬁj
or
= S d A A7 (1-7)
and
/OCEP = 2_(/11"/11)46:,8__ *ﬁs—z(ﬁi-/@)(di-o‘j)ﬁ(rﬁ), (1-8)
<J 7 q

The RGM equation for the relative wave function x is determined by
[#47(8)85" (E8)(H —E) ¥ (£, E5, Ras) dEadEs=0
which gives
[lH(R, R)~ EN(R, R)x(R)dR’ (1-9)

where H(R, R') and N(R, R’) are the hamiltonian and normalization kernels,
respectively, and are defined in (I) (Egs. (4-5)~(4-12)). General discussions on
the properties of these kernels are also given in (I). A variational method® was
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574 M. Oka and K. Yazaki

used to solve this equation.
For an illustrative purpose, a renormalized wave function xr is introduced by

2= [N"™(R, R)x(R)dR’ (1-10)

and the equivalent local potential V 9(R) is defined as follows:

[**21; 7‘?74-“]4—(%—{;1)+ VEQ(R)]XRL(R): Erel}(Rl'(R). (1'11)

In this paper, we report some results of the calculation based on the forma-
lism of (I). We first discuss how to determine the several parameters of the
model (§ 2). Numerical results of the scattering and the bound state problems
for the S-wave two baryon states are given in § 3. Effects of the meson exchange
contributions in the intermediate and long range part are also investigated in § 3.
Discussion and conclusion are given in § 4.

§ 2. Determination of parameters

The harmonic oscillator constant b can be determined by the root-mean-
square (RMS) charge radius of a proton. The RMS radius for the (0s)® con-
figuration of quarks is given by

/7:,/%(1~%>b2:b, (2-1)

which gives 6=0.8fm. We, however, consider a nucleon to have meson cloud
around the core of three quarks, so that the actual extension of the “quark core”
part may be smaller than the above value. In the present calculation, we set
b=0.6 fm as a standard value and discuss the effect of changing & around this
value. Further, we assume that an isobar 4 has the same extension as a nucleon,
mainly because of simplicity.

Masses of NV and 4 are obtained as the expectation values of the hamiltonian
for the (0s)® configuration of quarks. With the quark rest mass 3m,, they are
given by

_ 3 - o 2 s .
My =3mat gt 8¢ 2720 mio (2-22)
Mi=3mgt -2 §et. o (2-2b)

S el 32T mlh

where
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Short Range Part of Barvon-Bavyon Intervaction 575

/
7
o 2 . .
s ;(Z\g Py for the linear confinement, PN
c=o/axp 1) " (2e3)
I3 v 2 . .
L3a 1 for the quadratic confinement.

We next relate the strength of the confinement potential ¢ or « to the
extension parameter §, regarding V" as the main part of the potential. For
the quadratic confinement potential, our wave function Eq. (1-2) is an eigenfunc-
tion of the hamiltonian without V°°F" if

(- A

C Tomab* (2-4)
For the linear one, we will determine « by making the baryon mass Mz without
179%E? stationary at a given value of #. Such a variational consideration gives
NS

Q="
32 meb

(2-5)

The relations (2-4) and (2-5) may well be modified due to the perturbation 17°°*".
This modification, however, does not give rise to any serious problem, since the
results of numerical calculations are almost independent of « or ', as we will
see later.

The quark-gluon coupling constant @s can be determined in several ways.
Though @s depends on the energy of applied system or the distance between two
quarks according to QCD,” we will neglect such effects mainly because the
dependence is logarithmic and will not be so serious. In the present calculation,
as is determined from the mass difference between N and 4 as

MA_MN:?‘)E'Z_? m‘ff'[;s*, (2-6)

since we want to have the correct threshold difference between NN, N4 and 44
channels in the scattering problems. The mass difference in the present model
is entirely due to the spin-spin {color magnetic) part of V°°*" in Eq. (1-8), but the
contribution of the meson cloud may again modify the relation (2-6). With this
in mind, we will see the effect of changing as for the Coulomb (spin independent)
part of VO°FF

