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Abstract

Introduction: Sleep is a complex phenomenon characterized by important modifications throughout life and by changes of
autonomic cardiovascular control. Aging is associated with a reduction of the overall heart rate variability (HRV) and a
decrease of complexity of autonomic cardiac regulation. The aim of our study was to evaluate the HRV complexity using
two entropy-derived measures, Shannon Entropy (SE) and Corrected Conditional Entropy (CCE), during sleep in young and
older subjects.

Methods: A polysomnographic study was performed in 12 healthy young (21.160.8 years) and 12 healthy older subjects
(64.961.9 years). After the sleep scoring, heart period time series were divided into wake (W), Stage 1–2 (S1-2), Stage 3–4
(S3-4) and REM. Two complexity indexes were assessed: SE(3) measuring the complexity of a distribution of 3-beat patterns
(SE(3) is higher when all the patterns are identically distributed and it is lower when some patterns are more likely) and
CCEmin measuring the minimum amount of information that cannot be derived from the knowledge of previous values.

Results: Across the different sleep stages, young subjects had similar RR interval, total variance, SE(3) and CCEmin. In the
older group, SE(3) and CCEmin were reduced during REM sleep compared to S1-2, S3-4 and W. Compared to young subjects,
during W and sleep the older subjects showed a lower RR interval and reduced total variance as well as a significant
reduction of SE(3) and CCEmin. This decrease of entropy measures was more evident during REM sleep.

Conclusion: Our study indicates that aging is characterized by a reduction of entropy indices of cardiovascular variability
during wake/sleep cycle, more evident during REM sleep. We conclude that during aging REM sleep is associated with a
simplification of cardiac control mechanisms that could lead to an impaired ability of the cardiovascular system to react to
cardiovascular adverse events.

Citation: Viola AU, Tobaldini E, Chellappa SL, Casali KR, Porta A, et al. (2011) Short-Term Complexity of Cardiac Autonomic Control during Sleep: REM as a
Potential Risk Factor for Cardiovascular System in Aging. PLoS ONE 6(4): e19002. doi:10.1371/journal.pone.0019002

Editor: Naomi Rogers, Central Queensland University, Australia

Received November 10, 2010; Accepted March 23, 2011; Published April 22, 2011

Copyright: � 2011 Viola et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was partially supported by PRIN Grant 20072S2HT8_002 2007 to N.M. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nicola.montano@unimi.it

. These authors contributed equally to this work.

Introduction

The cardiovascular system has a complex neural control, which

is based on the interaction across different subsystems, central and

peripheral oscillators, feedback and feedforward reflex mecha-

nisms, humoral, metabolic and local factors [1].

Heart rate variability (HRV) comprises a potent tool that has

been widely used in physiological and pathological conditions, as a

window over autonomic cardiovascular control [2]. The majority

of studies on HRV in physiological and pathological conditions

investigate autonomic cardiovascular control by means of classical

linear tools, such as time and frequency domains [3–6]. However,

in order to quantify different aspects of the cardiovascular control

mainly related to the organization of different subsystems, in the

last years an increasing interest has been focused on the evaluation

of the complexity of cardiovascular system, which cannot be

adequately assessed by means of the classical linear tools.

For such fine-grained analysis, the use of entropy-derived non-

linear indices, such as sample entropy, approximate entropy,

corrected conditional entropy and Shannon entropy [7–12], has

been proposed. Various studies have revealed that both physio-

logical and pathological conditions seem to be characterized by a

decrease of HRV complexity. As an illustration, in healthy subjects

a gradual increase of sympathetic modulation during graded tilt

progressively leads to attenuation in complexity [9]. Most

importantly, these indices of complexity of the cardiovascular
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system can assist in the stratification of risk in patients with an

increased risk of sudden cardiac death [10,13–15]. Aging is

characterized not only by a reduction of the overall cardiovascular

variability [16–21] but also by a decrease of complexity of the

regulatory action of control mechanisms, including neural

cardiovascular control, hormone release regulation and cerebral

electroencephalographic activity [22,23]. This significant age-

related loss of HRV complexity indicates that cardiovascular

regulation may have a reduced ability to specifically control its

different underlying subsystems. As a result, there might be an

overall deficiency in integration of control mechanisms, which in

turn limits the capabilities of the system to adapt and react to

perturbations [22–24], thus increasing the risk for major

cardiovascular adverse events.

