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Abstract. We introduce a short signature scheme based on the Computational Diffie–
Hellman assumption on certain elliptic and hyperelliptic curves. For standard security
parameters, the signature length is about half that of a DSA signature with a similar level
of security. Our short signature scheme is designed for systems where signatures are
typed in by a human or are sent over a low-bandwidth channel. We survey a number of
properties of our signature scheme such as signature aggregation and batch verification.
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1. Introduction

Short digital signatures are needed in environments with strong bandwidth constraints.
For example, product registration systems often ask users to key in a signature provided
on a CD label. When a human is asked to type in a digital signature, the shortest possible
signature is needed. Similarly, due to space constraints, short signatures are needed when
one prints a bar-coded digital signature on a postage stamp [47], [42]. As a third example,
consider legacy protocols that allocate a fixed short field for non-repudiation [1], [29].
One would like to use the most secure signature that fits in the alloted field length.

The two most frequently used signatures schemes, RSA and DSA, produce relatively
long signatures compared with the security they provide. For example, when one uses a
1024-bit modulus, RSA signatures are 1024 bits long. Similarly, when one uses a 1024-
bit modulus, standard DSA signatures are 320 bits long. Elliptic curve variants of DSA,
such as ECDSA, are also 320 bits long [2]. A 320-bit signature is too long to be keyed
in by a human.

∗ This is the full version of a paper that appeared in Proc. Asiacrypt 2001 [12]. The first author was supported
by NSF and the Packard Foundation.
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We propose a signature scheme whose length is approximately 170 bits and which
provides a level of security similar to that of 320-bit DSA signatures. Our signature
scheme is secure against existential forgery under a chosen-message attack (in the random
oracle model), assuming the Computational Diffie–Hellman (CDH) problem is hard on
certain elliptic curves over a finite field. Generating a signature is a simple multiplication
on the curve. Verifying the signature is done using a bilinear pairing on the curve.
Our signature scheme inherently uses properties of curves. Consequently, there is no
equivalent of our scheme in F∗q , the multiplicative group of a finite field.

Constructing short signatures is an old problem. Several proposals show how to shorten
DSA while preserving the same level of security. Naccache and Stern [42] propose a
variant of DSA where the signature length is approximately 240 bits. Mironov [40]
suggests a DSA variant with a similar length and gives a concrete security analysis of
the construction in the random oracle model. Another technique proposed for reducing
DSA signature length is signatures with message recovery [43], [47]. In such systems
one encodes a part of the message into the signature thus shortening the total length of
the message–signature pair. For long messages, one can then achieve a DSA signature
overhead of 160 bits. However, for very short messages (e.g., 64 bits) the total length
remains 320 bits. Using our signature scheme, the signature length is always on the order
of 160 bits, however short the message. We also note that Patarin et al. [45] construct
short signatures whose security depends on the Hidden Field Equation problem. (See
also [18].)

Our signature scheme uses groups where the CDH problem is hard, but the Decision
Diffie–Hellman (DDH) problem is easy. The first example of such groups was given
in [31] and was used in [30] and [10]. We call such groups Gap Diffie–Hellman groups,
or GDH groups for short. We show how to construct a signature scheme from GDH
groups, prove security of the scheme, and show how to build GDH groups that lead to
short signatures. The signature scheme resembles the undeniable signature scheme of
Chaum and Pedersen [14]. Our signature scheme has several useful properties, described
in Section 5. For example, signatures generated by different people on different messages
can be aggregated into a single signature [11]. The signature also supports standard
extensions such as threshold signatures and blind signatures [9].

Notation. We use E/Fq to denote an elliptic curve with coefficients in Fq . For r ≥ 1,
we use E(Fqr ) to denote the group of points on E in Fqr . We use |E(Fqr )| to denote the
number of points in E(Fqr ).

2. GDH Groups and Bilinear Maps

Before presenting the signature scheme, we first review a few concepts related to bilinear
maps and GDH groups. We use the following notation:

• G1 and G2 are two (multiplicative) cyclic groups of prime order p;
• g1 is a fixed generator of G1 and g2 is a fixed generator of G2;
• ψ is an isomorphism from G2 to G1, with ψ(g2) = g1; and
• e is a bilinear map e: G1 × G2 → GT .
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The group GT is described below. One can set G1 = G2, but we allow for the more
general case where G1 
= G2 so that we can take advantage of certain families of
non-supersingular elliptic curves as described in Section 4.3.

The proofs of security require an efficiently computable isomorphism ψ : G2 → G1.
When G1 = G2 and g1 = g2 one could takeψ to be the identity map. When G1 
= G2 we
will need to describe explicitly an efficiently computable isomorphism ψ : G2 → G1.
The map ψ is essential for security. To illustrate this, we give in the next section an
example of a bilinear map that engenders an insecure signature scheme precisely because
ψ does not exist.

With this setup we obtain natural generalizations of the CDH and DDH problems:

Computational co-Diffie–Hellman (co-CDH) on (G1,G2). Given g2, ga
2 ∈ G2 and

h ∈ G1 as input, compute ha ∈ G1.

Decision co-Diffie–Hellman (co-DDH) on (G1,G2). Given g2, ga
2 ∈ G2 and h, hb ∈

G1 as input, output yes if a = b and no, otherwise. When the answer is yes we say
that (g2, ga

2 , h, ha) is a co-Diffie–Hellman tuple.

When G1 = G2 these problems reduce to standard CDH and DDH problem.
Next we define a Gap co-Diffie–Hellman (co-GDH) group pair to be a pair of groups

(G1,G2) on which co-DDH is easy but co-CDH is hard. We define the success probability
of an algorithm A in solving the co-CDH problem on (G1,G2) as

Succ co-CDHA
def= Pr

[
A(g2, ga

2 , h) = ha : a
R←Zp, h

R←G1

]
.

The probability is over the uniform random choice of a from Zp and h from G1, and
over the coin tosses ofA. We say that an algorithmA (t, ε)-breaks co-CDH on (G1,G2)

if A runs in time at most t , and Succ co-CDHA is at least ε. Here time is measured
according to some fixed computational model—say, state transitions in a probabilistic
(oracle) Turing machine.

Definition 2.1. Two groups (G1,G2) are a (τ, t, ε)-co-GDH group pair if they satisfy
the following properties:

• The group operation on both G1 and G2 and the map ψ from G2 to G1 can be
computed in time at most τ .

• The co-DDH problem on (G1,G2) can be solved in time at most τ .
• No algorithm (t, ε)-breaks co-CDH on (G1,G2).

When (G1,G1) is a (τ, t, ε)-co-GDH group pair we say G1 is a (τ, t, ε)-GDH group.

Informally, we are only interested in co-GDH group pairs where τ is sufficiently small
so that the co-DDH problem has an efficient solution, but t/ε is sufficiently large so that
the co-CDH problem is intractable. Currently, the only examples of such GDH groups
arise from bilinear maps [31]. We briefly define bilinear maps and show how they give
GDH groups. It is possible that other constructions for useful GDH groups exist.
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Let G1 and G2 be two groups as above, with an additional group GT such that |G1| =
|G2| = |GT |. A bilinear map is a map e: G1×G2 → GT with the following properties:

• Bilinear: for all u ∈ G1, v ∈ G2, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
• Non-degenerate: e(g1, g2) 
= 1.

