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Hydrological forecasting is one of the key research areas in hydrology. Innovative forecasting tools will reform water
resources management systems, flood early warning mechanisms, and agricultural and hydropower management schemes.
Hence, in this study, we compared Stacked Long Short-Term Memory (S-LSTM), Bidirectional Long Short-Term Memory
(Bi-LSTM), and Gated Recurrent Unit (GRU) with the classical Multilayer Perceptron (MLP) network for one-step daily
streamflow forecasting. +e analysis used daily time series data collected from Borkena (in Awash river basin) and
Gummera (in Abay river basin) streamflow stations. All data sets passed through rigorous quality control processes, and
null values were filled using linear interpolation. A partial autocorrelation was also applied to select the appropriate time
lag for input series generation. +en, the data is split into training and testing datasets using a ratio of 80 : 20, respectively.
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient
of determination (R2) were used to evaluate the performance of the proposed models. Finally, the findings are summarized
in model variability, lag time variability, and time series characteristic themes. As a result, time series characteristics
(climatic variability) had a more significant impact on streamflow forecasting performance than input lagged time steps
and deep learning model architecture variations. +us, Borkena’s river catchment forecasting result is more accurate than
Gummera’s catchment forecasting result, with RMSE, MAE, MAPE, and R2 values ranging between (0.81 to 1.53, 0.29 to
0.96, 0.16 to 1.72, 0.96 to 0.99) and (17.43 to 17.99, 7.76 to 10.54, 0.16 to 1.03, 0.89 to 0.90) for both catchments, respectively.
Although the performance is dependent on lag time variations, MLP and GRU outperform S-LSTM and Bi-LSTM on a
nearly equal basis.

1. Introduction

+e science of streamflow forecasting is still one of the
crucial research topics in hydrology. Accurate and reliable
streamflow forecasting is vital for water resources planning,
management, and disaster mitigation response authorities
[1]. Streamflow forecasting can be classified into two. Firstly,
short-term or real-time forecasting includes daily and hourly
timestamps, widely applicable in flood management sys-
tems. Secondly, long-term forecasting usually contains
weekly, monthly, and annual streamflow forecasting, crucial
for reservoir operation, irrigation system management, and
hydropower generation [2].

Generally, streamflow forecasting models can also be
categorized into conceptual, physical-based, and data-driven
models [3]. Conceptual models are lumped in nature and
typically rely on empirical relationships among various
hydrological variables. Due to the model’s reliance on ob-
served data, it is rarely applicable to data-scarce catchments.
Hydrological processes can also be represented in physical
models through mass, momentum, and energy conservation
equations. +ese models may account for spatial variability,
but since they are distributed in nature, they require a large
amount of data on land use, slope, soil, and climate [4].
Lastly, data-driven models form a nonlinear input-output
relationship without physical catchment information and
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minimum data requirements. Hence, the popularity of data-
driven models is exploding these days with the advancement
of computational capability and data set availability [5].

Zhang et al. [6] classified the data-driven approach as
conventional and Artificial Intelligence (AI) based models.
Conventional data-driven models such as Auto Regressive
Moving Average with the exogenous term (ARMAX),
Multiple Linear Regressive (MLR), and Auto-Regressive
Integrated Moving Average (ARIMA) are easy to implement
[6]. However, the nonlinearity of hydrological processes was
left out of the equations. On the other hand, AI-based data-
driven models can detect nonlinearity and perform better in
streamflow forecasting. As a result, machine learning models
have become a hot research topic these days.

AI-based data-driven streamflow forecasting models can
be univariate when the model’s input and output are
designed with a single time series variable. Univariate
forecasting models are straightforward to train using sparse
data and provide ease of inference when evaluating forecast
performance. Due to the complexity of agrometeorological
data, it is simpler and more efficient to forecast the variables
individually [7]. On the other hand, multivariate models are
designed with multiple variables such as precipitation,
temperature, evaporation, and other variables as input and a
streamflow variable as output [6]. +us, in data-scarce
catchments with a limited amount of data, the application of
univariate modelling is more feasible and has received wide
attention in recent years [3, 6, 8, 9].