Recently, there has been a growing interest on sleep given the

fact that numerous sleep disorders, such as insomnia and sleep

disordered breathing, are strongly associated with cardiovascular

diseases [25–27]. Sleep can be considered a complex phenomenon

with important modifications of the cardiovascular autonomic

regulation: Non-rapid eye movement sleep (NREM; stages 1, 2

and stages 3,4) is characterized by a predominant parasympathetic

drive, while the shift toward rapid eye movement sleep (REM)

exhibits increased sympathetic modulation and loss of parasym-

pathetic control [28–32].

The application of non-linear dynamics to HRV assessment

during sleep revealed a wide spectrum of non-linear characteristics

distinctive for each sleep stage. In fact, previous data showed that

NREM sleep is characterized by an increase of Sample Entropy

[33] and a reduced a2 exponent and Lyapunov exponent [34,35].

Conversely, REM sleep is associated with controversial results

ranging from an increase of approximate entropy to a decrease in

sample entropy and Kolomogorov entropy [33–35].

While aging can be associated with the impairment of several

control mechanisms [36,37], few studies have focused on

alterations of the cardiac autonomic regulation during sleep

[19,38]. Brandenberger et al [38] described that older subjects can

undergo decreased HRV during each sleep stage, together with

loss of parasympathetic and increased of sympathetic modulation,

in comparison to young subjects. Recently, Schumann and

colleagues [39] studied the age-related modifications of fractal

organization in heart rate variability during sleep: a non-linear

index derived from the detrended fluctuation analysis technique,

a1, was found to be age-dependent disregarding wake/sleep cycle,

while long-term correlation measured by a2 differed in NREM

compared to REM sleep but was age-independent [39].

However, to our knowledge no studies have investigated how

the short-term complexity of HRV fluctuates with age and across

different sleep stages and wakefulness. Thus, the aim of our study

was to investigate HRV short-term complexity by means of

Shannon entropy (SE) and corrected conditional entropy (CCE)

during sleep in young and older subjects, in order to characterize a

temporal profile whereby higher cardiovascular risk may occur

due to the loss of complexity.

Methods

Experimental protocol
Study participants were 12 healthy young volunteers (21.160.8

years; 10 men, 2 women; body mass index: 21.860.8 Kg.m22)

and 12 healthy older subjects (64.961.9 years; 10 men, 2 women;

body mass index: 24.160.5 Kg.m22). All the subjects had no

history of cardiovascular disease, sleep disorders, drug abuse and

medication intake. Selection of participants was based on

questionnaires on subjective sleep quality and sleep–wake habits:

participants were enrolled if they had Pittsburgh Sleep Quality

Index (PSQI) lower than 5 and the habitual sleep-wake cycle was

around 23:00 to 7:00. The protocol was approved by the Hospital

Ethics Committee of Strasbourg, France, and all subjects gave

their written informed consent to participate. One night of

habituation was followed by one experimental night, during which

the sleep, cardiac, and respiratory recordings were carried out on

the participants. Exclusion criteria were more than 10 periodic leg

movements per hour and an apnoea-hypopnea index higher than

5. The segments including periodic breathing have been excluded

from the analysis.The experimental protocol has been described in

details by Brandenberger et al [38]. Briefly, after one night of

habituation sleep, participants underwent complete polysomno-

graphic study. Sleep recordings were made from 23:00 to 07:00 h

with a sampling frequency of 256 Hz using an Astro-Med EEG

system (Grass Instruments, West Warwick, RI, USA). Four

electroencephalograms (EEG) (F3, C3, P3 versus A2, and C4

versus A1), one chin electromyogram, and one electro-oculogram

were recorded from 23:00 to 07:00 h. They were visually scored at

30-s intervals using standardized criteria published by Rechtschaf-

fen and Kales [40]. Thoracic and abdominal movements were

recorded using a Crystal Trace Piezo Respiration Sensor (Astro-

Med EEG system).