Definition 2.2. Two order-p groups (G1,G2) are a (τ, t, ε)-bilinear group pair if they
satisfy the following properties:

• The group operation on both G1 and G2 and the map ψ from G2 to G1 can be
computed in time at most τ .

• A group GT of order p and a bilinear map e: G1 × G2 → GT exist, and e is
computable in time at most τ .

• No algorithm (t, ε)-breaks co-CDH on (G1,G2).

Joux and Nguyen [31] showed that an efficiently computable bilinear map e provides
an algorithm for solving the co-DDH problem as follows: For a tuple (g2, ga

2 , h, hb)

where h ∈ G1 we have

a = b mod p ⇐⇒ e(h, ga
2 ) = e(hb, g2).

Consequently, if two groups (G1,G2) are a (τ, t, ε)-bilinear group pair, then they are
also a (2τ, t, ε)-co-GDH group pair. The converse is probably not true.

3. Signature Schemes Based on GDH Groups

We present a signature scheme that works on any co-GDH group pair (G1,G2). We
prove security of the scheme and, in the next section, show how it leads to short signa-
tures. The scheme resembles the undeniable signature scheme proposed by Chaum and
Pedersen [14]. Okamoto and Pointcheval [44] briefly note that gap problems can give
rise to signature schemes. However, most gap problems will not lead to short signatures.

Let (G1,G2) be a (t, ε)-co-GDH group pair where |G1| = |G2| = p. A signature σ
is an element of G1. The signature scheme comprises three algorithms, KeyGen, Sign,
and Verify. It makes use of a full-domain hash function H : {0, 1}∗ → G1. The security
analysis views H as a random oracle [7]. In Section 3.2 we weaken the requirement on
the hash function H .

Key generation. Pick random x
R←Zp and compute v← gx

2 . The public key is v ∈ G2.
The private key is x .

Signing. Given a private key x ∈ Zp, and a message M ∈ {0, 1}∗, compute h ←
H(M) ∈ G1 and σ ← hx . The signature is σ ∈ G1.

Verification. Given a public key v ∈ G2, a message M ∈ {0, 1}∗, and a signature
σ ∈ G1, compute h ← H(M) ∈ G1 and verify that (g2, v, h, σ ) is a valid co-Diffie–
Hellman tuple. If so, output valid; if not, output invalid.

A signature is a single element of G1. To construct short signatures, therefore, we need
co-GDH group pairs where elements in G1 have a short representation. We construct
such groups in Section 4.
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3.1. Security

We prove the security of the signature scheme against existential forgery under adaptive
chosen-message attacks in the random oracle model. Existential unforgeability under a
chosen-message attack [28] for a signature scheme (KeyGen, Sign, and Verify) is defined
using the following game between a challenger and an adversary A:

Setup. The challenger runs algorithm KeyGen to obtain a public key PK and private
key SK. The adversary A is given PK.

Queries. Proceeding adaptively,A requests signatures with PK on at most qS messages
of his choice M1, . . . ,Mqs ∈ {0, 1}∗. The challenger responds to each query with a
signature σi = Sign(SK,Mi ).

Output. Eventually, A outputs a pair (M, σ ) and wins the game if (1) M is not any of
M1, . . . ,Mqs , and (2) Verify(PK,M, σ ) = valid.

We define Adv SigA to be the probability that A wins in the above game, taken over the
coin tosses of KeyGen and of A.

Definition 3.1. A forgerA (t, qS, qH , ε)-breaks a signature scheme ifA runs in time at
most t ,Amakes at most qS signature queries and at most qH queries to the hash function,
and Adv SigA is at least ε. A signature scheme is (t, qS, qH , ε)-existentially unforgeable
under an adaptive chosen-message attack if no forger (t, qS, qH , ε)-breaks it.

The following theorem shows that the signature scheme is secure. Security of the scheme
follows from the hardness of co-CDH on (G1,G2). When G1 = G2 security is based on
the standard CDH assumption in G1.

Theorem 3.2. Let (G1,G2) be a (τ, t ′, ε′)-co-GDH group pair of order p. Then the
signature scheme on (G1,G2) is (t, qS, qH , ε)-secure against existential forgery under an
adaptive chosen-message attack (in the random oracle model), for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t ′ − cG1(qH + 2qS).

Here cG1 is a constant that depends on G1, and e is the base of the natural logarithm.

Proof. SupposeA is a forger algorithm that (t, qS, qH , ε)-breaks the signature scheme.
We show how to construct a t ′-time algorithm B that solves co-CDH on (G1,G2) with
probability at least ε′. This will contradict the fact that (G1,G2) is a (t ′, ε′)-co-GDH
group pair.

Let g2 be a generator of G2. Algorithm B is given g2, u ∈ G2 and h ∈ G1, where
u = ga

2 . Its goal is to output ha ∈ G1. AlgorithmB simulates the challenger and interacts
with forger A as follows:

Setup. Algorithm B starts by givingA the generator g2 and the public key u · gr
2 ∈ G2,

where r is random in Zp.
H-queries. At any time algorithmA can query the random oracle H . To respond to these

queries algorithm B maintains a list of tuples 〈Mj , wj , bj , cj 〉 as explained below. We
refer to this list as the H -list. The list is initially empty. WhenA queries the oracle H
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at a point Mi ∈ {0, 1}∗, algorithm B responds as follows:

1. If the query Mi already appears on the H -list in a tuple 〈Mi , wi , bi , ci 〉 then algo-
rithm B responds with H(Mi ) = wi ∈ G1.

2. Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] = 1/(qS + 1).
3. Algorithm B picks a random bi ∈ Zp and computes wi ← h1−ci · ψ(g2)

bi ∈ G1.
4. Algorithm B adds the tuple 〈Mi , wi , bi , ci 〉 to the H -list and responds to A by

setting H(Mi ) = wi .

Note that either way wi is uniform in G1 and is independent of A’s current view as
required.

Signature queries. Let Mi be a signature query issued by A. Algorithm B responds to
this query as follows:

1. Algorithm B runs the above algorithm for responding to H -queries to obtain a
wi ∈ G1 such that H(Mi ) = wi . Let 〈Mi , wi , bi , ci 〉 be the corresponding tuple
on the H -list. If ci = 0 then B reports failure and terminates.

2. Otherwise, we know ci = 1 and hence wi = ψ(g2)
bi ∈ G1. Define σi = ψ(u)bi ·

ψ(g2)
rbi ∈ G1. Observe that σi = wa+r

i and therefore σi is a valid signature on Mi

under the public key u · gr
2 = ga+r

2 . Algorithm B gives σi to algorithm A.

Output. Eventually algorithmA produces a message–signature pair (Mf , σ f ) such that
no signature query was issued for Mf . If there is no tuple on the H -list containing
Mf then B issues a query itself for H(Mf ) to ensure that such a tuple exists. We
assume σ f is a valid signature on Mf under the given public key; if it is not, B
reports failure and terminates. Next, algorithm B finds the tuple 〈Mf , w, b, c〉 on the
H -list. If c = 1 then B reports failure and terminates. Otherwise, c = 0 and therefore
H(Mf ) = w = h · ψ(g2)

b. Hence, σ = ha+r · ψ(g2)
b(a+r). Then B outputs the

required ha as ha ← σ/(hr · ψ(u)b · ψ(g2)
rb).

