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ABSTRACT Short-term load forecasting is a key task for planning and stability of the current and future

distribution grid, as it can significantly contribute to the management of energy market for ancillary

services. In this paper we introduce the beneficial properties of applications of sparse representation and

corresponding dictionary learning to the net load forecasting problem on a substation level. In this context,

sparse representation theory can provide parsimonial predictive models, which become attractive mainly

due to their ability to successfully model the input space in a self-learning manner, by interacting between

theory, algorithms, and applications. Several techniques are implemented, incorporating numerous dictionary

learning and sparse decomposition algorithms, and a hierarchical structured model is proposed. The concept

of sparsity in each case is embedded throughout the utilization of different regularization formswhich include

the ℓ0, ℓ1, ℓ2 and ℓtree0 norms. The observed superiority of the proposed theory, especially the one which

embeds the atoms and corresponding coefficients in a tree structure, stems from the construction of the

dictionary so as to represent efficiently the ambient electricity signal space and the consequent extraction of

sparse basis-vectors. The performance of eachmodel is evaluated using real hourly loadmeasurements from a

high voltage/medium voltage (HV/MV) substation and compared with that of widely used machine learning

methods. The provided analytical results, verify the effectiveness of hierarchical sparse representation in

short-term load forecasting applications, in terms of common accuracy indices.

INDEX TERMS Generative models, hierarchical dictionaries, load forecasting, power grid, sparse repre-

sentation.

I. INTRODUCTION

The ever-increasing energy requirements of modern power

grids provide, beyond any doubt, evidence of the neces-

sity to manage energy resources in the utmost efficient and

cost-effective way. Electric load forecasting on a substation

scale, plays central role in this effort, and this discipline,

has become one of the major research fields in the context

of electrical engineering [1]. The scope of this field is to

provide predictions regarding the future values of load time-

series based on previous collections of load measurements,

while also often taking into account exogenous variables.

As it is expected, a number of challenges appear when dealing
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approving it for publication was Bin Liu .

with this problem. On the one hand, electricity demand is

characterized by its volatility, while at the other it is subject

to numerous factors, such as weather conditions, grid’s exten-

sion, and more recently renewable energy sources (RES)

penetration. Especially in a high voltage/medium voltage

(HV/MV) distribution substation level, the data measure-

ments combine both demand and generation, and thus the

prediction becomes more complex by the ever-increasing

installation of renewables. Therefore, accurate, reliable, and

robust load forecasting will contribute towards appropriate

operation and scheduling/planning for power systems, thus

achieving a lower operating cost and higher reliability of the

electricity supply. In particular, short-term load forecasting

(STLF), with a time horizon that does not exceed a few

hours, is of great importance, participating in a multitude of
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crucial operation tasks like economic emission dispatch, unit

commitment and energy transactions [2], [3]. Moreover, pro-

viding reliable short-term forecasts, has a significant impact

on the secure operation of power systems [4]. In dealing with

such issues, load shifting plays a leading role and can only be

accomplished by exploiting the STLF.

From a methodological point of view, STLF has been

tackled with a plethora of machine learning (ML) methods.

Due to their simplicity, models based on linear regression

(LR) [5], [6] have been widely employed. On the other hand,

the need for more sophisticated approaches, has led to the use

of support vector regression (SVR) [7], [8], as well as neural

networks and deep learning [9], [10]. However, it should

be noted that despite years of thorough study, electric load

forecasting still remains an open field of active research. The

main reason behind this, is that it is a complex problemwhich

is difficult to address adequately, due to the versatile nature of

electric load [11]. As a result, there is no specific MLmethod

which achieves universal superiority in terms of performance.

For example, neural-network-based models have been found

to be able to tackle satisfactory the non-linear behavior of

load, but they are also sensitive to noisy input data. On the

other hand, linear regression models provide much higher

robustness, even though they are unable to capture more

complex, nonlinear dynamics. Having this in mind, it is

imperative to explore alternative methods that incorporate

generative models, achieving a fair trade-off between the

aforementioned merits.

In recent years an assortment of MLmethods has emerged,

which harness their power from the theory of sparse

representation (SR) and corresponding dictionary learning

(DL) [12], [13]. Sparse coding refers to the modeling of

data signals as a linear combination of a few basis elements

(atoms), which are part of a larger group (dictionary). Typical

issues which have to be addressed are [14]: a) the dictio-

nary learning stage which is responsible for discovering the

elements of the dictionary (atoms) given a training set of

electric load sequences and b) sparse representation or coding

which provides the set of (few) coefficients which partic-

ipate to the reconstruction of any questioned signal, given

that the dictionary is now provided. These techniques have

been proven to provide an extraordinary powerful solution

to a wide range of application fields, especially in signal

processing, image processing, machine learning, and com-

puter vision [15]–[17]. Not surprisingly, their use contin-

ues to expand to additional scientific disciplines such as

medical imaging and more recently, power supply systems.