Data analysis
After the QRS complexes were detected on the ECG and the

apex of the R wave was located using parabolic interpolation,

heart periods were automatically calculated on a beat-to-beat basis

as the time between two consecutive R peaks (RR). All QRS

detections were carefully checked to avoid erroneous detections or

missed beats. Occasional ectopic beats were identified and

replaced with interpolated RR interval. The series RR = {RR(i),

i = 1,…,N}, where i is the progressive cardiac beat number, were

linearly detrended. The series length N ranged from 250 to 300

beats. We carefully avoided non-stationary segments, since

stationarity is a prerequisite for entropy analyses [8,9]. Stationarity

was assessed based on a test checking the stability of mean and

variance as previously described [41].

Calculation of the RR series was performed during pre-sleep

wake (W) and the first two complete REM-nonREM cycles

identified from the polysomnographic recordings. Successive

analysis was carried out according to the sleep stage classification

into Wake (W), Stage 1–2 (S1-2), Stage 3–4 (S3-4) and REM.

Shannon Entropy (SE)
SE was utilized to assess the complexity of the distribution of the

patterns RRL = {RRL(i) = (RR(i), RR(i-1), …, RR(i-L+1)), i = 1,

…,N-L+1)} where L is the pattern length [8] (see Appendix S1 for

mathematical details about the estimation of SE). Therefore, SE is

a function of L (i.e. SE = SE(L)). SE(L) is an index describing the

complexity of the distribution of RRL. Indeed, SE(L) is large if the

distribution is flat (all the patterns are identically distributed and

the pattern distribution carries the maximum amount of

information). On the contrary, SE(L) is small if there is a subset

of patterns more likely, while others are missing or infrequent (e.g.,

in a Gaussian distribution). When SE(L) is calculated with L = 1,

SE(1) depends on the complexity of the distribution of the RR

series, being maximum when RR is identically distributed and

smaller for Gaussian or skewed distributions (see Appendix S1 for

further details).

Corrected conditional entropy (CCE)
We applied the CCE proposed by Porta et al [8] to assess

complexity of the RR series (see Appendix S1 for mathematical
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details about the estimation of CCE). The CCE is based on the

definition of the conditional entropy (CE). The CE assesses the

amount of information carried by the current RR sample (i.e.,

RR(i)) when L-1 past samples of RR are known (i.e., RRL-1(i-

1) = (RR(i-1), …, RR(i-L+1))). CE represents the difficulty in

predicting future values of RR based on past values of the same

series. It is bounded between 0 and SE(1) quantifying the overall

amount of information carried by RR. The CE is 0 when future

values of RR are completely predictable given RR past values and

it is equal to SE(1) when the knowledge of past values of RR is not

helpful to reduce the uncertainty of future RR values. CCE is

designed to decrease to 0 only when RR was completely

predictable, remained to the maximum value (i.e., SE(1)) when

RR was fully unpredictable and showed a minimum when the

knowledge of past values was helpful to reduce the uncertainty

associated to future RR values. The minimum of CCE, CCEmin, is

taken as a measure of the minimum amount of information carried

by the series that cannot be derived from its own past values (i.e. a

measure of unpredictability of future values when past samples are

given). At difference with approximate and sample entropies, the

main advantage of using CCEmin is to avoid the arbitrary selection

of the number of previous samples (i.e. the pattern length L)

helpful to predict future values [8,10]. The use of CCEmin

guarantees the automatic, user-independent, selection of the

pattern length (i.e. the value of L at CCEmin, Lmin) that allows

the maximum reduction of uncertainty about future values (i.e.

maximum predictability) (see Appendix S1 for further details).