This completes the description of algorithmB. It remains to show thatB solves the given
instance of the co-CDH problem on (G1,G2) with probability at least ε′. To do so, we
analyze the three events needed for B to succeed:

E1: B does not abort as a result of any of A’s signature queries.
E2: A generates a valid message–signature forgery (Mf , σ f ).
E3: Event E2 occurs and c = 0 for the tuple containing Mf on the H -list.

B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] is

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2]. (1)

The following claims give a lower bound for each of these terms.

Claim 1. The probability that algorithm B does not abort as a result of A’s signature
queries is at least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that A does not ask for the signature of
the same message twice. We prove by induction that after A makes i signature queries,
the probability thatB does not abort is at least (1−1/(qS+1))i . The claim is trivially true
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for i = 0. Let Mi beA’s i th signature query and let 〈Mi , wi , bi , ci 〉 be the corresponding
tuple on the H -list. Then prior to issuing the query, the bit ci is independent of A’s
view—the only value that could be given to A that depends on ci is H(Mi ), but the
distribution on H(Mi ) is the same whether ci = 0 or ci = 1. Therefore, the probability
that this query causesB to abort is at most 1/(qS+1). Using the inductive hypothesis and
the independence of ci , the probability that B does not abort after this query is at least
(1− 1/(qS + 1))i . This proves the inductive claim. Since A makes at most qS signature
queries the probability that B does not abort as a result of all the signature queries is at
least (1− 1/(qS + 1))qS ≥ 1/e.

Claim 2. If algorithm B does not abort as a result of A’s signature queries then
algorithm A’s view is identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given toA is from the same distribution as a public key produced
by algorithm KeyGen. Responses to H -queries are as in the real attack since each response
is uniformly and independently distributed in G1. All responses to signature queries are
valid. Therefore,Awill produce a valid message–signature pair with probability at least
ε. Hence, Pr[E2 | E1] ≥ ε.

Claim 3. The probability that algorithm B does not abort after A outputs a valid
forgery is at least 1/(qS + 1). Hence, Pr[E3 | E1 ∧ E2] = 1/(qS + 1).

Proof. Given that events E1 and E2 happened, algorithmBwill abort only ifA generates
a forgery (Mf , σ f ) for which the tuple 〈Mf , w, b, c〉 on the H -list has c = 1. At the
time A generates its output it knows the value of ci for those Mi for which it issued a
signature query. All the remaining ci ’s are independent of A’s view. Indeed, if A did
not issue a signature query for Mi then the only value given to A that depends on ci is
H(Mi ), but the distribution on H(Mi ) is the same whether ci = 0 or ci = 1. Since A
could not have issued a signature query for Mf we know that c is independent of A’s
current view and therefore Pr[c = 0 | E1 ∧ E2] = 1/(qS + 1) as required.

Using the bounds from the claims above in (1) shows that B produces the correct
answer with probability at least ε/e(qS + 1) ≥ ε′ as required. Algorithm B’s running
time is the same as A’s running time plus the time it takes to respond to (qH + qS) hash
queries and qS signature queries. Each query requires an exponentiation in G1 which we
assume takes time cG1

. Hence, the total running time is at most t + cG1(qH + 2qS) ≤ t ′

as required. This completes the proof of Theorem 3.2.

The analysis used in the proof of Theorem 3.2 resembles Coron’s analysis of the Full
Domain Hash (FDH) signature scheme [16]. We note that the security analysis can be
made tight using Probabilistic Full Domain Hash (PFDH) [17], at the cost of increasing
the signature length. The security reduction in Theorem 3.2 can also be made tight
without the increasing signature length via the technique of Katz and Wang [32].

Our signature scheme requires an algorithm for deciding DDH. In groups where a
DDH-deciding algorithm is not available, Goh and Jarecki [27] show that it is still
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possible to construct a signature scheme based on CDH, at the cost of a substantially
greater signature length.

The Necessity ofψ : G2 → G1. Recall that the proof of security relied on the existence
of an efficiently computable isomorphism ψ : G2 → G1. To show the necessity of ψ we
give an example of a bilinear map e: G1 × G2 → GT for which the co-CDH problem
is believed to be hard on (G1,G2) and yet the resulting signature scheme is insecure.

Let q be a prime and let G2 be a subgroup of Z∗q of prime order p with generator g.
Let G1 be the group G1 = Zp with addition. Define the map e: G1 × G2 → G2

as e(x, y) = yx . The map is clearly bilinear since e(ax, yb) = e(x, y)ab. The co-
CDH problem on (G1,G2) is as follows: Given g, ga ∈ G2 and x ∈ G1, compute
ax ∈ G1. The problem is believed to be hard since an algorithm for computing co-
CDH on (G1,G2) gives an algorithm for computing discrete log in G2. Hence, (G1,G2)

satisfies all the conditions of Theorem 3.2 except that there is no known computable
isomorphism ψ : G2 → G1. It is is easy to see that the resulting signature scheme from
this bilinear map is insecure. Given one message–signature pair, it is easy to recover the
private key.

We comment that one can avoid using ψ at the cost of making a stronger complexity
assumption. Without ψ the necessary assumption for proving security is that no polyno-
mial time algorithm can compute ha ∈ G1 given g2, ga

2 ∈ G2 and g1, ga
1 , h ∈ G1. Since

ψ naturally exists in all the group pairs (G1,G2) we are considering, there is no reason
to rely on this stronger complexity assumption.

3.2. Hashing onto Elliptic Curves

The signature scheme needs a hash function H : {0, 1}∗ → G1. In the next section we use
elliptic curves to construct co-GDH group pairs and therefore we need a hash function
H : {0, 1}∗ → G1 where G1 is a subgroup of an elliptic curve. Since it is difficult to
build hash functions that hash directly onto a subgroup of an elliptic curve we slightly
relax the hashing requirement.

Let Fq be a field of characteristic greater than 2. Let E/Fq be an elliptic curve defined
by y2 = f (x) and let E(Fq) have order m. Let P ∈ E(Fq) be a point of prime order
p, where p2 does not divide m. We wish to hash onto the subgroup G1 = 〈P〉. Suppose
we are given a hash function H ′: {0, 1}∗ → Fq × {0, 1}. Such hash functions H ′ can be
built from standard cryptographic hash functions. The security analysis will view H ′ as
a random oracle. We use the following deterministic algorithm called MapToGroup to
hash messages in {0, 1}∗ onto G1. Fix a small parameter I = �log2 log2(1/δ)�, where δ
is some desired bound on the failure probability.

MapToGroupH ′ . The algorithm defines H : {0, 1}∗ → G1 as follows:

1. Given M ∈ {0, 1}∗, set i ← 0.
2. Set (x, b)← H ′(i ‖ M) ∈ Fq × {0, 1}, where i is represented as an I -bit string.
3. If f (x) is a quadratic residue in Fq then do:

(a) Let y0, y1 ∈ Fq be the two square roots of f (x). We use b ∈ {0, 1} to choose
between these roots. Choose some full ordering of Fq and ensure that y1 is
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greater than y0 according to this ordering (swapping y0 and y1 if necessary).
Set P̃M ∈ E(Fq) to be the point P̃M = (x, yb).

