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In the last year, high-throughput sequencing technologies have progressed from proof-of-concept to production
quality. While these methods produce high-quality reads, they have yet to produce reads comparable in length to
Sanger-based sequencing. Current fragment assembly algorithms have been implemented and optimized for
mate-paired Sanger-based reads, and thus do not perform well on short reads produced by short read technologies.
We present a new Eulerian assembler that generates nearly optimal short read assemblies of bacterial genomes and
describe an approach to assemble reads in the case of the popular hybrid protocol when short and long Sanger-based
reads are combined.

In 2005, the first successful whole-genome shotgun sequencing
project performed without using Sanger-based sequencing was
completed (Margulies et al. 2006). The analytical method, py-
rosequencing, was proposed in 1998 (Ronaghi et al. 1998) and
has been incorporated into an industrial sequencing platform by
454 Life Sciences (www.454.com). While this was one of the
original technologies for high-throughput sequencing, many other
next-generation competing platforms, including the Solexa/
Illumina 1G Genome Analysis System (www.illumina.com) and Ap-
plied Biosystems SOLiD Sequencing (www.appliedbiosystems.
com), have recently emerged and have made their data available
to many research groups. Other recent start-ups, including Heli-
cos (www.helicosbio.com) and Complete Genomics (www.
completegenomics.com), plan to release their sequencing data
soon (see Metzker 2005 for an overview of emerging short read
technologies). Although each technology is able to produce vast
quantities of sequence information, in every case the underlying
chemistry limits reads to very short lengths in comparison with
Sanger-based reads: from over one hundred bases (454 Life Sci-
ences) down to as little as 24 (Solexa/Illumina and Applied Bio-
systems). These technologies usher a new era of high-throughput
short read (HTSR) sequencing.

The applications of HTSR sequencing have been largely lim-
ited, albeit with great success, to resequencing (Andries et al.
2005), gene expression (Kim et al. 2007), and genomic profiling
(Barski et al. 2007), which all require a reference genome. Al-
though many model organisms have been sequenced, the success
of recent comparative genomics studies (The ENCODE Project
Consortium 2007) will increase the demand for de novo assem-
bly, which will be assisted by the assembly of HTSR sequences.
Furthermore, the discovery of rampant structural polymor-
phisms in the human genome (Feuk et al. 2006) indicates that it
is necessary to perform de novo assembly of even the same spe-
cies to capture all variations.

Even before the release of the first draft bacterial genome
assembly by 454 Life Sciences, we published a paper examining
de novo assembly of short reads (Chaisson et al. 2004; see also
Whiteford et al. 2005). In the absence of available data, we simu-
lated reads from bacterial genomes with lengths and error rates of
what the contemporary proof-of-concept short-assembly papers
had cited. We came to the conclusions that while the high-

coverage facilitates the error correction in reads prior to assem-
bly, it will be difficult to assemble very large contigs without
mate-pair information. Recently, 454 Life Sciences developed the
Newbler assembler that is now a part of the software package
distributed with 454 sequencing machines. Newbler is an excel-
lent assembler that takes into account the specifics of pyrose-
quencing errors to generate accurate contigs.

The article by Margulies et al. (2006) has shown that short
read assembly is indeed difficult; the assembly of Streptococcus
pneumoniae had 255 long contigs (i.e., contigs longer than 500
bp), of which 11 were misassembled. Later, the proprietary 454
Newbler assembler was improved, and it now produces 253 long
contigs (of total length 2000 kb) and no missassembled contigs.
The S. pneumoniae genome contains 167 exact (unresolvable) re-
peats at least 120 bases long4 that fragment the assembly into 504
contigs, of which 136 are longer than 500 bp. The difference
between 253 and 136 illustrates the gap between the perfor-
mance of the existing short read assemblers and the lower bound
on the number of contigs an optimal assembler would produce.
Our new assembler, EULER-SR, produces only 127 long contigs of
total length 2001 kb, thus illustrating that it comes close to the
“optimal” assembler (136 long contigs of total length 2091 kb).

