

Short shop schedules

Citation for published version (APA):
Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Lenstra, J. K., & Shmoys, D. B. (1994). Short shop schedules.
(Memorandum COSOR; Vol. 9406). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/ceac03d7-2d23-41ae-9bdf-5d9e7ee32ec2

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of IvJathematics and Computing Science

Memorandum COSOR 94-06

Short shop schedules

D.P. Williamson
L.A. Hall

.LA. Hoogeveen
CA . .J. Hurkens

.J.K. Lenstra
D.ll. Shmoys

Eindhoven. Oct.ober 1994
The :\ ('t herlands

Short shop schedules

D. P. Williamson
Cornell University

L. A. Hall
The Johns Hopkins University

J. A. Hoogeveen
C. A. J. Hurkens

Eindhoven University of Technology

J. K. Lenstra
Eindhoven University of Technology

CWI, Amsterdam

D. B. Shmoys
Cornell University

August 1, 1994

Abstract

We consider the open shop, job shop, and flow shop scheduling problems with integral pro

cessing times. We give polynomial-time algorithms to determine if an instance has a schedule

of length at most 3, and show that deciding if there is a schedule of length at most 4 is N'P

complete. The latter result implies that, unless 'P = N'P, there does not exist a polynomial-time

approximation algorithm for any of these problems that constructs a schedule with length guar

anteed to be strictly less than 5/4 times the optimal length. This work constitutes the first

nontrivial theoretical evidence that shop scheduling problems are hard to solve even approxi

mately.

Subject classification:

• Analysis of algorithms, computational complexity: NP-completeness results

• Production/scheduling, approximations: impossibility results

• Production/scheduling, multiple machine deterministic scheduling: non-preemptive shop

scheduling

Shop scheduling problems form a class of scheduling models in which each job consists of several

operations. In particular, we are given a set of jobs .J = {Jb .. . ,J,,}, a set of machines M =
{Mb ... ,Mm }, and a set of operations 0 = {Ob ... ,Ot}; each operation Ok E 0 belongs to a

specific job Ji E .J and must be processed on a specific machine Mi E M for a given amount of

time Pk, which is a nonnegative integer. At any time, at most one operation can be processed on

each machine, and at most one operation of each job can be processed. In this paper we consider

nonpreemptive models: each operation must be processed to completion without interruption.

Shop models are further classified based on ordering restrictions for the operations of a job.

In an open shop, the operations of each job may be processed in any order. In a job shop, the

operations of each job must be processed in a given order specific to that job. A flow shop is a

job shop in which each job has exactly one operation on each machine and the order in which each

job is processed by the machines is the same for a.ll jobs. In a.ll three models, we define the length

Cma;x of a schedule as the time at which a.ll operations are completed, and C~ax as the length of the

shortest feasible schedule. Due to the integrality of the processing times, any schedule can easily

be converted into one at least as good in which a.ll completion times are integral; from now on, we

sha.ll restrict attention to such schedules.

For each of the three shop scheduling models, the problem of finding a schedule of minimum

length is strongly NP-hard. In fact, severely restricted versions of these problems are probably

intractable. For a summary of these results, the reader is referred to the survey of Lawler, Lenstra,

Rinnooy Kan, and Shmoys (1993).

In contrast, nothing was known up to now about the computational complexity of deciding

whether a given instance has a schedule of at most a given constant length. An example of such a

problem is the question, 'Given an instance, does there exist a schedule of length no more than 31'

We have resolved this issue: in each of the open shop, job shop, and :flow shop scheduling models,

deciding if there is a schedule of length at most 3 is in 'P, whereas deciding if there is a schedule of

length at most 4 is NP-complete.