(b) Compute PM = (m/p)P̃M . Then PM is in G1. If PM 
= O, then output
MapToGroupH ′(M) = PM and stop; otherwise, continue with Step 4.

4. Otherwise, increment i , and go to Step 2; if i reaches 2I , report failure.

The failure probability can be made arbitrarily small by picking an appropriately large I .
For each i , the probability that H ′(i ‖ M) leads to a point on G1 is approximately 1/2
(where the probability is over the choice of the random oracle H ′). Hence, the expected
number of calls to H ′ is approximately 2, and the probability that a given message M
will be found unhashable is 1/2(2

I ) ≤ δ.
Lemma 3.3. Let E/Fq be an elliptic curve and let E(Fq) have order m. Let G1 be
a subgroup of E(Fq) of order p such that p2 does not divide m. Suppose the co-GDH
signature scheme is (t, qS, qH , ε)-secure in the groups (G1,G2) when a random hash
function H : {0, 1}∗ → G1 is used. Then it is (t − 2I cG1 qH , qH − qS − 1, qS, ε)-secure
when the hash function H is computed with MapToGroupH ′ and H ′ is a random oracle
hash function H ′: {0, 1}∗ → Fq × {0, 1}. Here cG1

is a constant that depends on G1.

Proof. Suppose a forger algorithm F ′ (t, qH , qS, ε)-breaks the co-GDH signature
scheme on (G1,G2)when given access to a random oracle H ′: {0, 1}∗ → Fq×{0, 1} and
MapToGroupH ′ . We build an algorithmF that (t+2I cG1(qH+qS+1), qH+qS+1, qS, ε)-
breaks the co-GDH signature scheme when given access to a full-domain random oracle
hash H : {0, 1}∗ → G1.

Setup. To respond to queries made byF ′,F uses an array si j , whose entries are elements
of Fq×{0, 1}. The array has qH rows and 2I columns. On initialization,F fills si j with
uniformly selected elements of Fq × {0, 1}.

Algorithm F has access to a random oracle H : {0, 1}∗ → G1. It will use this to
simulate the random oracle H ′: {0, 1}∗ → Fq × {0, 1} that F ′ uses. Algorithm F
is also given a public key v, and a signing oracle for that key. Its goal is to output a
forgery on some message under v.

Algorithm F runs F ′ and responds to its oracle queries as follows.
H′-queries. AlgorithmF keeps track (and indexes) all the unique messages Mi for which
F ′ requests an H ′ hash.

When F ′ asks for an H ′ hash of a message w ‖ Mi whose Mi the forger F had not
previously seen (and whose w is an arbitrary I -bit string), F must fix up row i of its
matrix s before responding.

It scans the row si j , 0 ≤ j < 2I . For each entry si j = (x, b), F follows Step 3
of MapToGroup, above, seeking points in G1\{O}. If none of the entries si j yields a
point in G1\{O}, row si j , 0 ≤ j < 2I , is not patched. Otherwise, for the smallest j
for which si j maps into G1\{O}, F replaces si j with a different point (xi , bi ) defined
as follows. Let Qi = H(Mi ) ∈ G1. If Qi ∈ G1\O, then F constructs a random point
Q̃i ∈ E(Fq) satisfying (m/p)Q̃i = Qi as follows:
1. Let z = (m/p)−1 mod p. Note that m/p is integer since p divides m. Furthermore,

m/p has an inverse modulo p since p2 does not divide m and hence m/p is relatively
prime to p.
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2. Pick a random point Ti ∈ E(Fq).
3. Set Q̃i = (xi , yi ) = pTi + zQi .
Then Q̃i is a random point in E(Fq) such that (m/p)Q̃i = Qi . F sets si j = (xi , bi )

where bi ∈ {0, 1} is set so that (xi , bi )maps to Q̃i in Step 3(a) of MapToGroup. Note
that MapToGroupH ′(Mi ) now equals H(Mi ), and that the distribution of si j is not
changed by the patching.

If Qi = O, then x Qi = Qi = O for all x ∈ Zp, and in particular for the private
key x corresponding to the challenge public key v. Algorithm F outputs the forgery
(Mi ,O) and halts. This forgery is nontrivial because F always queries its H oracle at
a message Mi before querying its signing oracle at Mi .

Once this preliminary patching has been completed, F is able to answer H ′ hash
queries by F ′ for stringsw ‖ Mi by simply returning siw. The simulated H ′ which F ′
sees is perfectly indistinguishable from that in the real attack.

Signature queries. AlgorithmF is asked for a signature on some message Mi , indexed
as above. It first runs its H ′ algorithm above to fix up the row corresponding to
Mi in its s matrix. This computation queries the H oracle at Mi and may cause
F to abort, having discovered a trivial forgery. If the computation does not abort,
MapToGroupH ′(Mi ) = H(Mi ) holds. Algorithm F queries its own signing oracle
at Mi , obtaining a signature σi ∈ G1, which is also the correct signature under the
MapToGroupH ′ hash function. Algorithm F responds to the query with σi .

Output. Finally, F ′ halts. It either concedes failure, in which case so does F , or it
returns a message M∗ and a non-trivial forged signature σ ∗. Algorithm F ′ must not
have queried its signing oracle at M∗, so neither did F .

AlgorithmF first runs its H ′ algorithm above to fix up the row corresponding to M∗

in its s matrix. This assigns to M∗ an index i∗, such that Mi∗ = M∗. This computation
queries the H oracle at Mi∗ and may cause F to abort, having discovered a trivial
forgery.

If the computation does not abort, MapToGroupH ′(M∗) = H(M∗) holds. Thus σ ∗

is a valid forgery on message M∗ under hash function H as well as MapToGroupH ′ .
Since F did not query its signing oracle at M∗, the forgery is non-trivial for it as
well as for F ′. Algorithm F outputs the valid and non-trivial forgery (M∗, σ ∗) and
halts.

Algorithm F succeeds if either it discovers a trivial forgery (a message M such that
H(M) = O) or it perfectly simulates the environment that F ′ expects. Whenever F ′
succeeds in creating a non-trivial forgery, so does F . If F ′ succeeds with probability ε,
so does F . If F ′ takes time t to run, F takes time t , plus the s-array fix-up time that is
potentially necessary on each hash query, each signing query, and at the final output phase.
If running the exponentiation in Step 3 of the MapToGroup algorithm takes time cG1

, then
F takes time at most t+2I cG1

(qH+qS+1). AlgorithmF potentially makes a hash query
for each hash query made by F ′, for each signing query made by F ′, and in the final
output phase. Algorithm F makes a signing query for each signing query made by F ′.