The assembly of short reads is delayed by the inability to
adapt older assembly techniques from previous sequencing
projects. Many whole-genome assemblers are optimized for as-
sembling the mate-paired long reads that until recently have
been the sole type of data produced by large-scale sequencing
centers. Programs such as Phrap (www.phrap.org) and PCAP
(Huang et al. 2003) simply do not run on next-generation data,
and ARACHNE (Jaffe et al. 2003) produces an overfragmented out-
put in the absence of mate-pairs. Similarly, EULER+ assembler
(Pevzner et al. 2004) does not scale well for high-coverage short
read sequencing projects.

The Eulerian approach for assembly was proposed by Pevz-
ner et al. (1989) in the context of sequencing by hybridization
(SBH), which may be viewed as the very first short read sequenc-
ing technology.5 In the pioneering paper, Idury and Waterman
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4Most reads in this study are shorter than 120 bases.
5The paper by Pevzner et al. (1989) illustrates some potential advantages of
the Eulerian path approach over the “overlap-layout-consensus” approach for
fragment assembly. For example, while the study by Pevzner et al. (1989)
described a simple algorithm for constructing the SBH repeat graph, it is not
immediately clear how to generalize the approaches in the studies by Huang
et al. (2003) and Jaffe et al. (2003) for efficient construction of the repeat
graph even in the simple case of SBH “reads.”
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(1995) extended the Eulerian approach to Sanger reads. Briefly, in
Eulerian assembly, a de Bruijn graph is created with a vertex v for
every l-tuple present in a set of reads, and an edge (v, v�) is created
if an (l + 1)-tuple exists in the reads that contains v as an l-prefix
and v� as an l-suffix. An assembly corresponds to an Eulerian path
(Cormen et al. 1995) through this graph. However, the practical
applications of both Pevzner et al. (1989) and Idury and Water-
man (1995) were hindered by high error rates of SBH and Sanger
sequencing (circa 1995) that made the direct applications of the
Eulerian approach difficult. In the Eulerian assembly described in
Pevzner et al. (2001), sequencing errors create extra vertices and
edges in this graph that require error correction procedures to
improve the assembly quality.

More recently, Pevzner et al. (2004) proposed a new Eulerian
assembler based on the notion of A-Bruijn graphs. The EULER+
assembler (Pevzner et al. 2004) deals with errors in reads by in-
ducing vertices with ungapped alignments that allow mis-
matches, rather than the exact l-tuples in de Bruijn assembly, and
by defining a set of graph-simplification techniques that remove
erroneous edges. Large benchmarking experiments in Pevzner et
al. (2004) demonstrated that the A-Bruijn approach compares
well with Phrap and ARACHNE in assembling BACs and bacterial
genomes. A similar approach was recently described by Myers
(2005) and Medvedev et al. (2007). The A-Bruijn graph was re-
cently used in various applications including multiple alignment
(Raphael et al. 2004), finding composite repeats (Zhi et al. 2006),
shotgun protein sequencing (Bandeira et al. 2007), and dissecting
the history of segmental duplications in human genome (Jiang et
al. 2007). However, the application of the A-Bruijn-based assem-
bly for short read sequencing (with much higher coverage than
in typical long-read sequencing projects) is difficult since the
graph structure that is used scales with coverage and thus de-
mands a large amount of memory. Therefore, the approach in
Chaisson et al. (2004) has to be modified for high-coverage (and
thus memory-intensive) short read assembly.

In this paper we describe how to modify the A-Bruijn tech-
nique from Pevzner et al. (2004) for short read assembly and
present a memory-efficient de Bruijn-based approach that sup-
ports A-Bruijn-like graph correction operations. Our EULER-SR
assembler substitutes the maximum spanning tree optimization
of the A-Bruijn graph by the maximum branching optimization
on de Bruijn graphs. We benchmark our new EULER-SR assem-
bler on data generated by two 454 bacterial sequencing projects
(with an average read length of ≈100 bp). Our assembly of 454
reads compares well with the proprietary 454 assembly tool New-
bler and is the only assembler tool currently capable of assem-
bling shorter reads such as those produced by the Solexa (we were
able to produce nearly optimal BAC assembly with Solexa reads).
In a difference from the Newbler assembler that outputs the set of
unrelated contigs, EULER-SR outputs both the contigs and the
repeat graph (Pevzner et al. 2001) of the assembled genome, thus
connecting the contigs by repeats and directing finishing effort.
In addition, this facilitates the use of mate-pairs when they be-
come available, as recently announced by 454 Life Sciences and
Illumina.