Statistical analysis
A two way Analysis of Variance (two- way ANOVA) for non

repeated measurements was used to assess statistical differences

between mean values in each sleep stage among young and old

subjects. Statistically significant difference was considered when

p,0.05. When the sample normality test failed, we used a non

parametric test, the Tukey test, to evaluate the statistical

significance. A Holm-Sidak test, that is a post-hoc test, was used

to assess the significance of mean value changes. Values are

reported as mean 6 SD.

Results

Young subjects had similar mean RR interval as well as the total

variance across the different sleep stages (Table 1).

SE(3) and CCEmin were not statistically different between the

sleep stages (Fig. 1 and 2).

In the older participants, SE(3) and CCEmin were significantly

reduced during REM sleep compared to S1-2, S3-4 and W

(2.9960.32 vs 3.460.39, 3.6260.38 and 3.3260.32 respectively

for SE (3); 0.8360.17 vs 1.0560.19, 1.1560.16 and 0.9860.17

respectively for CCE min) (Fig. 1 and 2).

The length of the conditioning pattern at CCEmin, Lmin, was

monitored in both populations and in all experimental conditions.

No significant differences were found between old and young

subjects and among sleep periods. Therefore, all the values of Lmin

were pooled together. Median of Lmin was 3 and values ranged

from 1 to 6. The median of Lmin (i.e. 3) was selected as the most

representative value of the pattern length able to reduce to the

highest level the uncertainty on future RR samples. Thus, SE(L)

was sampled at L = 3.

SE(3) and CCEmin were not statistically different between the

sleep stages.

Comparison of both age groups revealed that the RR interval

and the total variance were significantly lower during all the sleep

stages in older subjects.

SE(3) was significantly lower during W, S1-2 and REM in older

participants, in comparison to young volunteers (3.3260.32 vs

3.6160.49, 3.460.39 vs 3.7760.31, 2.9960.32 vs 3.8860.38,

respectively; p,0.05 for all). Older participants had significant

lower CCEmin, in W, S1-2 and REM (0.9860.17 vs 1.1360.12,

1.0560.19 vs 1.1760.15, 0.8360.17 vs 1.2060.16 vs., respec-

tively, p,0.05 for all) (Fig. 1 and 2). SE and CCEmin were not

significantly different between young and older during S3-4

(3.6260.38 vs 3.7060.44 and 1.1560.16 vs 1.1460.21, for SE

and CCEmin respectively).

Discussion

Our results indicate that aging can be characterized by a

reduction of entropy indices of cardiovascular variability during

wake/sleep cycle and that this fall occurs particularly during REM

sleep compared to wake and NREM sleep. This suggests a

potential reduction in the capability of the cardiovascular system

to respond to perturbations and to adapt to stressors during this

sleep stage, which in turn might lead to a possible increase in

cardiovascular risk. However, while in healthy older participants

this phenomenon maybe devoid of clinical relevance, it may turn

into an adjunctive state of increased cardiovascular risk when

associated to major cardiovascular diseases, such as heart failure

and coronary artery diseases. Indeed, these pathological conditions

are per se associated with impaired cardiovascular variability and

reduced complexity of cardiovascular control, which by itself

provides an independent negative prognostic risk factor for

cardiovascular mortality [13–15]. In this context, REM sleep

might provide an additional stress load on a cardiovascular system

that is already characterized by a reduced capability to respond to

perturbations.

In the last decades an increasing interest has been focused on

the relationship between autonomic cardiovascular regulation and

sleep. The interest in studying this relationship was motivated by

the evidence that a strong correlation exists between sleep

disorders, such as obstructive sleep apnea (OSA) or chronic sleep

deprivation, and increased incidence of cardiovascular morbidity

and mortality [26]. One of the major pathophysiological issue in

explaining this phenomenon is the important alteration of

autonomic cardiovascular control observed in sleep disorders.