Wide variates of classical and deep learning models are
present in the literature for time series forecasting, which
includes Artificial Neural Network (ANN), Support Vector
Machine (SVM), Fuzzy Logic (FL), Recurrent Neural Net-
work (RNN), Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Genetic Programming (GP). However,
because of the nonlinearity present in streamflow time series,
the forecasting performance of these models is usually de-
batable [3, 10]. Under one-step andmultistep-ahead forecast
scenarios, Suradhaniwar et al. [7] compared the perfor-
mance of Machine Learning (ML) and Deep Learning (DL)
based time series forecasting algorithms.+ey also evaluated
recursive one-step forward forecasts using walk-forward
validation. Finally, Seasonal Auto-Regressive Integrated
Moving Average (SARIMA) and Support Vector Regression
(SVR) models outperform their DL-based counterparts:
Neural Network (NN), Recurrent Neural Network (RNN),
and Long Short-Term Memory (LSTM) with fixed forecast
horizons.

ANN (MLP) is the most widely used classical machine
learning architecture in hydrology [11]. Cui et al. [12]
demonstrated that when used for hourly river flow fore-
casting, the new generation of ANN or Emotional Neural
Network (ENN) models outperformed the Multivariate
Adaptive Regression Splines (Mars), Minimax Probability
Machine Regression (MPMR), and Relevance Vector Ma-
chine (RVM) models. Yaseen et al. [2] also conducted a
detailed review of literature from high impacted journals in
the time frame of 2000–2015 on the state-of-the-art appli-
cation of Artificial Neural Network (ANN), Support Vector

Machine (SVM), Fuzzy Logic (FL), Evolutionary Compu-
tation (EC), and Wavelet-Artificial Intelligence (W-AI) for
streamflow forecasting. +e same study was concluded by
stating that time series preprocessing, input variable selec-
tions, and time scale choices are the critical parameters for
high-performing forecasting models.

RNN is the popular type of deep learning architecture
that is optimized for time series analysis. However, it has
drawbacks, such as vanishing and exploding gradients.
Hochreiter and Schmidhuber [13] introduced the improved
RNN version or LSTM, a popular time series model for
longtime step forecasting. Recently, various fields of study
have been experimenting with these models [14–20].
Moreover, Cho et al. [21] firstly introduced GRU as a
simplified version of the LSTM model. GRU merges short-
term and long-term memory cells into a single gate with
reasonably good performance and fast running time [22].
Lara Benı́tez et al. [23] evaluated the accuracy and efficiency
of seven popular deep learning architectures: Multilayer
Perceptron (MLP), Elman Recurrent Neural Network
(ERNN), Long Short-Term Memory (LSTM), Gated Re-
current Unit (GRU), Echo State Network (ESN), Con-
volutional Neural Network (CNN), and Temporal
Convolutional Network (TCN). Additionally, they con-
structed over 38000 distinct models to search for optimal
architecture configuration and training hyperparameters,
with LSTM achieving the lowest weighted absolute per-
centage error followed by GRU.

Even though we found multiple effective forecasting
models with GRU and LSTM in different fields, specifically
in hydrology, the accuracy of these models must be further
fine-tuned with different data processing techniques and
data input variations [24–27]. We can restructure the pre-
vious time step data series as a predictor input variable for
univariate time series forecasting and the current or next
step as the output variable. However, the number of input
time steps selected is difficult to decide without prior
knowledge. Hence, studying the effect of lagged time se-
lection in streamflow forecasting is mandatory for to obtain
accurate models. Lagged variables in univariate streamflow
forecasting are significant factors that vary the model’s
performance positively or negatively and hold temporal
dependency information as a predictor variable [28]. Tyralis
and Papacharalampous [29] concluded that using a low
number of recent predictor variables achieves higher ac-
curacy for time series forecasting using Random Forest (RF)
algorithm. It is vital to expand this finding to other popular
deep learning models and to different climatic conditions.

Papacharalampous et al. [30] tested 20 one-step ahead
univariate time series forecasting methods with extensive
time series data.+ey concluded the study by suggesting that
the most and least accurate approaches for one-step-ahead
forecasting, such as the importance of time series length on
the performance of various forecasting methods, are well
addressed. Furthermore, the same study underlined that the
machine learning model’s optimization heavily relies on
hyperparameter optimization and lagged variable selection.
Torres et al. [31] also identified research gaps in various fields
by analyzing the most successful deep learning architectures
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that predict time series effectively and highlighting MLP,
RNN, GRU, and Bi-LSTM architectures in particular.

In the present study, we compared the different forms of
LSTM architectures, S-LSTM, Bi-LSTM, and GRU, with the
classical MLP network to forecast a single step streamflow
amount with the available records of daily streamflow data.
To the best of our knowledge, the LSTM has been mainly
studied for monthly multivariate time series and not for
daily univariate streamflow forecasting. Even though ma-
chine learning can model hydrological forecasting effi-
ciently, researchers should further examine the impact of
suitable input variables and model parameters selection on
model accuracy very carefully [32].