In Table I, actual values of the parameters determined by Eqs. (2-4)~(2-6)
are tabulated for $=0.6, 0.8 and 0.5fm. The last two columns of Table I show
the corresponding masses of N and 4 given by Eqs. (2-2a) and (2-2b), respec-
tively. We have no intention of reproducing the observed baryon masses in the
present model, since, first, earlier works® show that one needs an additional
constant term in the hamiltonian to fit the hadron masses, second, meson cloud
may give appreciable contribution and finally we feel that the nonrelativistic
model will not be sufficient to discuss the total energy of the system.
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576 M. Oka and K. Yazaki

Table 1. Six sets of parameters with corresponding mass of N and 4. The first set (I) is mainly
adopted in the present calculation.

) b(fm) as a(MeV/fm) a'(MeV/fm?) Mx(MeV) Ms(MeV)
1 0.6 1.39 141. E— 1645 1938
I 0.6 1.39 — 62.5 1102 1396
11 0.8 3.30 59.6 — 368 661
I 0.8 3.30 — 19.8 61 335
111 0.5 0.81 244. — 4080 4372
1y 0.5 0.81 — 129.8 2862 3155

It should also be noted here that the masses for baryons given above have
nothing to do with the mass in the kinetic energy of the relative motion between
two baryons which is always % mq in the present approach. Only the mass
difference between N and 4, which determines threshold energy differences for
NN, N4 and 44 channels, is relevant in the following calculations.

A comment should be given on the one-gluon exchange potential used
in this paper. The values of as determined by the relation (2-6) are somewhat
larger than those usually expected in QCD at the squared momentum transfer ¢*
~1(GeV)? namely as(Q*>=1)~1. It is also hard to justify that one can use a
perturbative approach for the quark-quark interaction with such a strong
“hyperfine” constant @s. On the other hand, the comparison between the results
of Refs. 6) and 7) and the corresponding ones in the present calculation indicates
that the specific form of the quark-quark interaction is almost irrelevant. It is
therefore more reasonable to consider V°°*" used here as an effective interaction
including higher order effects.

VOGEP

§3. Numerical results

3.1. SU(4) invariant limit

We consider first a simple case where the spin-spin term is omitted from the
hamiltonian while the “Coulomb” term is included. In this case, the hamiltonian
is invariant under any transformation of the group SU(4) and the masses of N
and 4 are completely degenerate. We have only two different SU(4) channels
specified by the symmetry, i. e., [33] and [51] eigenchannels. Figures 1(a)~(c)
show the calculated phase shifts, the renormalized wave functions, xz’s, and the
equivalent local potentials (EQLP) for these cases. The phase shift and the
EQLP for the [33] channel indicate the existence of a bound state in this channel,
which is indeed found at a binding energy Es—1.9 MeV. On the contrary, the
phase shift for the [51] channel shows that the interaction is repulsive in this
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Short Range Part of Baryom-Baryon Interaction

channel. The renormalized wave function has an almost energy independent
node at about R —0.74 fm, which reflects the existence of a forbidden 0s state to
This feature suggests that the effective interaction

which yr must be orthogonal.

between two baryons has a strongly repulsive core at the node, which is more
clearly seen in the behavior of the EQLP. Further, one can easily find that the
phase shift is similar to that of the scattering from a hard sphere, i. e., 6 ~ — kd.
Here d is the core radius and corresponds to the position of the node of the wave

8L=D
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Fig. 1.(a) Baryon-baryon S wave phase shifts for

the [33] and [51] symmetric SU(4) eigenstates
when the spin-spin interaction is omitted. Para-
meters are those of the set 1{5=0.6 fm, linear
confinement) in Table 1.

(b) Wave functions xz(R) (the upper part)
and equivalent local potentials (EQLP)
V*9(R) (the lower part) at Ere=10 MeV (full
line) and 50 MeV (dashed line) for the [33]

symmetric state.