The NP-completeness results imply that finding near-optimal shop schedules is NP-hard. Sup

pose that, for some p < 5/4, we have a polynomiaJ.-time p-approximation algorithm for one of these

problems, that is, an aJ.gorithm that runs in polynomial time and is guaranteed to produce a sched

ule of length at most pC~. If there exists a schedule of length at most 4, then our algorithm will

return a schedule of length less than 5/4.4 = 5, that is, of length at most 4; otherwise, it will, of

course, produce a schedule of length at least 5. Hence, a schedule of length at most 4 exists if and

only if our approximation algorithm finds such a schedule. In other words, the supposed algorithm

solves an NP-complete problem in polynomial time. It follows that, for any p < 5/4, there is no

polynomiaJ.-time p-approximation aJ.gorithm, unless 'P = NP.
..

Our results constitute the first nontrivial theoretical evidence that shop scheduling problems

2

are hard to solve even approximately. The best result known previously is that no fully polynomial

approximation scheme could exist for any such problem, unless l' = N1'. (A fully polynomial

approximation scheme takes a problem instance and an E > 0 as input, and produces a schedule

of length at most (1 + E)C~ax in time polynomial in the size of the instance and l/E.) This is a

straightforward consequence of the strong N1'-hardness of these problems (Garey and Johnson,

1979, p. 141).

Some positive results are known about approximate shop scheduling. A result of Racsmany

(see Barany and Fiala, 1982; Shmoys, Stein, and Wein, 1994) implies that a simple list schedul

ing rule for open shops produces a schedule of length less than 2C~ax' For job shops and flow

shops, the best known polynomial-time approximation algorithm delivers a schedule of length

O(log2 m/loglog m)C~ax (Shmoys, Stein, and Wein, 1994; Schmidt, Siegel, and Srinivasan, 1993).

Any attempt to close the gaps by proving stronger negative results would require a new approach,

since deciding if there is a schedule of length at most 3 is in P.

1 Open shop scheduling

We shall present a polynomial-time algorithm to decide if a given instance of the open shop schedul

ing problem has a schedule oflength at most 3. Furthermore, we shall prove that it is NP-complete

to decide if there is an open shop schedule of length at most 4. Based on earlier work of Williamson

(1991), Sevastjanov (1993) has also shown that deciding if there is an open shop schedule oflength

at most 4 is NP-complete.

It is easy to give a polynomial-time algorithm in case all operations have length 0 or 1. This

special case can be reduced to the problem of coloring the edges of a bipartite graph G so that

no two edges with a common endpoint have the same color. Let G = (Vb V2, E) where VI = M,

V2 = 3, and E = {ek = (Mi,Jj): operation Ok of Jj is on Mi and Pk = I}; note that if some job

has more than one operation of length 1 on a machine, then G is a multigraph. Any edge-coloring

of G with the colors {I, 2, ... , t} can be viewed as a schedule in the following way: if ek is colored c,

then Ok is scheduled to start at time c - I and to complete at time C; all operations of length 0 are

scheduled at time O. Conversely, any open shop schedule of length Cmax can be similarly translated

to yield a coloring that uses Cmax colors. Since an optimal edge-coloring of a bipartite graph can

be computed in polynomial time (see, e.g., Bondy and Murty, 1976), we see that this special case

of the open shop scheduling problem is in 1'.

If we wish to decide if an arbitrary instance of the problem has a schedule of length at most

3, we need only be concerned with operations of length at most 3. Moreover, since operations of

length 0 or 3 are trivial to schedule, we can focus on instances with operations of length 1 or 2 only.

We will show that this problem can be reduced to a constrained bipartite edge-coloring problem,

3

which can be solved using an algorithm for the weighted bipartite matching problem.

The main idea behind the algorithm is that an operation Ok of length 2 in a schedule of length

3 is always processed throughout the time interval [1,2], plus either [O,IJ or [2,3]. Furthermore, any

unit·length operation in the same job as Ok or on the same machine as Ok cannot be processed

in the interval [1,2]. Thus, a schedule is equivalent to an edga.coloring of the graph G as defined

above, where any edge corresponding to an operation of length 2 is colored either 1 or 3 to reftect

whether it is processed during [0,21 or [1,3], respectively, and any edge corresponding to a unit

length operation constrained to be processed in either [0,1] or [2,3] by an operation of length 2 is

colored either 1 or 3 as well. The following is a more precise statement of the algorithm:

1. For each machine in M, check if the total processing requirement of its operations is at most

3; if not, output 'no schedule' and halt.