Currently, most sequencing centers utilize 454 reads by
combining them with low-coverage Sanger-based reads for bac-
terial assembly and finishing (Goldberg et al. 2006). They first
assemble only 454 reads using Newbler and later transform long
Newbler contigs (longer than 500 bp) into overlapping pseudo-
reads modeling typical Sanger reads. These pseudo-reads are fur-
ther combined with real Sanger reads and subjected to a conven-

tionalassemblywithprogramslikeARACHNE.Thiscomputational
protocol is clearly not optimal: For example, even if Newbler was
substituted by an “ideal” assembler, the valuable information
about short contigs (shorter than 500 bp) would be lost. In par-
ticular, all valuable information about repeated regions shorter
than 500 bp (covered by 454 reads) is not utilized in this hybrid
approach. However, since Newbler is not designed to handle
mate-pairs and since ARACHNE is not designed to handle short
reads, no better solution is currently available. Below we show
that EULER-SR is well suited for hybrid 454+Sanger approach to
assembly and finishing.

Results

We analyzed 454 reads from Escherichia coli and S. pneumoniae
(454 Life Sciences), and Solexa reads from a human BAC6

(Solexa). Many HTSR sequencers produce raw data that are dif-
ferent from the traditional read traces found in Sanger sequenc-
ing, such as the “flowgram” reads produced by 454 or “color-
space” reads produced by Applied Biosystems. It is possible to
take advantage of the additional information in the raw read
information, as done by Newbler assembler (454 Life Sciences);
however, EULER-SR solely uses reads and quality files (if avail-
able) so that it is applicable to any sequencing technology. Below
we demonstrate that EULER-SR compares well with 454 Newbler
assembler and generates nearly optimal assembly of Solexa reads,
despite the fact it does not take advantage of the peculiarities of
the platform-dependent error models.

Error correction

Our approach begins by preprocessing reads to remove errors.
When quality values are available, we trim or discard low-quality
reads; however, typically our error correction routine will detect
low-quality reads without quality values. Our method for error
correction, as described in Methods, introduces the fewest
changes possible in a read, such that every l-tuple in the read
belongs to a set of l-tuples called a “spectrum,” �, or considers the
read unfixable if too many changes are required. We iteratively
apply our error correction as described in Methods to a set of
reads, first setting � so that reads in regions of high coverage are
corrected, and gradually increase the set of reads in which we fix
errors by expanding the set �.

We tuned the parameters for iteratively fixing errors on 454
E. coli reads. This data set has ∼1.1 M reads for 27-fold coverage of
the genome. The reads are relatively high quality on average, and
only 0.5% of bases were trimmed using quality scores. We mea-
sure the rate of error correction by measuring the number of
error-free reads, that is, reads that appear exactly in the genome
(68% of the reads error-free). Our error correction routine divides
the reads into two sets: a large set of corrected reads and a small
set of nonfixable reads. The nonfixable set has ≈0.1 M reads (9%
of all reads), and of the remaining corrected set, 99.6% reads are
error-free (Table 1). Applying our error correction to the S. pneu-
moniae (without changing parameters) resulted in slightly lower
(99.1%) but still high rate of error correction.

The bulk of EULER-SR time is taken by error correction; it
takes ≈12 h to perform error correction on a single, 1.8-GHz
workstation and only ≈1/2 h to assemble the genome. Fortu-

6E. coli is 4,639,675 bp long, S. pneumoniae is 2,160,837 bp long, and BAC is
173,427 bp long (chromosome 6, bases 30537344–30710771).
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nately, error correction represents an embarrassingly parallel ap-
plication and only takes a matter of minutes on a modest cluster.
EULER-SR provides support for parallelizing error correction on
the Sun Grid Engine (SGE) cluster platform.

Fragment assembly of short reads

After correcting errors, we ran EULER-SR on the set of corrected
reads. Our assembly procedure is a set of steps that first builds the
de Bruijn graph, corrects errors in the graph, and transforms
paths in the graph into assembled sequences. When constructing
the de Bruijn graph, the l-tuple size should be chosen to be large
enough to avoid excessive tangling of the graph that leads to
shorter contigs, yet small enough to not fragment the genome
since every (l + 1)-tuple must be covered by a read in the de
Bruijn graph. We found that l = 35 removes most tangles at a cost
of slightly fragmenting the assembly. To resolve the fragmenta-
tion, we “artificially” connect source and sink edges that share a
smaller unique overlap at the last stage of the algorithm. We
combined the error-corrected reads with the nonfixable reads
that were discarded during error correction to assemble low-
coverage regions.