(c) Wave functions and EQLP’s for the [51]
symmetric state.

577
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578 M. Oka and K. Yazaki

function in this case. These features are to be expected from the existence of the
forbidden state, as a similar situation occurs in the RGM calculation of, for
instance, the @-¢ scattering.”

3.2. [33] eigenstates

When the spin-spin interaction is turned on, the hamiltonian becomes non-
invariant with respect to the SU(4) transformation and the masses of N and 4
split. The degeneracies of the states in Table II of (I) also disappear. Among
them the states (3,0, 44 ) and (0, 3, 44 ) still belong to the [33] representation.

Sisg
ge)
(3,0,A4) 0 fm
; R
Mey
o 50 100 MeV
EREL
0 fm
(0,3,44) R
-! 100
(a) (b)
fm
0 \\\ 1 2 R
\\
N,
AN
N\,
i N
VEG \\
MeV \\
-, AY
\\ \\
an0] N\ AN g
g \ N i s . 3
\\ - > Fig. 2.(a) Phase shifts for the (3,0, 44) and (0, 3,
200 \\\\ 44 ) states.
A
\
0 \\ {(by Wave functions and EQLP’s for the (3, 0,
I \\ 44 ) state.
" fm
’ 1 2 q {¢) Wave functions and EQLP’s for the (0, 3,
A4 ) state.

(¢)
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Short Range Part of Bavvon-Bavvon Interaction 579

Figures 2(a)~(c) show the results of calculation for these states. The (3,0, 44)
state has a bound state at £3=6.6 MeV for the parameter set I, while the bound
state disappears and the interaction becomes repulsive for the (0, 3, 44 ) state,
although the corresponding wave function has no energy independent node.
These results indicate that the spin-spin interaction plays an important role in the
two baryon problems.

The existence of a 44 bound state in the (S5, 7)=(3,0) channels is very
interesting because Kamae et al. suggested a dibaryon resonance at s =2350
MeV possibly in this channel.” The position of the resonance corresponds to the
binding energy Es=114 MeV, which is much deeper than the prediction of the
present model. One should, however, recall that the effect of the meson cloud has
not been included in the calculation and the model predicts only the hard core like
repulsion in most of the channels.

3.3. [51] eigenstates
The four states (3, 2, 44), (2,3, 44), (1,1, Nd.) and (2,2, Nda) have the
unique [51] symmetric SU(4) wave functions. The spin-spin interaction give
little influence on these states. They have similar phase shifts, the wave func-
tions and the EQLP’s. The energy independent nodes of the relative wave
functions, xz's, appear at

SL=U
R=0.75fm for (3,2, 44),
0 50 100 MeV 0.78 fm for (2,3, 44),
|4

0.74 fm for (1,1, N4 )
and 0.77 fm for (2,2, Nd.),
-1 and correspond to the radii of the
| \((‘3 IV repulsive cores. None of them have
-1 {3:3:08) a bound state. Figure 3 shows the
phase shifts calculated for these

Fig. 3. Phase shifts for the states which belong to the states.
[51] symmetric SU(4) representation.

3.4, Svmmetry mixed states

For the most interesting cases of (S, 7)=(1,0) and (0, 1), the [33] and [51]
S{/(4) symmetries mix with each other and the coupled channel calculations are
carried out. Figures 4(a)-(c) show the results, where the energy Fre is measured
from the two nucleon threshold. The behavior of the phase shifts and the EQLP’s
for the NN channel indicates the existence of a strong short range repulsion
between two nucleons in both channles. The slope of the phase shifts (—d3/d%)
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(1, 0, NN+2D)

(0, 1,NN+rAA)

1000
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=)

(b)

MeV
1000

Fig. 4.(a) Phase shifts for the coupled (I, 0, NN
+d4) and (0,1, NN+ 44 ) states.