2. Study Area and Data

Two river basin subcatchments in Ethiopia were selected for
this study: (a) Gummera subcatchment in Abay River basin
(Figure 1(a)), (b) Borkena subcatchment in Awash River
basin (Figure 1(b)).

2.1. Borkena Catchment (Awash River Basin/Ethiopia).
Borkena River originates at Kutaber woreda or the con-
junction of Abay and Awash River basins (Ethiopia). +e
Awash River basin is usually classified into three main
catchments, Lower Awash, Middle Awash, and Upper
Awash. Borkena River is found in Lower Awash with its
different tributaries, including Berbera River, Arawutie
River, Abasharew/Wuranie River, Abba Abdela/Desso
River, Worka River, and Leyole River.+e total length of this
river is estimated at around 165 km. Borkena River catch-
ment hosts major cities, including Kombolcha, Dessie, and
Kemissie. +e study area streamflow outlet is at Kombolch
station, and the catchment covers an area of 1709 km2,
bounded from 39° 30′E to 40° 0′E to 10° 15′N to 11° 30′N.
Moreover, the area’s elevation varies from 1775m to 2638m
above sea level. +e rainfall pattern of this catchment is
unimodal, where 84% of the rainfall is happening from July
to September [33].

2.2. Gummera Catchment (Abay River Basin/Ethiopia).
+e second case study area is the Gummara subbasin, one of
the main tributaries of Lake Tana in the Abay River basin.
+e lake is located in the north-western highlands at 12°
00′N and 37° 15′E and collects runoff from more than 40
rivers. +e lake receives water from several major rivers,
including Gilgel Abay in the south, Megech River in the
north, and Ribb and Gummara in the east. Small river
streams from the lake’s western side drain into the lake.
Gummara River originates from the Guna mountains
southeast of Debre Tabor at an altitude of approximately
3250m.a.s.l. +e Gummara catchment covers a total area of
about 1592 km2. Many small intermittent and perennial
rivers and springs flow into themainstreamGummara River.
+e catchment’s topography is undulating, ranging from
1788m.a.s.l. to 3750m.a.s.l.

2.3. Data. Daily streamflow time series of two hydro-
metrological stations were collected from Ethiopia’s Min-
istry of Water, Irrigation, and Energy (MoWIE). +en, these
data were used to forecast single-step streamflow. At Bor-
kena station, 6575 available streamflow data series were
collected over the time window of January 1, 1972, to De-
cember 31, 1989. Similarly, at Gummera station, 9496
streamflow time series values from January 1, 1981, to
December 31, 2006, were collected. A total of 866 null values
are examined in the time series (i.e., 658 at Borkena and 208
at Gummara). +e options for filling these gaps range from
simple interpolation to complex statistical methods [34].+e
method chosen depends on the length and season of missing
data, availability of hydrometeorological data, climatic re-
gion, and length of previous observations. +e sample mean
or subgroup mean can be used to fill in missing values in
daily streamflow data. However, replacing missing values
with sample means may cause underestimating variance and
incorrect subgroup identification [35]. Instead, the linear
interpolation method is quick and straightforward to use,
and it may be sufficient for data with a small gap [36]. +us,
we implemented linear interpolation in this study, and since
the majority of the null values were stacked at low flows, the
interpolation is acceptable [37–40].

After passing these rigorous quality control processes,
the raw data were then split into training and testing datasets
using a ratio of 80 : 20, respectively. Accordingly, different
sizes of single overlapping step sliding windows were used to
rebuild the input time series into a supervised learning
format. +e subsets were further standardized using a
standard scalar approach. Figure 2 shows the descriptive
statistics and the corresponding plots of split data for both
catchments.

3. Methods

+is study compared three types of recurrent network ar-
chitectures (GRU, Bi-LSTM, and S-LSTM) with the classical
neural network architecture (MLP).