Thus if F ′ (t, qH , qS, ε)-breaks the co-GDH signature scheme when given access to a
random oracle H ′: {0, 1}∗ → Fq × {0, 1} and MapToGroupH ′ , then F (t + 2I cG1

(qH +
qS + 1), qH + qS + 1, qS, ε)-breaks the co-GDH signature scheme when given access to
a full-domain random oracle hash H : {0, 1}∗ → G1.
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Conversely, if the co-GDH signature scheme is (t, qH , qS, ε)-secure when instantiated
with a full-domain random oracle hash H : {0, 1}∗ → G1, it is (t − 2I cG1

qH , qH −
qS − 1, qS, ε) when instantiated with a random oracle H ′: {0, 1}∗ → Fq × {0, 1} and
MapToGroupH ′ .

4. Building co-GDH Group Pairs with Small Representations

Using the Weil [34, pp. 243–245] and Tate [21] pairings, we obtain co-GDH group pairs
from certain elliptic curves. We recall some necessary facts about elliptic curves (see,
e.g., [34] and [50]), and then show how to use certain curves for short signatures.

4.1. Elliptic Curves and the Weil Pairing

Our goal is to construct bilinear groups (G1,G2) which lead to co-GDH group pairs as
discussed in Section 2. Let E/Fq be an elliptic curve. We first define a useful constant
called the security multiplier of a subgroup 〈P〉 ⊆ E(Fq).

Definition 4.1. Let q be a prime power, and let E/Fq be an elliptic curve with m points
in E(Fq). Let P in E(Fq) be a point of prime order p where p2 � m. We say that the
subgroup 〈P〉 has a security multiplier α, for some integer α > 0, if the order of q in F∗p
is α. In other words,

p | qα − 1 and p � qk − 1 for all k = 1, 2, . . . , α − 1.

The security multiplier of E(Fq) is the security multiplier of the largest prime order
subgroup in E(Fq).

We describe two families of curves that provide α = 6. For standard security parame-
ters this is sufficient for obtaining short signatures. It is an open problem to build useful
elliptic curves with slightly higher α, say α = 10 (see Section 4.5).

Our first step is to define G1 and G2. We will then describe a bilinear map e: G1×G2 →
GT , describe an isomorphism ψ : G2 → G1, and discuss the intractability of co-CDH
on (G1,G2).

Balasubramanian–Koblitz. Let E/Fq be an elliptic curve and let P ∈ E(Fq) be a point
of prime order p with p � q . Suppose the subgroup 〈P〉 has security multiplier α > 1,
i.e. p � q−1. Then a useful result of Balasubramanian and Koblitz [3] shows that E(Fqα )

contains a point Q of order p that is linearly independent of P . We set G1 = 〈P〉 and
G2 = 〈Q〉. Then |G1| = |G2| = p. Note that G1 ⊆ E(Fq) and G2 ⊆ E(Fqα ).

The Weil and Tate Pairings. With notation as above, let E[p] be the group of points
of order dividing p in E(Fqα ). Then the group E[p] is isomorphic to Zp × Zp [50] and
G1,G2 ≤ E[p]. The Weil pairing is a map e: E[p]× E[p] → F∗qα with the following
properties:

(i) Identity: for all R ∈ E[p], e(R, R) = 1.
(ii) Bilinear: for all R1, R2 ∈ E[p] and a, b ∈ Zwe have e(a R1, bR2) = e(R1, R2)

ab.
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(iii) Non-degenerate: if for R ∈ E[p] we have e(R, R′) = 1 for all R′ ∈ E[p], then
R = O. It follows that e(P, Q) 
= 1.

(iv) Computable: for all R1, R2 ∈ E[p], the pairing e(R1, R2) can be computed in
polynomial time [39].

Note that e(R1, R2) = 1 if and only if R1 and R2 are linearly dependent. See [36] and
[10] for a definition of the Weil pairing and a description of the algorithm for computing
it. The Tate pairing [21] is another useful bilinear map on E[p]. It has properties similar
to those of the Weil pairing, but does not necessarily satisfy Property (i) (identity).

The Weil pairing on the curve E induces a computable, non-degenerate bilinear map
e: G1 × G2 → F∗qα which enables us to solve the co-DDH problem on the group pair
(G1,G2). When the Tate pairing induces a non-degenerate map on G1 ×G2, it can also
be used to solve co-DDH on (G1,G2).

The Trace Map. We present a computable isomorphism ψ : G2 → G1, using the trace
map, tr, which sends points in E(Fqα ) to E(Fq). Let σ1, . . . , σα be the Galois maps of
Fqα over Fq . Also, for R = (x, y) ∈ E(Fqα ) define σi (R) = (σi (x), σi (y)). Then the
trace map tr: E(Fqα )→ E(Fq) is defined by

tr(R) = σ1(R)+ · · · + σα(R).

Proposition 4.2. Let P ∈ E(Fq) be a point of prime order p 
= q and let 〈P〉 have
security multiplier α > 1. Let Q ∈ E(Fqα ) be a point of order p that is linearly
independent of P . If tr(Q) 
= O then tr is an isomorphism from 〈Q〉 to 〈P〉.

Proof. Suppose R ∈ E(Fq) is a point of order p. If R is not in 〈P〉 then P and R
generate E[p] and therefore E[p] ⊆ E(Fq). It follows that e(P, R) ∈ F∗q has order p
since otherwise e would be degenerate on E[p]. However, since α > 1 we know that p
does not divide q−1 and consequently there are no elements of order p in F∗q . Hence, we
must have R ∈ 〈P〉. It follows that all the points in E(Fq) of order p are contained in 〈P〉.
Since tr(Q) 
= O, we know that tr(Q) ∈ E(Fq) has order p and therefore tr(Q) ∈ 〈P〉.
Hence, tr is an isomorphism from 〈Q〉 to 〈P〉.

Hence, when tr(Q) 
= O, the trace map is an isomorphism from G2 to G1 and is
computable in polynomial time in α and log q as required.

Intractability of co-CDH on (G1,G2). The remaining question is the difficulty of the
co-CDH problem on (G1,G2). We review necessary conditions for CDH intractability.
The best known algorithm for solving co-CDH on (G1,G2) is to compute discrete log
in G1. In fact, the discrete log and CDH problems in G1 are known to be computationally
equivalent given some extra information about the group G1 [35]. Therefore, it suffices to
consider necessary conditions for making the discrete log problem on E(Fq) intractable.

Let 〈P〉 be a subgroup of E(Fq) of order p with security multiplier α. We briefly
discuss two standard ways for computing discrete log in 〈P〉.

1. MOV: Use an efficiently computable homomorphism, as in the MOV reduc-
tion [37], to map the discrete log problem in 〈P〉 to a discrete log problem in
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some extension of Fq , say Fqi . We then solve the discrete log problem in F∗qi using
the Number Field Sieve algorithm [49]. The image of 〈P〉 under this homomor-
phism must be a subgroup of F∗qi of order p. Thus we have p|(qi − 1), which by
the definition of α implies that i ≥ α. Hence, the MOV method can, at best, reduce
the discrete log problem in 〈P〉 to a discrete log problem in a subgroup of F∗qα .
Therefore, to ensure that discrete log is hard in 〈P〉 we want curves where α is
sufficiently large to make discrete log in F∗qα intractable.