(b) Wave functions and EQLP’s of the N-N
channel for the (1, 0, NN -+ 44 ) state.

500

(c) Wave functions and EQLP’s of the N-N
i channel for the (0, 1, NN+ 44 ) state.

averaged over the range 100 MeV < Ere1 <200 MeV is 0.39(0.45)fm for *S(*'S) state
and corresponds to the radius of the repulsive core. The intermediate range
attraction does not show up in the present calculation.

It should be noted that the origin of the repulsive cores obtained here is not
the same as that in the [51] symmetric channels because the relative 0s state is
allowed through the [33] symmetric SU{4) state in the case of the mixed sym-
metry. In order to make it clear, calculations are made without coupling to the
44 channel. We obtain almost the same phase shifts except near the 44
threshold (Fig. 5(a)), while the wave functions and the EQLP’s are rather
different in the internal region (Figs. 5(b) and (c)). It indicates that the repulsive
core is caused by a mechanism other than the symmetry structure of the wave
function. On the other hand, if we omit the spin-sipn term in the quark-quark
potential (1-8), the resulting phase shifts become very flat and the corresponding
EQLP’s become very weak. Thus, we conclude that the spin-spin (color magne-
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Fig. 5.(a) Phase shifts for the uncoupled (1, 0, NN)
and (0, 1, NN) states.

(b) Wave functions and EQLP’s for the un-
coupled (1, 0, NN) state.

(c) Wave functions and EQLP’s for the un-
coupled (0, 1, NN ) state.

(c)

Si=0

MeV
50 100 EREL

(2, 1,8A+NA)

(1.2,88+Na)

Fig. 6. Phase shifts for the uncoupled (1, 0, 44) Fig. 7. Phase shifts for the coupled (2,1, 44

and (0, 1, 44 ) states.

+N4a)and (1,2, 44 + N4 ) states.
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582 M. Oka and K. Yazaki

tic) interaction is crucial in producing the short range repulsive force between
two nucleons. The importance of the spin-spin interaction is also seen in the
results for the uncoupled (1,0, 44 ) and (0, 1, 44 ) states. Figure 6 shows that
the 44 feel attractive forces in these states and we get the 44 bound state at
Esz=30.5MeV for (S, T)=(1,0).

The calculations on the other symmetry mixed (2,1, 44 + N4 .) and (1, 2,
A4+ NA.) states give the results similar to those for the above (1,0) and
(0,1) cases. The phase shifts obtained by the coupled channel calculation
are shown in Fig. 7. The repulsive cores at R =0.44 and 0.48 fm for the (2-1) and
(1, 2) states, respectively, are suggested from the behavior of the phase shifts.

3.5. Dependence on the parameters

Different choices of the parameters give no qualitative change to the previous
results.

As stated in (I), the quadratic confinement potential does not contribute to
the interaction between baryons and give the calculated phase shift which is
completely independent of 4. Although this is not precisely the case for the linear
confinement potential, it is also found to give little influence on the calculated
phase shifts. Figure 8 compares the results for the coupled NN and 44 channels
with two different values of «, i.e., a=141.2MeV/fm (set 1) and ¢a=0. Such a
drastic change of a gives rise to only a moderate change of the phase shifts. We
therefore conclude that the mechanism of confinement does not significantly affect
the interaction between two baryons within the framework of the present formu-
lation.