The use of sparse representation methods for modeling and

forecasting individual household electricity loads is studied

in [18] by proposing an alternating direction method of mul-

tipliers (ADMM) algorithm for solving the dictionary learn-

ing problem. A number of research papers based on sparse

Bayesian learning (SBL) have been also published during

the last decade, featuring weighted SBL [19], [20] or com-

bined kernels SBL [21]. Moreover, besides load forecasting,

several power grid-related problems have been addressed

using sparse coding approach. In [22], real-time wind-power

forecasting is achieved by online nonnegative sparse cod-

ing with elastic net regularization. The efficient and well-

known algorithm K-SVD [23] has also recently been used

in the smart grid framework [18], either for disaggregating

a building’s energy into the energy consumed by individual

appliances [24], or compressing data from individual smart

meters and extracting partial usage – sparse – patterns [25].

The daily consumption load forecasting based on a large

amount of smart meters data, is studied in [26], where sparse

encoders are proposed for feature extraction and dimension-

ality reduction of aggregated load data. However, according

to the relative literature, the development of sparsity-based

models in order to predict the electric load is still limited.

It should be noted that up to the authors’ best knowledge,

load forecasting of high voltage/medium voltage (HV-MV)

electricity data through sparse-based models has not been

investigated yet.

The proposed work addresses STLF using a powerful

model based on structured sparsity. Exploring the contribu-

tion and effectiveness of sparse coding to the problem at

hand, further parsimonial DL/SR regression style-oriented

methods are implemented. Dictionary learning as well as

sparse representation is performed by well-defined methods

which include among others popular ℓ0, ℓ1, ℓ2 and ℓ
tree
0 based

regularization norms. Once the dictionary has been obtained,

evaluation of the proposed parsimonial regression follows,

in order to find the optimal coefficient vector among a

large number of possible solutions. Experiments show clearly

that the ℓtree0 outperforms in terms of accuracy any other

SR-based, as well as standard, ML methods such as multi-

layer perceptrons (MLPs) or SVR.

A. CONTRIBUTIONS

In accordance with the aforementioned discussion, our pri-

mary interest is to introduce methods and algorithms for

sparse representation and dictionary learning, aiming to pro-

vide an efficient and robust solution to the problem of

short-term load forecasting. Intuitively, parsimony is a bio-

logically motivated perception which has been explored in

several machine learning applications with benefits to various

scientific disciplines [27], [28]. Therefore, sparse represen-

tation and associated dictionary learning is a parsimonious

inspired method which provides a robust signal representa-

tion and delivers superior qualitative, as well as quantitative,

performance compared to methods based e.g., on orthonor-

mal transforms. Under this concept, signals are approximated

by means of a linear combination of only a few atoms, which

are members of an overcomplete set (or dictionary). We will

provide in detail the way that sparse coding and dictionary

learning can be realized in the induced domain and we will

devise a method for embedding a form of parsimonial regres-

sion within the context of short-term electric load forecasting.

It should be pointed out that the proposed parsimonial regres-

sion is a methodology of low complexity that supposes linear

correlation between sequences of load data, but on the other
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hand, in contrast to other ML methods, it is more robust to

overfitting.

Although the presence of non-linear characteristics in elec-

tric load time-series is a fact, one must clearly acknowledge

that, the existence of non-linearities becomes more obvious

for long-term prediction horizons; on the other hand, for

short-term forecasts, the correlation between the output and

input variables can often be approximated by linear mod-

els [29]. We are particularly interested whether hierarchical

priors can be considered more effective a) in supervised

setups or b) in the matrix-factorization framework, which

will be used in this work. Additionally, in numerous cases

the nature of the problem under consideration has an impact

towards the existence of parameters (or variables) with strong

associations among them, something that should be taken

into account when dictionary elements are formed. Thus,

it seems reasonable to make use of this knowledge regard-

ing the problem in order to shape the corresponding sparse

space. Therefore, we can explore block structure methods

which impose a partition in the dictionary elements by defin-

ing groups which correspond to different types of features.

In other words, we are permitting the simultaneous activation

of specific coefficients that are part of a group, which will

advance the dictionary elements to self-organize patterns in

order to adapt the prior. This reinforces the exploitation of

sparse-based models for short-term net load forecasting as

highlighted by the results presented below, especially for

those that utilize a structured type of sparse representation.