The parameters for graph correction control the maximum
girth (for bulge and whirl removal), maximum source or sink
edge length to delete during erosion, and minimum edge multi-
plicity to detect chimeric edges. We tuned our parameters for
assembling E. coli and used this to assemble S. pneumoniae. After
error correction, all computations were performed on a desktop
computer. We compared our assembly with ones produced by
the 454 Newbler assembler (Table 2). For each assembly, we re-
port the number of long contigs (i.e., contigs longer than 500
bp), the total length of long contigs, the N50 contig size (the size

of the contig such that 50% of the assembly is contained in
contigs of size N50 or greater), and the coverage using long con-
tigs. Each of these statistics in isolation may be misleading, for
example, an assembler that misjoins contigs may have the best
parameters. However, neither the improved version of Newbler
nor EULER-SR produced misjoined contigs, making these param-
eters comparable for different assemblers.7

The theoretical limits of short read assembly may be evalu-
ated by constructing the repeat graph of a genome with a mini-
mum repeat length equal to the typical length of a read. The
repeat graph corresponds to the condensed de Bruijn graph if an
error-free read is generated at each position in the genome.
Therefore, the repeat graph models an “optimal” assembler that
can be benchmarked against the existing assemblers (Table 2).
The optimal assembly of E. coli on reads of length 120 has 800
contigs with 94 long (i.e., longer than 500 bases) contigs covering
4560 kb. The optimal assembly of S. pneumoniae on reads of
length 120 has 504 contigs with 136 long contigs covering 2091
kb. For S. pneumoniae, EULER-SR comes close to the optimal as-
sembler with 127 long contigs covering 2001 kb. Newbler gen-
erated twice the number of larger contigs (253) with similar total
size (2000 kb). We emphasize that Newbler uses the platform-
dependent error model of 454 technology and has access to flow-
grams reflecting the specifics of pyrosequencing errors. This may
explain the deterioration in EULER-SR performance in the case of
E. coli (199 long contigs covering 4277 kb) as compared with
Newbler (141 long contigs covering 4531 kb). When Newbler is
run on a FASTA data set that is the equivalent of only nucleotide
sequences (an abuse of the intended usage), its performance de-
grades to 311 long contigs covering 4523 kb. This experiment
demonstrates that Newbler is an excellent tool for assembling
454 reads (as it uses flow values to mitigate sequencing errors)
that may not be easy to modify for other sequencing technolo-
gies. As 454 read quality is constantly improving, the additional
data provided by 454 flowgrams is becoming less crucial. The
difference in the error rates between different sequencing
projects undertaken at different times/laboratories may explain a
somewhat better EULER-SR performance on S. pneumoniae as
compared with E.coli.

We have also assembled a human BAC using ≈1 million
27-nucleotide Solexa reads generated by the Joe Ecker laboratory
at the Salk Institute (150� coverage). The Solexa technology is
currently being optimized, and the error model of the Solexa
platform remains poorly understood. In particular, the error rates
of Solexa reads are position-dependent and highly variable across
different machines and even across different runs of the same
machine (Alla Lapidus, pers. comm.). As a result, while assembly
of Solexa-sized simulated reads was analyzed in Warren et al.
(2007), the assembly of real Solexa reads proved to be more chal-
lenging. Since Solexa reads have very few indels, we have chosen
to use a heuristic error correction similar to Pevzner et al. (2001)
instead of spectral alignment (SA) that performed well in the case
of indel-prone 454 reads. This heuristic iteratively finds the mu-
tation in a read that makes the most l-tuples solid (see Methods)
until all tuples in the read are solid, or no mutation is found to
make an l-tuple solid (we use l = 15). The error correction parti-
tions the reads into 592 K of error-corrected reads and

7As described above, EULER-SR does not try to estimate the multiplicities of
tandem repeats and misses three copies of tandem repeats in E. coli (approxi-
mately 1600, 1000, and 300 nucleotides) and one copy of a tandem repeat in
S. pneumoniae (∼500 nt).