3.1.DeepLearningModels. Deep learning models are usually
distinguished from nondeepmachine learningmodels by the
depth of the network layer or by the number of stacked
neuron layers and designed architectures. Nondeep learning
models usually do not accurately learn the advanced non-
linearity present in the input and output variables [41]. In
contrast, deep learning models are widely applied in dif-
ferent tasks, including processing, analyzing, designing,
estimating, filtering, and detection tasks [42]. +e popular
deep learning models applied in different fields of studies are
Multilayer Perceptron (MLP), Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM), Radial Basis Function Net-
works (RBFN), and Generative Adversarial Network (GAN)
[21, 25, 43–46]. +e time series analysis models used in this
study were specifically chosen, and they are briefly discussed
in detail in the following sections.
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3.1.1. Multilayer Perceptron (MLP). ANN or feed-forward
multilayer perceptron (MLP) is an immensely used archi-
tecture in the hydrological literature [47]. Perceptron
operates artificially, replicating our brain processing system

and passing on different mathematical and probabilistic
operations [48]. MLP contains three main layers: input layer,
hidden layer, and output layer. +e network becomes deep
and can extract higher-order statistics by adding more
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Figure 1: +e location of the study areas. (a) Gummera, (b) Borkena.
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hidden layers [44]. +ree-layered MLP is common in hy-
drological time series modelling.

A typical diagram of one node (jth) ANN is displayed in
Figure 3. Conditional to the layer location, the series of inputs
form an input vector X� (x1, xi, . . ., xn). +e equivalent series
of weights fit to each input form a weight vector

Wj � (w1j, wij, . . . , wnj). +e output (Yj) for the node j is
calculated using the value of a function (f) with the inner
product of the input vector (X) and weight vector (Wj) minus
bias (bj) [49]. +e stated operation is displayed as follows:

Yj � f X · Wj − bj􏼐 􏼑. (1)
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Figure 2: Descriptive statistics and the corresponding box plots of split data. (a) Borkena station, (b) Gummera station.
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+e activation function (f ) helps decide a neuron acti-
vates a process or not, and these are the few commonly used
activation functions: Rectified Linear Unit (ReLu), Leaky
ReLu, Sigmoid, Hyperbolic Tangent (Tanh), and Softmax
[50]. Even though ANN has been enormously applied in
hydrological modelling for the past decades, its performance
to capture extreme events is doubtful for complex problems
such as rainfall-runoff processes [47].

3.1.2. Long Short-Term Memory (LSTM). Long Short-Term
Memory (LSTM) networks are unique to MLP because the
networks have recurrent connections; the information from
previous long time-step memories is used to formulate
forecasting. Overcoming vanishing and exploding gradients
makes LSTM more popular in sequence and time series
analysis than the traditional Recurrent Neural Network
(RNN) [51]. LSTM networks have memory cells and three
gates: input, forget, and output. +ese gates are responsible
for the network to save, forget, pay attention, or pass the
information to other cells [27]. Figure 4 displays the typical
LSTM memory cell with three gated layers, and the detailed
mathematical formulation for the network components is
described as follows:

ft � σ ufxt + wfht−1 + bf􏼐 􏼑, (2)

it � σ uixt + wiht−1 + bi( 􏼁, (3)

ot � σ uoxt + woht−1 + bo( 􏼁, (4)

cet � tanh wcxt + ucht−1 + bc( 􏼁, (5)

ct � ft ∗ ct−1 + it ∗ cet, (6)

ht � tanh ct( 􏼁∗ ot, (7)

where ft (equation (2)) is a forget gate that has a respon-
sibility to choose the information to reject from the cell, it

(equation (3)) is an input gate that can decide on the input
values to update the memory state, and ot (equation (4)) is an
output gate that can decide the output value after analyzing
the input and memory of the cell. +e weight matrices wi,
wf, wo, and wc correspond to the input gate, forget gate,
output gate, and cell gate units, respectively. While ui, uf, uo,
and ucweight matrices map the hidden layer output gates, bi,
bf, bo, and bc are the bias vectors of the input gate, forget gate,
output gate, and cell gate units, respectively. Moreover, ct
(equation (6)) and ht (equation (7)) are a memory cell and
hidden state [24].

3.1.3. Bidirectional LSTM (Bi-LSTM). Bi-LSTM is also the
other option for getting the most out of RNN by stepping
through the input time steps forward and backward. Al-
though Bi-LSTMs were developed for speech recognition,
the use of bidirectional input sequences is one of the
principal options for sequence prediction nowadays. +e
hidden layer of the Bi-LSTMmodel needs to save two values,
in which ht involves the forward calculation and h′t involves
the backward calculation. +e final output value Yt is ob-
tained by combining the outputs of the forward layers and
backward layers’ outputs [52].