2. Generic: Generic discrete log algorithms such as Baby-Step–Giant-Step and Pol-
lard’s Rho method [38] have a running time proportional to

√
p log p. Therefore,

we must ensure that p is sufficiently large.

In summary, we want curves E/Fq where both a generic discrete log algorithm in
E(Fq) and the Number Field Sieve in F∗qα are intractable. At the same time, since our
signature scheme has signatures of length �log2 q� and public keys of length �α log2 q�,
we wish to keep q as small as possible.

4.2. Co-GDH Signatures from Elliptic Curves

We summarize the construction for co-GDH group pairs and adapt the signature scheme
to use a group of points on an elliptic curve. The co-GDH group pair (G1,G2) we use
is defined as follows:

1. Let E/Fq be an elliptic curve and let P ∈ E(Fq) be a point of prime order p where
p � q(q − 1) and p2 � |E(Fq)|.

2. Letα > 1 be the security multiplier of 〈P〉. We assumeα < p. By Balasubramanian
and Koblitz [3] there exists a point Q ∈ E(Fqα ) that is linearly independent of P .
It is easy to construct such a Q in expected polynomial time once the number of
points in E(Fqα ) is known. Since α > 1 we know that Q 
∈ E(Fq). We ensure that
tr(Q) 
= O. If tr(Q) = O replace Q by Q + P . Then Q + P is of order p, it is
linearly independent of P , and tr(Q + P) 
= O since tr(P) = αP 
= O.

3. Set G1 = 〈P〉 and G2 = 〈Q〉.
4. Since P and Q are linearly independent, the Weil pairing gives a non-degenerate

bilinear map e: G1 × G2 → F∗qα . It can be computed in polynomial time in α and
log q . When the Tate pairing is non-degenerate on G1 × G2 it can also be used as
a bilinear map.

5. Since tr(Q) 
= O the trace map on E(Fqα ) is an isomorphism from G2 to G1

computable in polynomial time in α and log q.

With these subgroups G1,G2 of the elliptic curve E/Fq the signature scheme works as
follows. Recall that MapToGroupH ′ is a hash function MapToGroupH ′ : {0, 1}∗ → G1

built from a hash function H ′: {0, 1}∗ → F∗q × {0, 1} as described in Section 3.2.

Key generation. Pick random x
R←Zp, and compute V ← x Q. The public key is V ∈

E(Fqα ). The private key is x .
Signing. Given a private key x ∈ Zp, and a message M ∈ {0, 1}∗, do:

1. Compute R ← MapToGroupH ′(M) ∈ G1,
2. σ ← x R ∈ E(Fq), and
3. output the x-coordinate of σ as the signature s on M . Then s ∈ Fq .
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Verification. Given a public key V ∈ G2, a message M ∈ {0, 1}∗, and a signature
s ∈ Fq do:
1. Find a y ∈ Fq such that σ = (s, y) is a point in E(Fq). If no such y exists, output

invalid and stop.
2. Ensure that σ has order p. If it does not, output invalid and stop.
3. Compute R ← MapToGroupH ′(M) ∈ G1,
4. Test if either e(σ, Q) = e(R, V ) or e(σ, Q)−1 = e(R, V ).

If so, output valid; Otherwise, output invalid.

The signature length is �log2 q�. Note that during verification we accept the signature
if e(σ, Q)−1 = e(R, V ). This is to account for the fact that the signature s ∈ Fq could
have come from either the point σ or −σ in E(Fq).

Security. By Theorem 3.2 it suffices to study the difficulty of co-CDH on (G1,G2).
The best known algorithm for solving the co-CDH problem on (G1,G2) requires the
computation of a discrete log in G1 or the computation of a discrete log in F∗qα .

4.3. Using Non-Supersingular Curves over Fields of High Characteristic

It remains to build elliptic curves with the desired security multiplier α. In the next two
sections we show curves with security multiplier α = 6. We begin by describing a family
of non-supersingular elliptic curves with α = 6. This family is outlined by Miyaji et
al. [41]. We call these MNT curves.

The idea is as follows: Suppose q = (2�)2+1 and p = (2�)2−2�+1 for some � ∈ Z.
Then it can be verified that p divides q6 − 1, but does not divide qi − 1 for 0 < i < 6.
So, when p is prime, a curve E/Fq with p points is likely to have security multiplier
α = 6.

To build E/Fq with p points as above we use complex multiplication [8, Chapter VIII].
We briefly explain how to do so. Suppose we had integers y, t and another positive integer
D = 3 mod 4 such that

q = (t2 + Dy2)/4 (2)

is an integer prime. Then the complex multiplication method will produce an elliptic
curve E/Fq with q + 1− t points in time O(D2(log q)3). The value t is called the trace
of the curve.

We want a curve over Fq with p points where q = (2�)2+ 1 and p = (2�)2− 2�+ 1.
Therefore, t = q+1− p = 2�+1. Plugging these values into (2) we get 4((2�)2+1) =
(2�+ 1)2 + Dy2 which leads to

(6�− 1)2 − 3Dy2 = −8. (3)

For a fixed D = 3 mod 4, we need integers �, y satisfying the equation above such that
q = (2�)2 + 1 is prime and p = (2�)2 − 2� + 1 is prime (or is a small multiple of
a prime). For any such solution we can verify that we get a curve E(Fq) with security
multiplier α = 6. Finding integer solutions �, y to an equation of type (3) is done by
reducing it to Pell’s equation, whose solution is well known [51].

Table 1 gives some values of D that lead to suitable curves for our signature scheme.
For example, we get a curve E/Fq where q is a 168 bit prime. Signatures using this
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Table 1. Non-supersingular elliptic curves for co-GDH signatures. E
is a curve over the prime field Fq and p is the largest prime dividing its
order. The MOV reduction maps the curve onto the field Fq6 . D is the

discriminant of the complex multiplication field of E/Fq .

Discriminant Signature size DLog security MOV security
D �log2 q� �log2 p� �6 log2 q�

13368643 149 149 894
254691883 150 147 900

8911723 157 157 942
62003 159 158 954

12574563 161 161 966
1807467 163 163 978
6785843 168 166 1008

28894627 177 177 1062
153855691 185 181 1110

658779 199 194 1194
1060147 203 203 1218

20902979 204 204 1224
9877443 206 206 1236

curve are 168 bits while the best algorithm for co-CDH on E(Fq) requires either (1) a
generic discrete log algorithm taking time approximately 283, or (2) a discrete log in a
1008-bit finite field of large characteristic.

4.4. A Special Supersingular Curve

Another method for building curves with security multiplier α = 6 is to use a special
supersingular curve E/F3. Specifically, we use the curve E : y2 = x3+ 2x ± 1 over F3.
The MOV reduction maps the discrete log problem in E(F3� ) to F∗36� . We use two simple
lemmas to describe the behavior of these curves. (See also [54] and [33].)

Lemma 4.3. The curve E+ defined by y2 = x3 + 2x + 1 over F3 satisfies

|E+(F3� )| =
{

3� + 1+
√

3 · 3� when � = ±1 mod 12, and
3� + 1−

√
3 · 3� when � = ±5 mod 12.