Table 1. The results of error correction on 454 GS20 reads

Reads, in thousands

Genome
Total

(error-free)
Quality trimmed

(error-free)
Error corrected

(error-free)

E. coli 1113 (757) 1113 (765) 1012 (1008)
S. pneumoniae 1063 (605) 1063 (652) 963 (954)

Error correction using SA was applied to each set of reads after trimming
ends of reads with phred scores averaging <20 over five bases. Reads were
mapped to the original genome by querying a compressed suffix array as
described in Lippert et al. (2005).

Table 2. Summary of bacterial assemblies using 454 reads

Genome Assembler
No. long
contigs

Total length
of long
contigs
(in kb)

N50
(in bases)

S. pneumoniae EULER-SR 127 2001 32,619
Newbler 253 2000 11,905
Repeat graph 136 2091 36,004

E. coli EULER-SR 199 4277 46,887
Newbler 141 4531 60,757
Repeat graph 94 4560 125,693

Reported are assemblies using EULER-SR and Newbler, and the repeat
graph as a reference for the optimal assembly.
Number of long contigs: The number of contigs greater than 500 bases.
Total length of long contigs: The sum of the length of all long contigs.
N50: The size of the smallest contig such that 50% of the length of the
genome is contained in contigs of size N50 or greater.

Chaisson and Pevzner

326 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


402 K of nonfixable reads. The significantly higher proportion of
nonfixable reads (as compared with 454 platform) reflects the
higher error rates of Solexa reads and some surprising run-
dependent biases in the distribution of errors along the reads.
Out of 598 K error-corrected reads, 580 K are error free, 97% of all
error-corrected reads (as compared with >99% in case of 454
reads). The assembly results in 82 long contigs (larger than 500
bp) of total length 100,360. The optimal assembly (as revealed by
the repeat graph on 24-mers) results in 71 long contigs of total
length 124,660.

Combining short read assembly with mate-pair data

One of the goals of HTSR sequencing is to sequence reads without
the expensive and slow step of producing a clone library. While
it may be difficult to produce paired reads in the traditional sense
of sequencing opposite directions of an amplified clone, it is
possible to amplify and sequence short paired-end tags in paral-
lel. To construct the paired tags, short genomic sequences are
circularized using a known linker sequence and are cleaved out-
side the ligation site using Type IIs restriction enzymes leaving
25–31 base tags of genomic sequence available for sequencing
(Shendure et al. 2005). Although other technologies are also ca-
pable of producing longer paired ends (http://www.454.com/
downloads/protocols/1_paired_end.pdf), there are currently no
publicly available mate-paired short read data sets for these ge-
nomes. We therefore decided to simulate the mate-pair informa-
tion to investigate how it improves the assembly.

We modified the mate-pair assembler, Euler-DB (Pevzner
and Tang 2001), to run on the volume of data generated in HTSR
sequencing and tested it on simulated paired-end data of short
reads. The reads for E. coli and S. pneumoniae were mapped to the
reference genomes, and tag libraries of sizes 2.5 kb, and 10 kb
were generated by selecting 50-bp tags from the reads separated
by 2500 � 250 and 10,000 � 1000 bases, for each library. The
number of tags generated (300,000) is less than the total sequenc-
ing capacity of a typical HTSR sequencing run. The results of our
assembly using mate-pairs are listed in Table 3.8

The current practice in most sequencing centers is to use
low-coverage Sanger sequencing to complement short reads in
hierarchical assembly (Goldberg et al. 2006). Because EULER-SR
may be used with any length read, we simulated paired-end
Sanger sequences for S. pneumoniae and performed assembly by
combined these reads with S. pneumoniae 454 reads. The results
are shown in Figure 1. While adding long reads results in sub-

stantial improvement in the assembly quality, we found that
remarkably small number of long reads contribute to this im-
provement. For example, in the case of 5� read coverage by long
reads, ≈96% of all mate-pairs mapped to a single contig com-
posed of 454 reads and thus do not provide complementary in-
formation for 454-based data except for marginal potential im-
provement in the consensus quality. Moreover, most mate-pairs
mapped to multiple contigs span only two edges in the de Bruijn
graph and thus also do not improve the assembly of 454 reads. As
a result, only 238 out of ≈6800 long mate-paired reads (only ≈3%)
map to more than two edges in the de Bruijn graph9 and thus
meaningfully contribute to improving the assembly.