Each point in the input sequence of the output layer is
provided with the complete past and future contextual in-
formation. +ere is no information flow between the for-
ward and backward hidden layers, ensuring that the
expanded graph is acyclic [53]. Figure 5 displays the
structure of bidirectional LSTM architecture.

3.1.4. Gated Recurrent Unit (GRU). GRU is the newer
generation of LSTM that merges input and forget gates into
the update gate. Hence, it has fewer parameters, faster
running time, and debatable performance than LSTM
[24, 26, 27, 40]. Update and reset gates are the two gates
available in GRU. Update gate renews the current memory,
which enables the memorization of valuable information; on
the contrary, the reset gate clears the current memory to
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Figure 3: Schematic diagram of MLP for node j.
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forget invaluable information at any time step. Figure 6
shows the structure of the GRU network, and the detailed
equations of the hidden units are described as follows:

Zt � σ WzXt + Uzht−1 + bz( 􏼁, (8)

rt � σ WrXt + Urht−1 + br( 􏼁, (9)

􏽢ht � tanh WhXt + rt ⊙ ht−1( 􏼁( 􏼁Uh + bh, (10)

ht � 1 − Zt( 􏼁⊙ ht−1 + Zt ⊙ 􏽢ht, (11)

where Xt is the input vector, Zt (equation (8)) is the update
gate vector, rt (equation (9)) is the reset gate vector, ht
(equation (11)) is the output vector, 􏽢ht (equation (10)) is a
candidate activation vector, W, U, and b are parameter
matrices, and the sign ⊙ denotes Hadamard product.

3.2. Main Model Development. Optimizing deep learning
models require decisions on a combination of large
hyperparameters, including the number of layers, number of
units, batch size, epochs, and learning rate [54]. A random
search can produce an infinite number of hyperparameter
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combinations with a median cost from the four major
hyperparameter optimization techniques: trial-and-error,
grid, random, and probabilistic approach [31]. Hence, in this
study, we use a computationally efficient randomized search
method called Keras Tuner developed by the Google team to
search random combinations of parameters for optimized
performance. +e detailed flow chart of the proposed
methodology is presented here in Figure 7.

+e proposed models applied a double fully connected
hidden layer. +e minimum and the maximum numbers of
neurons at each hidden layer were set with prior experience.
+en, the output layer is linked to a dense layer with a single
output neuron with a linear activation function.+e network
is compiled with Adam optimizer and mean squared error
loss function, and the details of hyperparameter value ranges
and choices are listed in Table 1. Moreover, the following
paragraph discusses each hyperparameter optimized using
Keras tuner.

3.2.1. Activation Function. In deep learning models, the
activation function defines the output from the inputs each
node receives. In our case, we applied Rectified Linear Units
(ReLU) in all layers except the output layer.

3.2.2. Learning Rate. In deep learning, the learning rate is
one of the hyperparameters that decides the step size at
each time the model progresses to a minimum loss
function. Hence, it is crucial to optimize the learning rate
properly; otherwise, the model may converge slowly with
too small learning rate or diverge from the optimal error
points with large learning rate values [55]. +is study sets
three values (1e − 2, 1e − 3, or 1e − 4) to choose using Keras
Tuner.

3.2.3. Number of Epochs. +e other hyperparameter that
decides how much time the deep learning algorithm will
learn with the entire training samples. When we set more
epochs, the weight in the model will get more chance to
update itself. +e loss curve goes through different stages
such as underfitting, optimal state, or overfitting; even
though there are no strict rules for these hyperparameter
configurations, we set the minimum (10) and maximum
(100) values for optimization using Keras Tuner.

3.2.4. Number of Batch Sizes. +e batch size is a sample size
cluster processed before the model updates itself.

3.2.5. Drop Out. +e dropout layer is a hyperparameter that
prevents overfitting and enhances training performance.
Hence, at each iteration, the dropout freezes a fraction of the
neuron from training, and it is defined on a range of 0 to 1.

Different open-source Python libraries were used for
model development, such as Tensorflow, Keras, Scikit-Learn,
Matplotlib for visualization, Statsmodels for performance
evaluation. Moreover, the simulation was also conducted on
a computer with Processor: Intel(R) Core (TM) i7-6500U
CPU 2.50GHz and RAM: 8 Gigabytes memory.