The radius d of the repulsive core, defined by the average slope of the phase
shift, changes significantly with the extension parameter b. For the *Sand 'S of
the coupled NN + 44 channel, we obtain

d=0.67 fm(b=0.8 fm, param. set Il
in Table 1), bues

0.39 fm(5=0.6 fm, param. set 1)
and 0 L =2 “g::
0.27 fm($=0.5 fm, param.set IID) | oo
for °S and 1 ::::ZIJIZLZ‘?,"SEX
d=0.70 fm(b=10.8 fm, param. set 11), — 2 “’D’»z m:'vm
0.41 fm(5=0.6 fm, param. set I) g o prase shifts for the coupled (1,0, NN + 44)
and and (0,1, NN + 44 ) states calculated for two

different values of the strength of the linear
31f =0. aram. set III
0.31 fm (b 0.5 fm’ p ) confinement potential, that is ¢=141.2 MeV/

for 'S. fin (full line) and 0 MeV/ fm (dashed line).
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Short Range Part of Baryon-Baryon Interaction 583

The quark-gluon coupling constant as cannot be changed, especially, for the
coupled channel calculations as as determirnies the N-4 mass splitting and so the
difference between the thresholds of the two coupled channels. However, the
meson cloud may modify the mass splitting and therefore the actual value of s
may be different from that determined by the mass splitting. In order to study
the influence of this modification, calculations are done for the case where the
strength of the “Coulomb” part of the potential is changed to twice or half of the
initial value with the spin-spin term unchanged. Almost the same results are
obtained. On the other hand, the modification of the strength of the spin-spin
interaction gives a significant change on the calculated phase shifts, although it
also changes the mass difference between N and 4 and therefore may not stand
physical interpretations.

In conclusion, no qualitative changes are induced by the changes of the
parameters, although the radii of the repulsive core are dependent on both the
extension b of the quark wave function and the strength «@s of the spin-spin
interaction.

3.6. Effects of the effective meson exchange potential

We have seen that the baryon-baryon interaction due to the quark exchange
is mostly repulsive and cannot reproduce the attractive part of the nuclear force.
Several other effects, however, are considered to contribute to the attractive
interaction. They are

(1) the effect of the meson cloud surrounding the quark core, which is
responsible for the meson exchange interaction,

(2) the core polarization effect or the change of the intrinsic wave functions
¢4 and ¢ during the collision process, and

(3) the effect of tensor force in OGEP, which causes the mixing of D-state
both in the intrinsic and scattering wave functions. The last one can be included
within the framework of RGM but the effect on the scattering will not be too
important since we are mainly considering the short range region where the
mixing of the higher partial waves is expected to be small. The second one is
certainly important but is also strongly dependent on the detaiis of the dynamics,
especially on the mechanism of confinement. It gives rise to, for example, the
van der Waals force discussed previously, which should be considered as an
unfavourable feature of the potential model. We have therefore decided not to
include the core polarization effect and have restricted ourselves to the effects
which are least dependent on the confinement mechanism.

Following the prescription given in § 5 of (I), we simulate the first one by
introducing an effective meson exchange potential (EMEP) defined in Eq. (5-13)
of (I) for the NN channels, where phenomenological potentials are known fairly
well. The coupling between NN and 44 channels is neglected for simplicity,
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since the effect was found to be small except near the 44 threshold. A local
potential of the Gaussian form is assumed for the EMEP, i. e.,

CYEMER( Py = Voexp< RZ). (3-1)

N

We determine the strength Vs and the range « by fitting the scattering length and
the effective range for the *S and 'S N-N states. The resulting values of Vs and
a are found to be the same for both states and are

Vo= —394 MeV
and
a=0.94fm.

The calculated phase shifts, which are shown in Fig. 9, qualitatively reproduce the
observed ones and indicate that the repulsive cores induced by the quark ex-
change effect are not smeared out by the attractive potential. The core radii, on
the contrary, become larger than those without the EMEP, i. e.,

d=067fm for °S and
0.60 fm for 'S

for the parameter set I.

(1,0,NN)

MeV
50 100 Eec

Fig. 9. Phase shifts for the uncoupled (1, 0, NN ) and (0, 1, NN) states calculated
with the effective meson exchange potential described in the text.