Our analysis of the hybrid protocol revealed that the over-
whelming majority of long reads do not improve upon the as-
sembly already generated from short reads. It does not necessar-
ily mean that the coverage by long reads in hybrid approaches
may be reduced without affecting the assembly quality: For ex-
ample, Figure 1 does not reflect the contribution of long reads to
improving scaffolds. However, Figure 1 suggests that a critical
review of the benefits of hybrid approaches may be necessary to
compare the relative benefits and costs of generating shotgun
long reads as with those of other finishing approaches.

Discussion

We presented the EULER-SR short read assembler that signifi-
cantly reduces the memory requirements of previously described
Eulerian assemblers and has a potential to produce nearly opti-
mal assemblies of bacterial genomes using modest computa-
tional resources. Our assembly software is available at http://
euler-assembler.ucsd.edu.

We have used assemblies produced by the proprietary New-
bler assembler for benchmarks, as there are currently no other

8The surprising deterioration of N50 statistics for 10-kb spacing (as comparing
with 2.5-kb spacing) reflects ambiguities in mapping longer paths between
mate-pairs in highly tangled de Bruijn graphs.

9123, 72, 31, 9, and 3 mate-pairs map to 3, 4, 5, 6, and more than 6 edges
correspondingly.

Figure 1. Assembly of S. pneumoniae using 454 reads complemented
with simulated Sanger reads (3000 � 300 bp spacing). Uniformly dis-
tributed 800 base reads were generated for coverage varying from 1� to
5�, and then assembled using EULER-SR. We show the assembly using
mate-pairs (solid), assembly using unpaired Sanger reads (broken), and
the base assembly quality of 454 reads (dotted).

Table 3. Summary of the assemblies using real 454 reads
combined with simulated mate-pairs

Genome Assembler
No. long
contigs

Total
length of

long contigs
(in kb)

N50
(in bases)

S. pneumoniae 2.5 kb 156 2111 43,418
10 kb 139 2224 36,253

E. coli 2.5 kb 163 5016 91,252
10 kb 126 4897 101,647

Each end of a clone is 50 bases.
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methods available for assembling short reads. Newbler is an ex-
cellent tool for assembling 454 reads as it uses raw flow values to
mitigate sequencing errors. Our assembler compares well with
Newbler yet does not rely on proprietary information, allowing it
to assemble reads from multiple sequencing platforms.

Sundquist et al. (2007) recently proposed a new SHRAP ex-
perimental protocol that may enable the assembly of mamma-
lian genomes with short reads. SHRAP uses the older version of
EULER (Pevzner et al. 2004) as an engine for assembly of BAC-
sized genome segments, which are then joined. One benefit of
EULER-SR assembly is that assemblies of large genomes may be
performed because de Bruijn graph construction is intrinsically
parallelizable. The de Bruijn graph of the union of two sets of
reads is simply the union of the de Bruijn graph for each inde-
pendent set of reads. Therefore, it may be possible to generate
short read assemblies on large genomes by simply taking the
union of small sets of reads succinctly represented as condensed
de Bruijn graphs.

Methods

Error correction in reads
Our assembly proceeds in several steps: error correction, graph
construction, graph correction, and assembly by transforming
paths in the corrected graph into contigs. Base miscalls and in-
dels are inevitable in sequencing projects, and it is necessary to
detect errors in reads to accurately determine the finished se-
quence. In the past this was done after assembly by mapping
reads to the consensus sequence. Pevzner et al. (2001) introduced
error correction before the assembly and demonstrated that it
greatly simplifies the assembly. Now this is done as a standard
preprocessing step before assembly using a multiple alignment of
reads (Tammi et al. 2003), or by clustering and aligning reads
prior to assembly (Batzoglou et al. 2002). In HTSR sequencing,
constructing multiple alignments of short reads is very time con-
suming, and so we correct errors in reads prior to assembly using
a method called spectral alignment (SA) that does not use a mul-
tiple sequence alignment. This method takes a read r and a set of
l-tuples �, called a spectrum, and finds the minimum number of
substitutions, insertions, and deletions in r required to make ev-
ery l-tuple in r belong to �. The set � is chosen by counting the
frequency of all l-tuples present in all reads in a sequencing
project, and selecting tuples that occur with multiplicity above
some threshold m (called solid l-tuples). An iterative solution to
SA was described in Pevzner et al. (2001), followed by a dynamic
programming solution in Chaisson et al. (2004). The dynamic
programming solution to SA allows for efficient searching
through insertions and deletions, and so it is particularly well
suited for fixing errors in reads generated by pyrosequencing, in
which the errors are biased toward indels. The SA approach
implemented in EULER-SR is faster and has a higher rate of error
correction than the approach described in Chaisson et al. (2004).