2. For each job in :1, check if the total processing requirement of its operations is at most 3; if

not, output 'no schedule' and halt.

3. Schedule all operations of length 0 or 3 to start at time O.

4. Form the bipartite graph G = (VI, V2, E) where VI = M, V2 = :1, and E = {ek = (Mi,Jj) :

operation Ok of Jj is on Mi and Pk = 1 or 2}. To each edge ek E E assign a weight pk.

5. Define a set S ~ E of special edges containing each edge of weight 2 and each edge that has

a common endpoint with an edge of weight 2.

6. Decide if G can be edga.colored with the colors {I, 2, 3} such that each special edge is colored

either 1 or 3. If no such coloring exists, then output 'no schedule'. Otherwise, for each edge

colored c that corresponds to an operation oflength 1, schedule that operation to be processed

from time c - 1 to c. The remaining edges, which correspond to operations of length 2, are

colored either lor 3j schedule the operations corresponding to color 1 to be processed from

time 0 to 2, and the others from time 1 to 3.

Only step 6 is nontrivial to implement. The key idea is to first identify those edges assigned color

2. Let T be the set of nodes in G of degree 3. In any suitable edga.coloring of "G, the edges

assigned color 2 form a matching M in G' = (VI, V:z, E - S) that covers Tj that is, each node in

T is an endpoint of some edge in M. We show tha.t, conversely, the existence of such a matching

M yields a suitable coloring of G: Color each edge in M with color 2, and consider the graph of

uncolored edges Gil = (V., V2 , E - M). G" is a bipartite graph of maximum degree 2, and hence

it can be edga.colored with two colors, 1 and 3. This yields the desired coloring. It is easy to give

a polynomial-time algorithm to decide if G' has a ma.tching that covers T. For example, if each

4

edge is assigned a weight equal to the number of its endpoints in T, then we can simply apply any

algorithm that finds a maximum weight matching (see, e.g., Lovasz and Plummer, 1986).

Theorem 1 The problem of deciding if there is an open shop schedule of length at most 3 is in P .

•
We shall now prove the NP-completeness of deciding if a schedule of length at most 4 exists

by a reduction from the following NP-complete problem:

MONOTONE-NOT-ALL-EQUAL-3sAT

Instance: Set U of variables, collection C of clauses over U such that each clause has

size 3 and contains only unnegated variables.

Question: Is there a truth assignment for U such that each clause in C has at least one

true variable and at least one false variable?

MONOTONE-NOT-ALL-EQUAL-3sAT can be shown to be NP-complete by a reduction from NOT

ALL-EQUAL-3sAT (Garey and Johnson, 1979, p. 259) in which all literals Xi are replaced by new

variables Vi, and clauses of the form Vi V Xi V Xi are added.

We give a polynomial-time reduction from this problem to open shop scheduling such that the

optimal schedule length for an instance is 4 if and only if the MONOTONE-NOT-ALL-EQUAL-3sAT

instance is satisfiable. Suppose we are given an instance of MONOTONE-NOT-ALL-EQUAL-3sAT with

U = {Xl!" " xu} and C = {ell ..• , Cll}, in which each variable Xi appears ti times. For notational

convenience, we view the kth occurrence of Xi as the variable XiA:. Furthermore, let 0'(XiA:) denote

the next occurrence of Xi, cyclica.lly ordered; that is, O'(x;'A:) = Xii, where I = k mod ti + 1. We

transform this instance into the following instance of the open shop scheduling problem. For each

variable Xii" we construct two machines, MA(Xik) and MS(Xik). We construct three types of jobs:

1. For each variable Xik, we construct an assignment job with operations A(Xik) and B(Xik),

each oflength 2, which are to be processed by MA(Xik) and MS(Xik), respectively.