For example, it has been demonstrated that OSA patients, that are

at increased risk for cardiovascular events, have a cardiovascular

Table 1. Average RR interval and total variance in young and
old subjects during different wake-sleep stages.

YOUNG

W S1-S2 S3-S4 REM

Mean RR (s) 1.0560.15 1.1560.18 1.1860.18 1.1460.17

Variance (ms2) 1033568577 797964712 903267475 711467744

OLD

W S1-S2 S3-S4 REM

Mean RR (s) 0.9460.12 0.9760.11* 0.9960.24* 0.9560.13*

Variance (ms2) 334163529* 270265443* 1040.56915* 240963217*

All values are expressed as mean 6 SD.
W = wake, S1-S2 = Sleep stages 1 and 2, S3-S4 = Sleep stages 3 and 4
*p,0.05, significant changes vs Young; 1 p,0.05, significant changes in each
group vs REM; # p,0.05 significant changes in each group vs S3-S4.
doi:10.1371/journal.pone.0019002.t001
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control characterized by sympathetic overactivity compared to

control subjects, both during night-time and day-time [26].

Similarly, aging can be associated to a reduction of the total

variance of HRV and a relative predominance of sympathetic

modulation of HRV [16–21]. The combination of these two

aspects – aging and sleep – may thus provide a physiological

scenario associated to deregulated autonomic cardiac control,

which in turn can result in adverse effects on cardiovascular

morbidity and mortality.

However, the complex interaction of the autonomic nervous

system, sleep and aging was previously assessed in terms of classical

tools of HRV, such as linear spectral approach, with no inferences

on the complexity of cardiovascular regulation.

The application of non-linear analysis approaches, such as entropy

measures, in several cardiovascular diseases, for instance congestive

heart failure, revealed that these patients had a significant loss of the

circadian rhythm of HRV dynamics [10], as well as a reduction of

entropy measures [13] and an altered fractal organization [14]; in

addition, non-linear methods have been demonstrated to be powerful

tool for risk stratification in post-myocardial infarction and

hypertrophic cardiomiopathy patients[13–15].

In our work, we evaluated two different entropy measures of

HRV during sleep, carrying different information: SE(3) is an

index capable of describing the complexity of the distribution of

patterns of length L = 3 (the SE(3) is high when the distribution of

patterns is flat, i.e. the patterns are equally distributed, while SE(3)

is small when a subset of patterns is more likely); the CCEmin is an

index of the minimum amount of information that cannot be

derived from the knowledge of previous values [7–9] (i.e. an index

of the unpredictability of the RR series assigned the number of

past values maximizing the prediction of future values).

We selected SE(3) and CCEmin as measures of complexity

because these indexes can be reliably calculated over short data

sequences, while indexes such as correlation dimension and

Lyapunov exponents require longer series the length of which

might be incompatible with the duration of sleep periods and

absence of non-stationarities. In addition, CCEmin should be

preferred to approximate and sample entropies: indeed, approx-

imate entropy provides a biased estimate of complexity [9] and to

sample entropy necessitates an arbitrary selection of the pattern

length L.

Older subjects revealed significant changes of time domain

parameters, i.e. an increase of heart rate and a decrease of total

variance compared to young subjects. Considering the entropy

measures in the two groups, the older exhibited a significant

reduction of entropy indices during wake, S1-2 and REM, in

Figure 1. Shannon Entropy during wake and sleep. The graph shows the SE(3) in young (black bars) and in old (grey bars) in wake (W) and
during the different sleep stages (S1-1, S3-4 and REM). SE(3) was similar in young subjects between W and the sleep stages. Compared to young, in
the old group SE(3) was significantly lower during W, S1-2 and REM. In old subjects, SE(3) was significantly reduced during REM sleep compared to S1-
2, S3-4 and W. p,0.05 was considered statistically significant.
doi:10.1371/journal.pone.0019002.g001
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comparison to young, which suggests that aging can be associated

with a gradual decline of complexity in cardiovascular control

during wake and sleep. In turn, this deregulation of cardiovascular

system could be associated with an increased susceptibility to

cardiac adverse events.