The choice of appropriate parameters for fixing errors using
SA should minimize the number of erroneous l-tuples remaining
in reads while not affecting correct but low-coverage sequences.
Consider a sequencing project that produces N reads of average
length L over a genome of length G. The average number of reads
covering an l-tuple is a = N � (L � l)/G and is approximately dis-
tributed by a Poisson with parameter a. To minimize the number
of correct sequences considered to be erroneous, we pick a mul-
tiplicity m for which there are few expected l-tuples covered by
less than m reads. The probability an l-tuple in a genome is cov-
ered m times is

�
y=0

m

PY�y�,

where Y ∼ Poisson with parameter a. For a typical high-
throughput sequencing project of a bacterial genome of 4 million
bases with 1 million 100-bp reads, there are under one hundred
20-mers expected to be covered less than five times. Furthermore,
under the gross simplification that the sequences are random and
there is a 1% random error rate, no erroneous l-tuples are ex-
pected to be made solid by coincident errors.

de Bruijn graph construction
Because of the massive scale of the data in short read assembly, it
is necessary to perform assembly in linear or close to linear time.
Although it is possible to construct a de Bruijn graph in linear
time, memory efficiency is more of a premium for short reads
assembly than run time. Our de Bruijn graph construction is
implemented in several stages, in some of which we trade linear
time for methods that run on sorted lists [thus O(n · logn) time]
but reduce memory requirements.

For a genome of length L, the de Bruijn graph has O(L)
vertices and O(L) edges, regardless of the number of reads in the
data set. We find the set of vertices in the de Bruijn graph using
an efficient hashing structure in linear time proportional to the
number of reads R in the data set. We then represent the vertices
as a sorted list V of tuples, allowing us to discard the memory
overhead of the hashing structure required for O(1) time access.
We next generate adjacencies by querying the vertex list V with
a binary search for every adjacent pair of l-tuples in the set of
reads R. By representing the graph as an adjacency list, our de
Bruijn graph uses a maximum of O(L) * (k + l) bytes, where k is
the memory allocated for each vertex (40 bytes in the current
implementation). For subsequent phases we form a condensed de
Bruijn graph, where every simple path consisting of vertices of
in-degree and out-degree 1 is substituted by a single (labeled)
edge. Because the reads were used to generate the de Bruijn (and
thus the condensed) graph, every (l + 1)-tuple in a read maps to
a unique edge and position in the condensed de Bruijn graph. We
use this to define a path of edges for each read, and to assign a
weight to every edge equal to the number of reads mapped to the
edge. These paths are used after graph correction to find the
Eulerian path through the de Bruijn graph that corresponds to
the assembled genome.

de Bruijn graph correction
If reads covered every (l + 1)-tuple in the genome and were error-
free, the generated de Bruijn graph G would represent the repeat
graph of the genome with minimal repeat length l + 1. However,
after error correction, a small number of errors remain resulting
in some added and removed edges as compared with the repeat
graph. For example, a single mutation in a read will create (l + 1)
extra edges in the de Bruijn graph. Our goal is to construct the
graph G* given G. If we assume every (l + 1)-tuple in the original
genome is sequenced correctly by at least one read, then G* is a
subset of the vertices and edges of the graph on real reads G.
Thus, we may perform additional error correction by detecting
and removing erroneous edges on the graph G.

We adapt the methods for graph simplification on A-Bruijn
graphs from Pevzner et al. (2004) to perform graph correction on
de Bruijn graphs. We distinguish the two methods because graph
simplification aims to capture the repeat-consensus and mosaic
structure of a genome, while the goal of graph correction is to
simplify the de Bruijn graph until all erroneous edges are re-
moved, and no further. For example, in graph simplification,
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repeats with high similarity are typically merged into a single
edge corresponding to the repeat consensus sequence. A cor-
rected de Bruijn graph contains a separate path for each distinct
repeat sequence.