2. For each variable Xik, we construct a consistency job to ensure that its value is equal to the

value ofits next occurrence, O'(Xik). It has two operations B(Xik) and A(Xik) oflength 2 and

1, respectively, which must be processed by MS(Xik) and MA(O'(Xik».

3. For each clause c = (x V V V z), we construct a clause job with three unit-length operations,

T(x), T(V), and T(z), to be processed on MA(X), MA(Y), and MA(Z), respectively.

The optimal schedule must have length at least 4 in order to run the assignment jobs. In the

following discussion, we will refer to the operation of an assignment job (consistency job, clause

5

job) for a particular machine as the assignment operation (consistency operation, cla.use opera.tion)

for tha.t ma.chine.

The intuition behind the reduction is that ea.ch assignment job will denote the truth assignment

of an occurrence of a. varia.ble. Consider the assignment job corresponding to Xik. It has opera.tions

oflength 2 on MA(Xil~) and MB(Xik). In a. schedule oflength 4, one ofthese assignment opera.tions

must run on one machine from time 0 to 2 and the other operation must run on the other ma.chine

from time 2 to 4. Hence, we ca.n consider each assignment job as a switch, which can be set in one of

two positions depending on whether the job runs first on MA(Xik) or on MB(Xik). We will sa.y tha.t

Xik is true if the job runs first on MA(Xik}, and false if it runs first on MB(Xik). The consistency

job for Xik prevents assignment jobs from being scheduled a.t the sa.me time on ma.chines MB(Xik)

and MA(U(Xik», thus ensuring that the truth assignment of the occurrences Xik a.nd U(Xik) will be

the sa.me. Finally, given the assignment and consistency jobs, no cla.use job will be a.ble to ha.ve

all of its three opera.tions scheduled on machines that process variables with the sa.me value. This

property will enforce the not-all-equal constraint. Figure 1 illustrates the reduction.

Theorem 2 The problem of deciding if there is an open shop schedule of length at most 4 is

NP-complete.

Proof: We show that the instance of MONOTONE-NOT-ALL-EQUAL-3sAT is satisfiable if a.nd only if

the open shop instance constructed has a schedule of length 4.

Suppose that there is a schedule of length 4. We first prove that in any such schedule, for

i = l, ... ,u, either every machine MA(Xik) (k = l, ... ,tt) processes its assignment opera.tion from

time 0 to 2, or every ma.chine MA(Xil~} processes its assignment opera.tion from time 2 to 4. If

this is not the case, then there exist i and k such tha.t MA(Xik) processes its assignment opera.tion

from time 0 to 2, and MA(q(Xik}) processes its assignment operation from time 2 to 4. But

MB(Xik) processes its assignment operation from time 2 to 4 as well. The consistency job for Xik

must be processed on both MB(Xik) and MA(U(Xik», and both of these ma.chines are processing

other operations from time 2 to 4. Hence, this schedule does not complete by time 4, which is a.

contradiction.

We now construct a satisfying assignment. For each variable Xi, set Xi to be true if the as

signment operation for MA(Xil} runs from time 0 to 2, and false otherwise. By the argument

above, a clause opera.tion has been scheduled sometime between time 2 and 4 in case the varia.ble

corresponding to that operation has been set true, and sometime between time 0 a.nd 2 in case the

variable has been set false. Beca.use each clause job has three unit-length opera.tions which ha.ve

been scheduled in nonoverlapping time periods, not a.ll of its operations can correspond to true

variables and not all of its operations can correspond to false varia.bles. Hence, at least one varia.ble

of each cla.use must be true and a.t least one varia.ble must be false.