The curve E− defined by y2 = x3 + 2x − 1 over F3 satisfies

|E−(F3� )| =
{

3� + 1−
√

3 · 3� when � = ±1 mod 12, and
3� + 1+

√
3 · 3� when � = ±5 mod 12.

Proof. See Section 2 of [33].

Lemma 4.4. Let E be an elliptic curve defined by y2 = x3 + 2x ± 1 over F3� , where
� mod 12 equals ±1 or ±5. Then |E(F3� )| divides 36� − 1.

Proof. See [54].
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Together, Lemmas 4.3 and 4.4 show that, for the relevant values of �, groups on the
curves E+/F3� and E−/F3� will have security multiplier α at most 6 (more specifically:
α | 6). Whether the security parameter actually is 6 for a particular prime subgroup of a
curve must be determined by computation.

Automorphism of E+, E−/F36� . Both curves E+ and E− have a useful automorphism
that make the prime-order subgroups of E+(F3� ) and E−(F3� ) into GDH groups (as
opposed to co-GDH group pairs). This fact can be used to shrink the size of the public
key since it makes it possible for the public key to live in E(F3� ) as opposed to E(F36� ).

The automorphism is defined as follows. For � such that � mod 12 is ±1 or ±5,
compute three elements ofF36� , u, r+, and r−, satisfying u2 = −1, (r+)3+2r++2 = 0,
and (r−)3 + 2r− − 2 = 0. Now consider the following maps over F36� :

ϕ+(x, y) = (−x + r+, uy) and ϕ−(x, y) = (−x + r−, uy).

Lemma 4.5. Let � mod 12 equal ±1 or ±5. Then ϕ+ is an automorphism of E+/F36�

and ϕ− is an automorphism of E−/F36� . Moreover, if P is a point of order p on E+/F3�

(or on E−/F3� ) then ϕ+(P) (or ϕ−(P)) is a point of order p that is linearly independent
of P .

Proof. See Case II on p. 326 of [50].

Let E/F3� be one of E+ or E− and let P ∈ E(F3� ) be a point of prime order p. Set
G1 = 〈P〉, the group generated by P . Let ϕ: E(F3� )→ E(F36� ) be the automorphism of
the curve from above. Define the modified Weil pairing ê: G1 × G1 → F∗36� as follows:
ê(P1, P2) = e(P1, ϕ(P2)) where e is the standard Weil pairing on E[p]. By Lemma 4.5
we know that ϕ(P) is linearly independent of P . Therefore, ê is non-degenerate. It
follows that G1 is a GDH group; ϕ acts as a distortion map [52], [31]. This has two
implications for the signature scheme:

• Security of the signature scheme is based on the difficulty of the standard CDH
problem in G1 (as opposed to the co-CDH problem).

• Public keys are elements of G1 and, hence, are shorter than public keys should the
automorphism not exist.

Useful Curves. Some useful instantiations of these curves are presented in Table 2.
Note that we restrict these instantiations to those where � is prime, to avoid Weil-descent
attacks [24], [25], except for � = 121. It has recently been shown that certain Weil-
descent attacks are not effective for this case [19].

Performance. Galbraith et al. [23] and Barreto et al. [4] show that the Frobenius map on
the curves E+, E− can be used to speed the computation of the Weil and Tate pairings on
these curves. This results in a significant speed-up to the signature-verification algorithm.
Consequently, the signature scheme using these curves is much faster than the scheme
using the curves from the previous section.
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Table 2. Supersingular elliptic curves for GDH signatures. Here p
is the largest prime divisor of |E(F3� )|. The MOV reduction maps the

curve onto a field of characteristic 3 of size 36�.

Sig size DLog security MOV security
Curve l �log2 3�� �log2 p� �6 log2 3��

E− 79 126 126 752
E+ 97 154 151 923
E+ 121 192 155 1151
E+ 149 237 220 1417
E+ 163 259 256 1551
E− 163 259 259 1551
E+ 167 265 262 1589

The Bad News. MOV reduces the discrete log problem on E+(F3� ) and E−(F3� ) to a
discrete log problem in F∗36� . A discrete log algorithm due to Coppersmith [15], [49] is
specifically designed to compute discrete log in small characteristic fields. Consequently,
a discrete log problem in F∗3n is much easier than a discrete log problem in F∗p where p
is a prime of approximately the same size as 3n . To get the security equivalent to DSA
using a 1024-bit prime, we would have to use a curve E(F3� ) where 36� is much larger
than 1024 bits. This leads to much longer signatures, defeating the point of using these
curves. In other words, for a fixed signature length, these supersingular curves lead to a
signature with reduced security compared with the curves of Section 4.3.

4.5. An Open Problem: Higher Security Multipliers

With the curves of Section 4.3, a security multiplier ofα = 6 is sufficient for constructing
short signatures with security comparable with DSA using a 1024-bit prime. However,
to obtain security comparable with DSA using a 2048-bit prime with α = 6 we get
signatures of length 2048/6 = 342 bits. Elliptic curves with higher α, say α = 10, would
result in short signatures when higher security is needed (such as 2048-bit discrete log
security).

Let q be a large prime power, say, q > 2160. It is currently an open problem to construct
an elliptic curve E/Fq such that E(Fq) has α = 10 and E(Fq) has prime order. Several
constructions [5], [20], [13] show how to build elliptic curves E such that E(Fq) has a
given security multiplier α. However, the largest prime order subgroup of E(Fq) is much
smaller than q . For example, the constructions of [5] and [20] give curves E/Fq where
the largest prime factor of |E(Fq)| is of order

√
q. Discrete log in such groups takes time

approximately q1/4. Therefore, for a given security parameter, the resulting signatures
are of the same length as DSA signatures. The constructions in [13] give curves where
the largest prime factor of |E(Fq)| is greater than

√
q, but still substantially smaller than

q. These curves result in signatures that are shorter than DSA, but longer than half the
size of DSA. The open problem is to build elliptic curves E/Fq with a given security
multiplier α where E(Fq) has prime order. Such curves would provide signatures that
are half the size of DSA for any given security level.

One could also build GDH groups of higher genus. Galbraith [22] constructs supersin-
gular curves of higher genus with a “large” security multiplier. For example, the Jacobian
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of the supersingular curve y2+ y = x5+ x3 has security multiplier 12 over F2� . Since a
point on the Jacobian of this curve of genus 2 is characterized by two values in F2� (the
two x-coordinates in a reduced divisor), the length of the signature is 2� bits. Hence, we
might obtain a signature of length 2� where the security depends on computing CDH in
the finite field F212� . This factor of 6 between the length of the signature and the degree
of the finite field is the same as in the elliptic curve case. Hence, this genus 2 curve does
not improve the security of the signature, but does give more variety in curves used for
short signatures. Discrete log on the Jacobian of these curves is reducible to discrete log
in a field of characteristic 2 and consequently one must take Coppersmith’s discrete log
algorithm [15] into account, as discussed at the end of Section 4.4.

To obtain larger security multipliers, Rubin and Silverberg [48] propose certain Abel-
ian varieties. They show that signatures produced using the curve of Section 4.4 can be
shortened by 20%. The result is an n-bit signature where the pairing reduces the discrete
log problem to a finite field of size approximately 27.5n . This is the only useful example
we currently know of where the multiplier is greater than 6.