3.3. Input Time Lag Selection. To reprocess the highly cor-
related time series delay that was decomposed and used as a
single input to a deep learning neural network, the autor-
egressive model using the partial autocorrelation function
(pacf) was applied. Equation (12) shows the autoregressive
model A.R. (p).

xt � φ1x(t−1) + φ2x(t−2) + · · · + φpx(t−p) + εt, (12)
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Figure 6: +e structure of gated recurrent unit (GRU) network [38].
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where φ is the autoregressive parameter, x is the observation
at time t, and ε is the weighted noise at time t. +e autor-
egressive model explores the correlation between current
and past values [56]. As shown in Figure 8, the partial
autocorrelation of daily streamflow time series with a 95%
confidence interval, the time delay of 4 days, was considered
for both case study areas in this study.

3.4. Performance Measures. +e following performance
measures were used to evaluate the accuracy of the model
developed: coefficient of determination (R2), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) [57].

(i) Coefficient of Determination (R2)

R
2

�
n 􏽐 Qobs ∗Qsim( 􏼁 − 􏽐 Qobs( 􏼁∗ 􏽐 Qsim( 􏼁

��������������������

n 􏽐 Q
2
obs􏼐 􏼑 − 􏽐 Qobs( 􏼁

2
􏽨 􏽩

1/2􏽱

∗ n 􏽐 Q
2
sim􏼐 􏼑 − 􏽐 Qsim( 􏼁

2
􏽨 􏽩

.

(13)

(ii) Root Mean Square Error (RMSE)

RMSE �

����������������

􏽐
N
t�1 Q

t
obs − Q

t
sim􏼐 􏼑

2

N

􏽳

. (14)

(iii) Mean Absolute Error (MAE)

MAE �
1
n

􏽘

n

t�1
Q

t
obs − Q

t
sim

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (15)

(iv) Mean Absolute Percentage Error (MAE):

MAPE �
100%

n
􏽘

n

t�1

Q
t
obs − Q

t
sim

Q
t
obs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (16)

where Qobs� discharge observed, Qsim� discharge simulated,
and n� number of observations. +e range of R2 lies between 0
and 1, representing, respectively, no correlation and a perfect
correlation between observed and simulated values, whereas, for
RMSE, MAE, and MAPE, the better performance is reached
when we are close to 0. If R2>0.90, the simulation is very
acceptable; if 0.60<R2<0.90, the simulation is acceptable; and if
R2<0.60, the simulation is unacceptable [58].

4. Results and Discussion

Previous analyses revealed a wide range of results, which varied
according to the type of deep learning architecture used, the
degree of climatic variability, and the timescale used. +e GRU
model outperforms both the extreme learning machine (ELM)
and the least-squares support vector machine (LSSVM) on
monthly univariate streamflow data from the Shangjingyou and
Fenhe reservoir stations in the upper reaches of the Fenhe River
[59]. Sahoo et al. [19] also demonstrated the superiority of
LSTM over RNN on univariate daily discharge data from the
Basantapur gauging station in India’s Mahanadi River basin.
Suradhaniwar et al. [7] demonstrated that SARIMA and SVR
models outperformNN, LSTM, and RNNmodels when hourly

averaged univariate time series data is used. Even though the
best model generalization is complex, case-based analysis is the
most effective method for determining which model best fits a
given situation [60]. For the first time in this study, we
attempted to organize the findings around three distinct themes:
model variability, lag time variability, and time series charac-
teristics (climatic variability).

+e following section discusses the performance of four
selectedmodels under four different input time lag scenarios; in
total, 16 experimental results are presented. Tables 2 and 3
show the optimized hyperparameter values for both stations
and all scenarios using Keras Tuner. Additionally, Tables 4 and
5 illustrate performance metrics in terms of RMSE, MAE,
MAPE, R2, and TTPE (sec). In the testing phase, single-step
streamflow forecasting results demonstrated very acceptable
performance for both case study areas.

4.1. Model Variability. We used four evaluation matrices to
investigate the effect of model variability on the accuracy of
single-step streamflow forecasting. +en, using box plots, we
could visualize the spread of prediction error (m3/s). Addi-
tionally, we plotted a bar chart (Figure 9) with different pre-
diction error classes to identify the class limit with the highest
error concentration. As a result, as shown in Table 4, GRU’s
model has a slight performance advantage over MLP and
S-LSTM for Borkena station’s lag time (T+2 and T+3).
Whereas, for the Gummera catchment (Table 5), MLP out-
performed GRU and S-LSTM in terms of performance in-
crement in lag time (T+1 and T+3). Prediction error box plots
and bar chart graphs (Figures 10 and 11) were used to in-
vestigate these high-performing architectures further. Hence,
the prediction error of GRU is typically concentrated in small
ranges (0 to 0.5m3/s) for Borkena and (0 to 2.5m3/s) for the
Gummera catchment. Moreover, as shown in Tables 4 and 5,
when considering computational speed, MLP demonstrated the
quickest training time per epoch, followed by S-LSTM, GRU,
and Bi-LSTM.