Concluding, the proposed work has a significant contribution

towards the following directions:

1. Formulation: A novel approach is introduced in order to

acquire predictions during the sparse decomposition process.

In other words, we create a simple or structured dictionary

from the training set of electric load sequences and then we

propose the use of a truncated dictionary in order to model

any questioned sequence bymeans of the corresponding trun-

cated coefficients, which in their turn will provide the desired

forecasted load value.

2. Accuracy: The proposed method provides the means for

embedding to the produced models a priori information of the

problem under consideration through adopting a hierarchical

structure. This approach is shown to be highly effective, as it

manages to outperform not only baseline linear models, but

also non-linear methods like SVR andMLP, in terms of mean

absolute error (MAE), mean squared error (RMSE) and R2.
3. Problem: According to the author’s knowledge, this

is the first time that the proposed DL/SR architecture has

been used in order to cope with short-term load forecasting

(HV-MV scale). Due to large RES exploitation, the devel-

opment of an accurate forecasting model is getting signifi-

cantly difficult, as the predictions are affected directly both by

demand and generation. Given the fact that parsimonial meth-

ods are considered generative (i.e. explain the way that data

is synthesized) machine learning approaches [15], we antic-

ipate that the dictionary learning stage will provide robust

modeling and generalization of the ambient sequence space

which will be mapped to the corresponding coefficient vector

and thus will provide enhanced prediction efficiency. That is,

generative models help towards a realization of a methodical

path for algorithm design, while in addition they provide a

theoretical analysis of their performance.

Without doubt, the most significant issue that one must

address when sparse representation algorithms are utilized,

is the motivation behind its use on several types of signals.

To simply state it, is there something appealing if one pursues

a line of research based on sparse representation? The answer

to this question is that sparse representationmodels have been

found to be able to adapt universally, faithfully and effectively

to the raw data exposed to them, due to the vast number

of potential supports enabled by the dictionary. Therefore,

sparse representation models are considered unique due to

the interaction that occurs among theory, algorithms, and

applications [15].

The paper is organized as follows: Section II provides a

description as well as details of the task at hand and summa-

rizes the proposed approach. Section III includes an overview

and the background for sparse coding and associated dictio-

nary learning methods and techniques, while at the same time

it addresses details of the proposed load forecasting imple-

mentation. Section IV presents the experimental protocol and

delivers the corresponding results, followed by an exten-

sive discussion in section V. Finally, conclusions are drawn

in Section VI.

II. PROBLEM DESCRIPTION

The load time-series to be forecasted has traditionally

consisted of the summation of power demand from individ-

ual consumers. This power demand has shown little volatil-

ity and has substantial periodicity on a daily and monthly

basis; therefore, in the past it was modelled using traditional

methods, with relatively high accuracy [3]. Today, this load

time-series also contains the summation of the distributed

renewable energy sources generation that is downstream of

the centralized generation. This new RES-based generation

paradigm has jeopardized the accuracy of traditional predic-

tion methods due to the intermittency of the weather phe-

nomena. This is detrimental for two reasons: First, from an

energy management perspective, uncertainty in distributed

RES generation compromises the ability to effectively plan

short-term power generation scheduling [30], while from

a RES-aggregator perspective, stochasticity constrains their

bidding strategies and thus, compromises their profit mar-

gins [31]. These shortcomings prove that accurate short-term

predictions are of paramount importance in the context of

multiple operational aspects of the smart grid. To conclude, a

successful prediction model for the mixed power-load time-

series should combine accurate modelling of load periodicity,

as well as accommodating for volatility of RES generation.

A. SHORT-TERM LOAD FORECASTING

The short-term load forecasting of a medium voltage

distribution network with heavy RES penetration refers to
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the prediction of mixed power-load readings, which in turn

correspond to the net active power (AP) demand of the

distribution grid from the HV/MV substation. The present

study is concerned with the hourly net AP forecasting, which

constitutes a primal task in optimizing several grid operations,

such as economic dispatch, as well as ancillary services

pertaining to voltage and frequency control. More specifi-

cally, STLF models are included in the formulation of the

reactive power optimization problem, which aims to mini-

mize power losses and voltage deviations by toggling tap

changer positions and capacitor bank switches [2]. In the

case of an isolated network, there is also the need for load

balancing (and consequently, frequency control), which is

executed through energy management systems that also use

short-term load forecasts. Lastly, STLF has to be an integral

part during the development of electricity market clearing

models [32]. It is therefore understood that it is difficult

to achieve the efficient operation of an electrical network

with the current requirements and specifications, without the

existence of accurate short-term load forecasts.