5. Extensions

Our signatures support threshold signatures and batch verification. Surprisingly, signa-
tures from distinct people on distinct messages can be aggregated into a single convincing
signature. We briefly survey these extensions here and refer to [9], [53], and [11] for a
full description and proofs of security.

5.1. Aggregate Signatures

Common environments require managing many signatures by different parties on distinct
messages. For example, certificate chains contain signatures on distinct certificates issued
by various Certificate Authorities. Our signature scheme enables us to aggregate multiple
signatures by distinct entities on distinct messages into a single short signature. Any
party that has all the signatures can aggregate signatures, and aggregation can be done
incrementally: two signatures are aggregated, then a third is added to the aggregate, and
so on. See [11] for more applications.

Let (G1,G2) be a bilinear group pair of prime order p. Suppose n users each have a
public-private key pair. For i = 1, . . . , n, user i has private key xi ∈ Zp and public key
vi = gxi

2 ∈ G2.
Suppose user i signs a message Mi ∈ {0, 1}∗ to obtain the signature σi = H(Mi )

xi ∈
G1. The aggregate of all these signatures is computed simply as σ ← σ1σ2 · · · σn ∈ G1.

Aggregate verification: We are given all public keys v1, . . . , vn ∈ G2, all messages
M1, . . . ,Mn ∈ {0, 1}∗, and the aggregate signature σ ∈ G1. To verify that, for all
i = 1, . . . , n, user i has signed message Mi , we test that

1. The messages M1, . . . ,Mn are all distinct, and
2. e(σ, g2) =

∏n
i=1 e(H(Mi ), vi ).

If both conditions hold, we accept the aggregate signature. Otherwise, we reject.
We refer to [11] for the exact security model and the proof of security. An attacker who

can existentially forge an aggregate signature can be used to solve co-CDH on (G1,G2).
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We note that aggregate signature verification requires a bilinear map—a generic GDH
group is apparently insufficient. Generic GDH groups are sufficient for verifying ag-
gregate signatures on the same message by different people, or for verifying aggregate
signatures on distinct messages by the same person.

5.2. Batch Verification

Suppose n users all sign the same message M ∈ {0, 1}∗. We obtain n signatures
σ1, . . . , σn . We show that these n signatures can be verified as a batch much faster than
verifying them one by one. A similar property holds for other signature schemes [6].

Let (G1,G2) be a co-GDH group pair of prime order p. Suppose user i’s private key
is xi ∈ Zp and his public key is vi = gxi

2 ∈ G2. Signature σi is σi = H(M)xi ∈ G1. To
verify the n signatures as a batch we use a technique due to Bellare et al. [6]:

1. Pick random integers c1, . . . , cn from the range [0, B] for some value B. This B
controls the error probability as discussed below.

2. Compute V ←∏n
i=1 v

ci
i ∈ G2 and U ←∏n

i=1 σ
ci
i ∈ G1.

3. Test that (g2, V, H(M),U ) is a co-Diffie–Hellman tuple. Accept all n signatures
if so; reject otherwise.

Theorem 3.3 of [6] shows that we incorrectly accept the n signatures with probability
at most 1/B. Hence, verifying the n signatures as a batch is faster than verifying them
one by one. Note that if all signers are required to prove knowledge of their private keys,
then taking c1 = · · · = cn = 1 is sufficient, yielding even faster batch verification [9]. A
similar batch verification procedure can be used to verify quickly n signatures on distinct
messages issued by the same public key.

5.3. Threshold Signatures

Using standard secret sharing techniques [38], our signature scheme gives a robust t-out-
of-n threshold signature [9]. In a threshold signature scheme, there are n parties where
each possesses a share of a private key. Each party can use its share of the private key
to produce a share of a signature on some message M . A complete signature on M can
only be constructed if at least t shares of the signature are available.

A robust t-out-of-n threshold signature scheme derives from our signature scheme
as follows. A central authority generates a public–private key pair. Let x ∈ Zp be the
private key and let v = gx

2 ∈ G2 be the public key. The central authority picks a random
polynomial ω ∈ Zp[X ] of degree at most t − 1 such that ω(0) = x . For i = 1, . . . , n,
the authority gives user i the value xi = ω(i), its share of the private key. The authority
publishes the public key v and n values ui = gxi

2 ∈ G2.
When a signature on a message M ∈ {0, 1}∗ is needed each party that wishes to

participate in signature generation publishes its share of the signature as σi = H(M)xi ∈
G1. Without loss of generality, assume users 1, . . . , t participate and generate shares
σ1, . . . , σt . Anyone can verify that share σi is valid by checking that (g2, ui , H(M), σi )

is a co-Diffie-Hellman tuple. When all t shares are valid, the complete signature is
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recovered as

σ ←
t∏

i=1

σ
λi
i , where λi =

∏t
i=1, j 
=i (0− j)∏t
i=1, j 
=i (i − j)

(mod p).

If fewer than t users are able to generate a signature on some message M then these
users can be used to solve co-CDH on (G1,G2) [9]. This threshold scheme is robust: a
participant who contributes a bad partial signature σi will be detected immediately since
(g2, ui , H(M), σi ) will not be a co-Diffie–Hellman tuple.

We note that there is no need for a trusted third party to generate shares of the private
key. The n users can generate shares of the private key without the help of a trusted third
party using the protocol due to Gennaro et al. [26], which is a modification of a protocol
due to Pedersen [46]. This protocol does not rely on the difficulty of DDH for security
and can thus be employed on GDH groups.

6. Conclusions

We presented a short signature based on bilinear maps on elliptic curves. A signature is
only one element in a finite field. Standard signatures based on discrete log such as DSA
require two elements. Our signatures are much shorter than all current variants of DSA
for the same security. We showed that the scheme is existentially unforgeable under a
chosen message attack (in the random oracle model), assuming the CDH problem is hard
on certain elliptic-curve groups. More generally, the signature scheme can be instantiated
on any GDH group or co-GDH group pair.

We presented two families of elliptic curves that are suitable for obtaining short
signatures. The first, based on [41], is a family of non-supersingular curves over a prime
finite field. The second uses supersingular curves over F3� . Both families of curves
produce n-bit signatures and the discrete log problem on these curves is reducible to a
discrete log problem in a finite field of size approximately 26n . Using the first family of
curves, for 1024-bit security we get signatures of size approximately �1024/6� = 171
bits.

We expect that the first family of curves (the non-supersingular curves) will be the one
used for short signatures: 171-bit signatures with 1024-bit security. As discussed at the
end of Section 4.4, the second family of curves (the supersingular curve over F3� ) should
not be used for short signatures. The problem is that discrete log on these curves reduces
to a discrete log in a finite field of characteristic 3 where Coppersmith’s algorithm can
be used.

Implementation results [23], [4] indicate that the signature scheme performs well.
Signature generation is just a simple multiplication on an elliptic curve and is faster than
RSA signature generation. Verification requires two computations of the bilinear map
and is slower than RSA signature verification.

In Section 4.5 we outlined an open problem that would enable us to get even better
security while maintaining the same length signatures. We hope future work on con-
structing elliptic curves or higher genus curves will help in solving this problem.
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