When an A-Bruijn graph is constructed from a set of pair-
wise alignments, gaps and substitutions in an alignment create
undirected cycles called “bulges”, and inconsistencies in an
alignment create directed cycles called “whirls” (Pevzner et al.
2004). A cycle is called “short” if its girth is less than a fixed
parameter g. The algorithm to generate an A-Bruijn graph em-
ploys a heuristic to find a graph that represents the largest pos-
sible set of consistent alignments through solving the maximum
subgraph with large girth (MSLG) problem (Pevzner et al. 2004).
Because this problem is hard for arbitrary girth values, a heuristic
is used that replaces the A-Bruijn graph by its maximum span-
ning tree, and successively adds edges from the original graph to
the spanning tree if they do not create a cycle of girth less
than g.

A similar approach for removing short cycles is used for
fragment assembly on the de Bruijn graphs. One property of a de
Bruijn graph is that every vertex should be reachable by a di-
rected path from the source vertex, if only one source vertex
exists. A shortfall of the bulge removal method in A-Bruijn
graphs is that when a de Bruijn graph is replaced by its undi-
rected maximum spanning tree, certain vertices may not be
reachable from the source by directed paths. Although a path
straightening heuristic (Pevzner et al. 2004) is used in the A-
Bruijn graph construction to repair edges to unreachable vertices,
we circumvent this problem entirely by replacing the de Bruijn
graph with its Maximum branching (Chu and Liu 1965; Ed-
monds 1967), using the method described in Georgiadis (2003)
(the branchings have directed paths from the source vertex to all
vertices). Because “alignments” are found at each vertex by per-
fectly matching sequences of length l, directed cycles are rarely
erroneous other than those covering long low-complexity re-
gions, for example, homopolymeric and dinucleotides. When
checking to see whether adding an edge to the maximum
branching forms a cycle, we distinguish between directed and
undirected cycles and add an edge to the branching if it does not
create an undirected cycle of girth u nor a directed cycle of
length d.

While tandem repeats can be detected as whirls in the de
Bruijn graph (typically directed cycles with two edges as shown
in Figure 2, top), finding the number of copies (multiplicity) in a
tandem repeat is a difficult problem for any assembler. For ex-
ample, the multiplicity of perfect tandem repeats of length
longer than half of the read length cannot be inferred from de
Bruijn graphs. As a result, inferring the multiplicities of tandem
repeats usually amounts to error-prone coverage analysis (e.g., a
tandem repeat with multiplicity 3 is expected to have 50% more
coverage than a repeat with multiplicity 2). To avoid potential
errors caused by the coverage analysis (short read technologies
often produce uneven coverage) and to reduce the fragmentation
due to tandem repeats, we assume there are only two copies of

the perfect tandem repeat and construct the assembly as a path
that traverses the repeat twice, as shown in Figure 2 (bottom).
While this procedure may underestimate the copy number of
tandem repeats we found that it leads to very few errors.10 We
therefore believe that it is a practical approach, at least until more
information about coverage and specifics of errors of short read
technologies becomes available.

Reads that are mapped to edges that have been deleted dur-
ing graph correction are threaded through the remaining edges.
Let the path of such a read be (e0, . . ., ei, . . ., em), and ei be the
removed edge. We search for an alternative path P = (a0 . . . an)
from the start to the end of edge ei such that the sequence cor-
responding to ei and P are sufficiently similar, and replace ei with
P if such a path is found.

In addition to bulge and whirl removal, we also apply two
additional techniques for removing erroneous edges: erosion as
described in Pevzner et al. (2004) and low-weight edge removal.
Erosion removes short sources and sinks from the graph. Low-
weight edge removal is typically a way to detect low-quality chi-
meric reads. Although most HTSR sequencers do not use clone
libraries, sequencing errors at the ends of reads create erroneous
edges similar to those created by chimeric reads.

After the de Bruijn graph has been corrected we apply the
equivalent transformation described in Pevzner et al. (2001) to
resolve repeats that are shorter than the length of a read. If no
mate-pair information exists, we cut paths that do not cover
repeats with an operation similar to the x-cut (Pevzner et al.
2001). When mate-pair information is available, we postpone the
cutting operation, and apply equivalent transformation with
mate-pairs (Pevzner and Tang 2001).
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