4.2. Time Series Characteristics (Climatic Variability). +e
other major issue affecting deep learning model performance is
time series characteristics. As a result, in this study, the four-
evaluation metrics displayed Borkena’s river catchment fore-
casting result is more accurate thanGummera’s catchment with
RMSE, MAE, MAPE, R2, ranging between (0.81 to 1.53, 0.29 to
0.96, 0.16 to 1.72, 0.96 to 0.99) and (17.43 to 17.99, 7.76 to 10.54,
0.16 to 1.03, 0.89 to 0.90) for both catchments, respectively. +e
possible cause for this performance variation between the two
catchments is the significant natural streamflow time series
variability in the Borkena catchment. Furthermore, the spread
of prediction error (m3/sec) in Figures 10 and 11 shows that the
error class limit for most cases is smaller in the Borkena station
than in the Gummera station.

4.3. Lag Time Variability. In univariate streamflow fore-
casting, lagged variables are the other significant factors that
hold temporal information and affect model performance.
Taylor diagram in Figure 12 shows the forecasting ability of
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Table 1: Model hyperparameter choices or value ranges for optimization by keras tuner.

N° Hyperparameters
Value Ranges∗∗

Choices Default
Min Max Step

1 MLP, LSTM, Bi-GRU+LSTM, or GRU layer 1 units 5 40 5 ∗ ∗

2 Dropout 1 0.0 0.3 0.1 ∗ 0.2
3 MLP, LSTM, Bi-LSTM, or GRU layer 2 units 5 40 5 ∗ ∗

4 Learning rate ∗ ∗ ∗ 1e− 2, 1e− 3 or 1e− 4 ∗

5 Number of epochs 10 100 10 ∗ ∗

6 Number of batch sizes 10 100 10 ∗ ∗

∗∗Value ranges or choices for optimization by keras tunner: (objective� “test loss,” max trials� 20, executions per trial� 3). ∗Not applicable.

Qt
Scenario 4 /Lag 4

(Qt-4,Qt-3,Qt-2,Qt-1)

Qt
Scenario 3 /Lag 3

(Qt-3,Qt-2,Qt-1)

Qt
Scenario 2 /Lag 2

(Qt-2,Qt-1)

Qt
Scenario 1 /Lag 1

(Qt-1)

Data normalization using standard scaler

Start

Load daily discharge (M3/sec)
timeseries

Treat missing values using liner
interpolation

Split data using a ratio of 80:20 for train
and test data respectively.

Inputs Output

Convert data to supervised learning 

End

Hyper parameter optimization using Keras tuner
Objective =’Test-loss’
Maximum trials = 20

Execution per trial = 3

Model training using optimal hyperparameters and
selected architectures

(MLP, GRU, S-LSTM, and Bi-LSTM)

Forecasting

Evaluation using RMSE, MAE, MAPE, R2, STD,
Correlation (r), Training time per epochs (sec)

Figure 7: Data analysis flow chart proposed for the study.
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the proposed models with the observed test data for both
case study areas. +e diagram is designed on a two-di-
mensional scale: the standard deviation on the polar axis,
root mean square error, and correlation coefficient on the

radial axis. It shows that, irrespective of deep learning
models, forecasting with a lag time of four gives us a time
series closest to the standard deviation of the actual test
observations. Moreover, Figures 13 and 14 also display the

Table 2: Keras tuner optimized hyperparameter values for Borkena station with its MSE score.

Hyperparameters
MLP S-LSTM Bi-LSTM GRU

T+ 1 T+ 2 T+ 3 T+ 4 T+ 1 T+ 2 T+ 3 T+ T+ 1 T+ 2 T+ 3 T+ 4 T+ 1 T+ 2 T+ 3 T+ 4
Layer_1_units 35 10 40 35 25 35 40 40 35 40 25 20 25 30 15 10
Dropout_1 0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.2 0.1 0.2 0.0 0.1 0.1 0.0 0.1 0.1
Layer_2_units 10 20 25 15 35 25 30 10 20 30 20 30 20 25 40 25
Learning rate 0.0001 0.0001 0.0001 0.001 0.0001 0.0001 0.001 0.001 0.0001 0.001 0.001 0.001 0.0001 0.001 0.0001 0.001
Number of
epochs 90 100 100 40 60 80 20 30 70 20 50 70 50 60 40 50

Number of batch
sizes 20 20 30 30 30 40 20 10 40 20 20 30 50 30 10 90

Score (MSE) 0.099 0.099 0.096 0.097 0.099 0.099 0.098 0.096 0.099 0.099 0.097 0.096 0.099 0.099 0.099 0.097

Table 3: Keras tuner optimized hyperparameter values for Gummera station with its MSE score.