6

Now suppose that the instance of MONOTONE-NOT-ALL-EQUAL-3sAT is satisfiable. We construct

a schedule of length 4 in the following way. IT Xi is true in the satisfying assignment, then we

schedule the assignment operations for all machines MA(XiI;) from time 0 to 2 and the ones for

MB(Xi/c) from time 2 to 4; if Xi is false, then we do it the other way around. Therefore, for each

occurrence Xik, MA(Xik) is idle from time 2 to 4 if Xik is true, whereas it is idle from time 0 to

2 if Xik is false. For each clause, the clause operation corresponding to the first true variable of

the clause can be scheduled from time 2 to 3, and the operation corresponding to the first false

variable can be scheduled from time 0 to 1; the third clause operation can be scheduled from time

3 to 4 if the corresponding variable is true, and from time 1 to 2 if it is false. To schedule the

consistency jobs, suppose, without loss of generality, that Xi is true. Pick any machine MB(Xik)i

by our construction thus far, MB(Xik) is idle from time 0 to 2. Schedule the consistency operation

B(Xik) in this interval. In addition, MA(O'(Xik» is idle either from time 2 to 3, or from time 3 to 4.

Hence we can schedule the consistency operation A(Xik) without conflict in one of these intervals.

All consistency jobs can be scheduled in this way .•

Corollary 3 For any p < 5/4, there does not exist a polynomial-time p-approximation algorithm

for the open shop scheduling problem, unless P = NP. •

2 Job shop and flow shop scheduling

First we present a polynomial-time algorithm to decide if a given instance of the job shop scheduling

problem has a schedule of length at most 3. Since the flow shop is a special case of the job shop,

the algorithm can be applied to the flow shop scheduling problem as well. We then prove that

deciding if there is a job shop schedule of length at most 4 is NP-complete, and finally show how

to extend this result to flow shop scheduling.

We shall show that deciding if there is a job shop schedule of length 3 can be reduced to the

2SAT problem, which is solvable in polynomial time (see, e.g., Garey and Johnson, 1979, p. 259).

Recall that the 2SAT problem is to decide whether a logical formula in which each clause contains

at most two variables has a satisfying assignment. For ease of exposition, we use clauses of the

form (Xi => XI:), which is equivalent to (x; V XIc).

The key to solving the problem is to schedule jobs with total processing time 2 or 3; once these

are scheduled, the remaining jobs of total processing time 0 or 1 can easily be scheduled, as long as

the total processing requirement of each machine is at most 3. For the longer jobs, each operation

has at most two possible starting times. We construct a 2SAT formula F with variables of the form

Xit, where setting Xjt to be true will have the interpretation that operation OJ is scheduled to start

a.t time t. An operation is said to be a beginning operation if it is not preceded· in its job by a

positive-length operation; an operation is said to be an ending operation if it is not a beginning

7

operation and is not succeeded in its job by a positive-length operation. The reduction works as

follows:

1. For each machine in M, check if the total processing requirement of its operations is at most

3; if not, let F be the unsatisfiable formula (x)(x), and halt.

2. For each job in .J, check if the total processing requirement of its operations is at most 3; if

not, let F be the unsatisfiable formula (x)(x), and halt.

3. For each beginning operation OJ oflength 0, add the singleton clauses XjO,XjbXj2,Xj3 to F.

4. For each ending operation OJ oflength 0, add the singleton clauses XjO,XjhXj2,Xj3 to F.

5. For each operation OJ in a job of total length 3, the starting time t is determined for any

schedule oflength 3; add to F the singleton clause x jt and, for a.11 t' f:. t, the singleton clauses

Xjtl.

6. Next consider a.11 remaining operations in jobs of total length 2. We construct clauses to

ensure that, for each job, its operations are scheduled in the correct order.

(a) For each such operation OJ oflength 2, add the clauses (XjO V XjI),(XjO => Xjt),Xi2,Xj3

to F.

(b) For each such operation 0 i of length 1, if OJ is a beginning operation, add the clauses

(xio V Xjl),(XjO => Xit},Xj2,Xj3, as well as (XjI => XkI), where operation Ok is the other

unit-length operation of its job.

(c) For each such operation OJ oflength 1, if OJ is an ending operation, add the clauses

(XjI V Xj2),(Xjl => Xj2),XjO,Xj3.