A decrease of entropy measures can be associated to a shift of

the symaptho-vagal balance toward sympathetic predominance

[9] and more generally, to a simplification of the cardiovascular

regulation arranged over a smaller range of temporal scales. In

physiological conditions, different control systems, such as central

autonomic oscillators, baroreflex and chemoreflex mechanisms,

sympatho-sympathetic reflexes, microvascular regulation and

neuroendocrine system, interact in order to regulate cardiovascu-

lar system. In pathological conditions, the control system is

characterized by the predominance of one of these mechanisms,

while the others are less active, inhibited or impaired, thus leading

to a decrease of HRV complexity. In the long-term, this

simplification of the cardiovascular control reduces flexibility of

the cardiovascular system and increases its susceptibility to

stressors.

It is worth notice that the assessment of SE and CCE during

wake and sleep revealed that in the old group the reduction of the

entropy measures is much higher during REM sleep than during

wake and NREM sleep. Recently, Shumann et al [39] described

the aging effects on cardiac dynamics across the sleep stages: the

authors observed that an index used to assess the ability of the

deceleration of the sinus node, called the deceleration capacity,

was reduced in older volunteers and in REM sleep, hypothesizing

that this decrease possibly indicates an increased cardiovascular

risk with aging during NREM sleep and REM. However, this

index does not reflect a change of complexity of cardiovascular

control. Conversely, in our study, considering the different sleep

stages, the entropy measures were significantly reduced during

REM sleep compared to wake and NREM sleep. Of note, we

consider as ‘‘Wake state’’, only the pre-sleep period, because this

stage is uneffected by sleep transitions in comparison to wake after

sleep onset (WASO) and morning awakening stages [42].

Thus, our results can lead to the hypothesis that during ageing

REM, more than NREM sleep, is a condition characterized by a

marked reduction in cardiovascular control complexity. As it has

been already shown that a decrease in HRV complexity is

associated with an increase in cardiovascular risk [13–15], our

data could suggest that in old subjects REM sleep, with respect to

wake and NREM sleep, can represent a period of major

cardiovascular risk, associated to a higher risk for cardiovascular

adverse events such as sudden cardiac death.

Our study strengthen the hypothesis that, because complexity is

a measure of the capability of cardiovascular system to respond to

Figure 2. Corrected Conditional Entropy during wake and sleep. The graph shows the CCEmin in young (black bars) and old subjects (grey
bars) during wake (W) and different sleep stages (S1-2, S3-4, REM). In the young subjects, no differences of CCEmin were observed between the sleep
stages. Compared to young, the old group showed a significantly lower CCEmin in W, S1-2 and REM. In the old participants, CCEmin was significantly
reduced during REM sleep compared to S1-2, S3-4 and W.
doi:10.1371/journal.pone.0019002.g002
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perturbations, it can be considered an index of increased

cardiovascular risk in aging and patients with cardiac diseases,

as it has been reported by other investigators [43,44]. Yet, our data

indicate that the complexity analysis was able to unmask a further

condition of increased potential risk such as REM sleep. This

might partly support the hypothesis that the highest occurrence of

acute cardiovascular events in early morning hours, possibly

during REM sleep [45], might be related to the impact of

sympathetic surges at awakening.

Whether this alteration of complexity may impact on cardio-

vascular morbidity or mortality needs to be further investigated

and future studies are needed in order to evaluate the

cardiovascular risk during specific sleep stages in healthy and

pathological subjects, suggesting potential high risk moments and

possible target for prevention of cardiac major events.

Supporting Information

Appendix S1 Conditional Entropy, Shannon Entropy and
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(DOCX)
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