Hyperparameters
MLP S-LSTM Bi-LSTM GRU

T+ 1 T+ 2 T+ 3 T+ 4 T+ 1 T+ 2 T+ 3 T+ 4 T+ 1 T+ 2 T+ 3 T+ 4 T+ 1 T+ 2 T+ 3 T+ 4
Layer_1_units 25 25 10 25 20 30 15 25 10 25 15 15 5 40 25 15
Dropout_1 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.2
Layer_2_units 15 40 30 25 30 10 35 10 5 20 10 20 30 20 25 15
Learning rate 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.01 0.001 0.001 0.001 0.01 0.001 0.01 0.01 0.0001 0.001
Number of epochs 70 90 80 50 60 50 50 80 60 90 50 30 80 40 50 30
Number of batch sizes 60 60 70 60 80 40 30 50 50 40 20 10 20 30 50 40
Score (MSE) 0.019 0.011 0.012 0.015 0.019 0.011 0.013 0.015 0.018 0.011 0.013 0.013 0.018 0.012 0.013 0.016
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–0.000
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Figure 8: Partial autocorrelation of the daily time series for both catchments (lag units are in days, and the blue shadow lines indicate 95%
confidence intervals). (a) Borkena, (b) Gummera.
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Figure 9: Bar chart showing the frequency (%) of absolute prediction errors |PE| (m3/sec) with different class limits for the proposed four
models and input lagged time variables in both catchments.
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Figure 10: Spread of prediction error (m3/s) or box plot for the proposed models during the test period (Borkena station).
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Figure 12: Taylor diagram displays the standard deviations, root mean square error, and correlation coefficient between observed and
predicted streamflow for the proposed four models and lagged time variables (Q m3/s). (a) Borkena, (b) Gummera.
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Figure 13: Comparison of true values and predicted values of the optimized high score deep learning model for each time lag (Borkena
station).
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Figure 14: Comparison of true values and predicted values of the optimized high score deep learning model for each time lag (Gummera
station).
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actual values and predicted values of the optimized high
score deep learning model for each time lag and both case
study catchments.

5. Conclusions

+is study showed a comparative analysis of different deep
learning algorithms for one-step daily streamflow fore-
casting at two subcatchment stream flow outlets. MLP,
S-LSTM, Bi-LSTM, and GRU are the four algorithms used in
this study. +e study clearly showed the impacts of climatic
(time series characteristics) and lagged time variability on
the performance of different proposed deep learning models.
+e following key points will elaborate on the outcome of
this research.

(i) Deep learning models have excellent potential in
forecasting short-term daily streamflow in different
time series characteristics.

(ii) +e performance of deep learning models for short-
term streamflow forecasting varies with time series
characteristics and input time lag variations.
Moreover, the Borkena station has more significant
natural streamflow variability than the Gummera
station, which is also reflected in the model results.
Hence, this study showed that catchment response
variability impacts deep learning model
performance.

(iii) MLP and GRU outperform S-LSTM and Bi-LSTM
on a nearly equal basis for single-step short-term
streamflow forecasting in both case study areas.
However, the performance is relative to the lagged
time variations.

(iv) Catchment characteristics had a high impact on the
performance of streamflow forecasting than deep
learning model architectures and lagged time
variations.

(v) +e study also showed that classical MLP could
almost equally perform with S-LSTM and GRU
deep learning networks on a small amount of
streamflow time series data.

Future research may further expand this study’s
findings to other climatic regions, hybrid deep learning
model architectures, hyperparameter tuning, and lagged
time selection methods. We must also investigate the
effects of large input variability on deep learning models
for univariate streamflow forecasting in all its implica-
tions. As part of our future work, we plan to implement
an ensemble learning approach to simulate streamflow
from remote sensing-derived data products (precipita-
tion and vegetation indexes) using a combination of
neural networks, decision trees, and boosting algorithms.
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