(d) For each such operation OJ of length ° (so that OJ is neither a beginning nor an end

ing operation), add the clauses (XjI V Xj2),(Xjl => xj2),fjO,fj3, as well as (Xjl =>
XkO), (xi2 => XI2), where operations Ok and 0, are the unit-length operations of this job

that must precede and follow OJ, respectively; if the immediate successor OJ' of OJ is of

length 0, then add the clauses (Xj/1 => Xj1) and (Xj2 => Xjl2).

7. We ftna.11y add clauses to ensure that each machine processes at most one operation at a time.

(a) Let OJ be any operation oflength pj > ° in a job oflength 2 or 3; suppose that it is to

be processed on Mi- IT it starts at time t, then St = {t' E Z : t S; t' < min {t + Pj, 3}} is

the set of disa.11owed starting times for other positive-length operations on Mi. Add the

clause (xit => fkt') for each t' E St and each other positive-length operation Ok on Mi·

8

(b) Let OJ be any operation of length pj ;::: 2; suppose that it is to be processed on Mi- If

it starts at time t, then Tt = {t' E Z : t < t' < min {t + Pj, 3}} is the set of disallowed

starting times for operations of length 0 on Mi _ Add the clause (x jt => X ktt) for each

t' E Tt and each operation Ok of length 0 on Mi.

Theorem 4 The 2SAT formula F is satisfiable if and only if there is a job shop schedule of length

3.

Proof: Suppose that there is a schedule of length 3. We can modify the schedule so that each

beginning operation of length 0 is scheduled at time 0, and each ending operation of length 0 is

scheduled at time 3. For each variable x jt that occurs in F, set it to be true if operation OJ begins

at time t in the modified schedule, and false otherwise. It is immediate that each clause in F is

satisfied.

Suppose that F has a satisfying assignment. We first observe that this yields a feasible schedule

of length 3 for all jobs of total length 0, 2 or 3. As suggested above, if Xit is true in the satisfying

assignment, then operation OJ is scheduled to start at time t. The clauses formed in steps 3 to 6

ensure that, for each operation OJ, at most one of x jO, X jb X j2 and x j3 is true, and that, for each

job, its operations are processed in the specified order. The clauses formed in step 7 ensure that

no machine is assigned to process two operations simultaneously. We next extend this schedule to

include all jobs of total length 1. For each such job, each operation of length 0 is either a beginning

or an ending operation, and hence can be scheduled at either time 0 or time 3; for the unit-length

operation, one unit of time must be available on its machine, since the operations on each machine

have total length at most 3. •

Corollary 5 The problem of deciding if there is a job shop schedule of length at most 3 is in P .•

To prove that deciding if there is a job shop schedule of length at most 4 is NP-complete, we

construct a reduction from a restricted version of 3SAT in which each clause contains at most three

literals and each variable occurs (negated or not) at most three times in the logical formula. We

call this problem 3-80UNDED-3sAT; it is NP-complete (Garey and Johnson, 1979, p. 259).

With each instance of 3-80UNDED-3sAT we associate an instance of the job shop scheduling

problem with the property that a schedule of length 4 exists if and only if the 3-80UNDED-3sAT

instance is satisfiable. Without loss of generality, we assume that each clause contains at least two

variables and that each variable occurs at least once negated and at least once unnegated: if a

clause contains only one literal, that literal must be true, and if a literal does not appear in the

formula, then the complementary literal may be set true; this process yields a smaller formula that

satisfies our assumptions. In constructing the scheduling instance, we need to distinguish between

9

the first and second unnegated (or negated) occurrence of each literal; thus we refer to the kth

occurrence of the literal Xi as XUa and of Xi as Xik, for k = 1,2.