§4. Discussion and conclusion

The present calculation shows that the short range repulsion between two
nucleons can be understood as a combined effect of the Pauli principle and the
spin-spin interaction between quarks. The strong repulsion is not universal,
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Short Range Part of Bavyon-Baryon Intevaction 585

however, and even attractive interactions are predicted in the (S, 7)=(3,0),
(1,0) and (0, 1)44 states. With intermediate range attraction due to the meson
exchanges, one expects deeply bound configurations in these states which may
correspond to the “dibaryon resonances” suggested by Kamae et al.” In the case
of (S, 7T7)=(3, 0), the relative wave function for such a bound state is expected to
be similar to that of the 0s orbit in the barmonic oscillator model and, therefore,
the bound state will be approximately described by the (0s)° configuration in the
quark shell model. One may thus call it a 6 quark state rather than a two baryon
state. TFor the (S, 7)=(1,0) and (0, 1) states, the coupling to NN channels is
quite important and it is even not clear whether they remain as resonances when
the coupling is introduced.

The symmetry properties of two baryon states have been considered by
Neudatchin et al.¥ They introduced an attractive spin-isospin exchange force
between quarks, which effectively prohibits the orbital [6] symmetry for the S
wave NN states. They speculated that the NN relative wave function would
have a node, the position of which corresponded to the radius of the “hard core”,
and also that the (S, 77)=(3,0) and (0, 3) states might have bound states. The
spin-spin interaction in the present calculation plays essentially the same role as
their spin-isospin exchange force, and their speculation is realized, although the
symmetry between spin and isospin in their model disappears in our model.

Adiabatic approaches have been frequently employed to study nuclear force
in quark models. Typical ones are Liberman’s work® in a nonrelativistic quark
model and DeTar’s work'" in the MIT bag model. They assume that the relative
motion between two nucleons is slow compared with the internal motion of
quarks in the nucleons and that the quantum fluctuation of the center of mass
coordinates of the nucleons can be neglected. The latter seems to be a very
strong assumption for a few-body system, and it is interesting to examine its
validity. An advantage of the present approach is that one can treat the relative
motion between two nucleons in a fully quantum mechanical way. Neglecting
the fluctuation mentioned above corresponds to calculating the potential by the
diagonal part of the GCM kernels in the present approach, which is defined by

VAPAR)= (KSR, R)+ V&Y (R, R))/ NS (R, R)
—(R— ). (4-1)

Figure 10 shows V*?(R) thus calculated together with the corresponding equiva-
lent local potential V*9(R) for the (S, 7)={(1,0) and (0, 1) states in the case
where the 44 channels are omitted. The smearing effect due to the fluctuation
is clearly seen and we can conclude that a quantal treatment of the center of mass
motion is necessary for the quantitative discussion of the nucleon-nucleon interac-
tion in any quark model.
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Mey The adiabatic approach has
also been employed by Harvey'” in
his recent paper on the guark model,

1.0 NN where a part of the core polariza-

= tion effect has been taken into ac-
count inthe form of the“hiddencolor”

channel. His conclusion is that the

. : f: effect brings about strong attraction

1000 and washes out the short range re-
pulsion for the NN channel. Al-
(0, 1.NN 3 though his model of quark dynamics
is not the same as ours, qualitative
features of his results will remain
unchanged in the present model and
the core polarization may apprecia-
0 = fm bly alter the results of the present
calculations. On the other hand,
the effect is very sensitive to the
confinement mechanism, and, as was

50071 —Y

Fig. 10. The equivalent local petentials V' “R)
(solid lines) and the adiabatic potentials

V*”(R) {dashed lines) for the uncoupled (1, 9, . . . )
NN) and (0,1, NN) states. Parameters are discussed in (I), gives rise to the un-

those of the set I in Table III. desirable long rangc van der Waals
force. The confinement described
by the two body potential is therefore not appropriate for a dynamical treat-
ment of the core polarization. In this respect, we note that our results are
almost independent of the confinement term as mentioned in the last section and
also in (I). Therefore we expect that the qualitative features of the present
calculation will remain unchanged even if the confinement mechanism is re-
placed by an improved one which is presently unknown.
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