We specify the instance constructed by giving, for each job, its sequence of operations, and, for

each machine, the set of operations that it must process; all operations are of unit length. With

each variable Xi we associate four jobs J(x) = (B(x), M(x), E(x», for X E {XibXi2,XiI,Xi2}j that

is, B(x), M(x), and E(x) are, respectively, the first, second, and third operations of J(x), and are

called its beginning, middle, and ending operations. There will be the following classes of machines.

1. For each variable Xi, there are two assignment machines: the first processes operations B(XiI)

and B(xil), whereas the second processes B(xi2) and B(xi2).

2. For each variable Xi, there are two consistency machines: the first processes operations M (XiI)

and M(Xi2), whereas the second processes M(Xi2) and M(Xit}.

3. For each clause c, there is a clause machine; its construction depends on whether c has 2 or

3 literals. If c = (x V y), we introduce a clause machine that processes E(x) and E(y). If

c = (x VyV z), we also introduce dummy jobs and dummy machines. There are three dummy

jobs jew) = (B(w),E(w», for 10 E {x,y,z}. The clause machine for c processes B(x), B(y),

and B(z). For each 10 E {x,y,z}, there is a dummy machine that processes E(w) and E(w).

4. For each literal X E {Xi2,Xi2} not occurring in the formula, we construct a garbage machine

that processes only the operation E(x).

The intuition behind the reduction is that schedules of length 4 are constrained in the following

way. Each beginning operation must start at either time 0 or 1. The assignment machines ensure

that, for each Xik, one of the operations B(Xil,J and B(Xlk) is scheduled at time 0 and the other

at time 1; this provides the means to set XiiI: to be either true or false. The consistency machines

ensure that the two copies of each literal are set identically. Each ending operation must start at

either time 2 or 3. Only those corresponding to true literals can be scheduled to start at time 2,

and the clause machines ensure that each clause has at least one literal whose ending operation

starts at time 2. Figure 2 summarizes the elements of the reduction.

Theorem 6 The problem of deciding if there is a job shop schedule of length at most 4 is NP

complete.

Proof: We show that the instance of 3-BOUNDED-3sAT is satisfiable if and only if the job shop

instance constructed has a schedule of length 4.

Suppose that the instance of 3-BOUNDED-3sAT is satisfiable. We construct a schedule oflength

4 in the following way_ For each true literal, its corresponding beginning and middle operations

10

are scheduled to start at times 0 and 1, respectively, whereas the beginning and middle operations

corresponding to false literals are started at times 1 and 2, respectively. For each clause c, we select

one of its true literals; such a literal exists since the entire formula is true. We schedule the ending

operations corresponding to these literals to start at time 2, whereas all other ending operations

are started at time 3. The dummy operations can then be scheduled appropriately.

Now suppose that there is a job shop schedule of length 4. We will show that the schedule

must be essentially of the form just constructed, and hence we will be able to extract a satisfying

assignment for the original formula. Each beginning operation must start at either time 0 or 1,

each middle operation must start at either time 1 or 2, and each ending operation must start at

either time 2 or 3. Furthermore, for any literal x, if E(x) starts at time 2, then B(x) starts at time

O. For each Xik, B(Xik) and B(Xik) are processed on the same machine, and hence one of these

must start at time 0 and the other at time 1.

We show next that B(Xid and B(Xi2) are processed simultaneously. Assume, without loss of

generality, that B(Xid starts at time 1. This implies that M(Xid starts at time 2, so that, on the

same consistency machine, M(Xi2) starts at time 1. This in turn implies that B(Xi2) starts at time

0, and hence B(Xi2) starts at time 1, at the same time as B(Xil). Notice that because B(Xit} and

B(Xi2) are scheduled at the same time, B(Xil) and B(Xi2) are scheduled at the same time too.

We set the variable Xi true if and only if B(XiI) starts at time 0; we wish to show that this is

a satisfying assignment. Consider a clause c. If c = (X V y), then there is a clause machine that

processes E(x) and E(y). One of these must start at time 2, which implies that the corresponding

beginning operation starts at time 0, and the associated literal has been set true. If c = (x V y V z),

then there is a clause machine that processes the dummy operations B(x), B(y), and B(z). Since

these operations are succeeded by B(x), B(y), and B(z), respectively, none of them can start at

time 3. Hence, for some to E {x,y,z}, B(w) starts at time 2, so that B(w) starts at time 3. But

then, on the same dummy machine, E(10) starts at time 2. This implies that we have set the literal

to to be true .•

Corollary 7 For any p < 5/4, there does not erist a polynomial-timep-approrimation algorithm

for the job ,shop scheduling problem, unless P = .NP .•

The construction of Theorem 6 is easily strengthened to yield the same result for flow shop

scheduling. As is suggested in Figure 2, the machines can be ordered so that the operations of each

job are consistent with that order: first take all assignment machines, followed by all consistency

machines, then all clause machines for clauses of size 2, the remaining clause machines, the dummy

machines, and finally the garbage machines. In a flow shop, each job must have one operation

on each machine. The instance just specified can easily be filled out with additional zero-length

11

operations; since all of the original operations are of unit length, these new operations can be

scheduled trivially, without affecting the overall schedule.

Theorem 8 The problem of deciding if there is a flow shop schedule of length at most 4 is N'P

complete .•

Corollary 9 For any p < 5/4, there does not exist a polynomial-time p-approximation algorithm

for the flow shop scheduling problem, unless 'P = N'P .•

Acknowledgements

We would like to thank Laszlo Lovasz for a helpful discussion. The research of the first author

was supported by an NSF Graduate Fellowship, DARPA Contract N00014-89-J-1988, and an NSF

Postdoctoral Fellowship. The research by the third author was supported by a grant from the

Netherlands Organization for Scientific Research (NWO). The research of the second and the last

two authors was partially supported by NSF PYI grant; CCR-8896272 with matching support from

UPS, Sun, Proctor & Gamble, and DuPont, and by the National Science Foundation, the Air Force

Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550.

The second author was additionally supported by NSF grant DDM-9210979 and the last author by

NSF grant CCR-9307391.

References

I. Barany and T. Fiala. Tobbgepes iitemezesi problemcik kozel optimaJis megoldasa. Szigma-Mat.-

Kozgazdasagi Folyoirat, 15:177-191,1982.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier, New York,

and MacMillan, London, 1976.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP

Completeness. W. H. Freeman and Co., New York, 1979.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling:

Algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, editors,

Handbooks in Operations Research and Management Science, Volume 4: Logistics of Production

and Inventory, pages 445-522. North-Holland, 1993.

L. Lovasz and M. D. Plummer. Matching Theory. Akademiai Kiad6, Budapest, and North-Holland,

Amsterdam, 1986.

12

J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications with limited

independence. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 331-340, 1993.

S. Sevastjanov. Personal communication, 1993.

D. B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop scheduling

problems. SIAM J. Comput., 23:617-632,1994.

D. P. Williamson. The non-approximability of shop scheduling. Manuscript, 1991.

13

Time: 0 1 2 3 4

MA(~1)

~ X, assignment operations
MB(X 11)

~ X2 assignment operations
M A(X21)

M S(X 21)

X3 assignment operations MA(x22)

MB(X~
X4 assignment operations

MA.(X31)

Clause 1 operations MB(X31l

MA.(X41)

Clause 2 operations
MS:(X41)

D Consistency operations MA.(X42l

M8(X4~

Figure 1: Open shop schedule corresponding to (Xl V X2 V X4) A (Xl V X3 V X4)

14

Time: 0

Assignment machines

Consistency machines

Clause machines

Clause (x v y)

Clause (x v y v z)

Dummy machines

Garbage machines I
For each x not in formula I

1
I

A A A

2

I

8 (x) , 8(y), 8(z)

3
I

E(x), E(y)

I

A
E{x), E{x)

A
E(y) , E(y)

A
E(z), E(z)

Figure 2: Reduction from 3-BOUNDED·3sAT to job shop schedule

15

4
I