The available data, besides the measured load also contain

weather data, as measured from the substation’s weather

station. Normally, no data is shared between the substation

and the distributed RES locations, meaning that individual

RES generation readings are unavailable for inclusion in

prediction model creation. The aforementioned shortcoming

coupled with the fact that weather data measured at the sub-

station’s weather station will hardly be representative of the

grid-wide conditions, significantly contributes to input data

noise, which in turn narrows the pool of suitable modelling

methods. To conclude, in order to create a short-term predic-

tion model of the net active power demand of the grid, one

could use as inputs the substation’s historical timeseries of

load and weather conditions.

B. CASE STUDY DETAILS

The case study data have been collected from an

HV/MV substation in mainland Europe, from the timespan

September 2017-December 2018. The recorded measure-

ments refer to mixed power-load values, due to multiple

photovoltaic (PV) systems contained in the MV distribution

electricity network. These values correspond to the net active

power demand of the distribution grid from the transmission

network. The measurements in question have been sam-

pled with one-minute intervals, showing remarkably denser

sampling than in most similar applications and physically

contain the net active power demand, as well as data from the

substation’s weather station, namely cloud coverage, wind

speed, humidity, and temperature.

A primary issue during raw data preprocessing is dealing

with missing and corrupt data, which result from sensor

downtime mainly because of malfunction or maintenance

works. For the scope of this case study, the preprocess-

ing stage includes the removal of corrupted data and out-

liers, while missing data are ignored. For reasons of easier

applicability and size reduction of the available dataset, the

creation of an automatic detection routine for problematic

data was preferred rather than manual extraction. In contrast

to corrupted values, which are indicated by the low fluctua-

tion of the net active power, outlier values were not as easy

to detect. Several effective data handling techniques can be

found in [33]. In the present case study, a rolling median

window threshold approach is implemented, so as to concep-

tualize satisfactory outlier classification, while avoiding false

positives (Fig. 1).

FIGURE 1. Operation of the rolling median threshold outlier detection
routine.

It should also be noted that the objective of the model

is to predict the electrical load one hour ahead, but it is

also critical to be able to renew the predictions in a short

time interval, i.e. without having to wait for a whole hour

to obtain a new prediction. For this reason, we followed a

resampling procedure, where each sample was calculated as

the average of a 15-minute interval. Thus, the model can

provide a prediction every 15 minutes, each time predicting

the value of the electrical load after one hour.

An important task in load forecasting model creation is

that of input variables selection. Since the desired horizon

is considered to be short-termed, we anticipate that the use

of historical load as well as weather data can be considered

sufficient in order to build an effective forecasting model.

We begin our analysis by providing details regarding the

nature, as well as the role of all relative input and output

training variables, common for all models created in this

study with the help of Table 1 analytically. More details

regarding the terminology used throughout this work are also

provided here:we use bold capital letters (e.g., X ∈ Rd×N )

and bold lower-case letters (e.g., x or x(k) ∈ Rd ) to denote

entire matrices and d-dimensional column vectors. Let us also

use the notations [·]i and [·]i,j in order to represent the corre-

sponding element indices of an one-dimensional vector, or a

two-dimensional matrix. Furthermore, in order to provide a

connection between the terminology and the problem at hand,

let us denote with x(t) ∈ R
11 any agnostic eleven-valued
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TABLE 1. Description of training variables of the forecasting models.

training sequence identified at any specific time (t: the current
time in steps of fifteen minutes intervals), comprised by the

following values: a) one output variable [p(t+4)]1 ∈ R, i.e. the

net power load one hour (i.e. four, fifteen-minute intervals)

ahead, b) Six p(t) ∈ R
6 values with the current and historic

net power load and c) four w(t) ∈ R
4 values from the

weather measurements. In addition to the above representa-

tion, Table 1 denotes the current time index with t , the time

index for one hour ahead, with t + 4 and the time index for

one hour and one day ago with t-4 and t-96, respectively. The
total number of load and weather variables during training

is denoted by the variable d(equals to eleven) and finally

N corresponds to the number of existing training sequences.

According to the aforementioned terminology, the six [p(t)]n,

n ∈ [1 : 6] values contain the current, past, average and dif-

ference measures of the active power values, the [w(t)]m,m ∈

[1 : 4] components contain the respective weather related

inputs and finally, we denote with [c(t)]1, [s
(t)]1, [h

(t)]1 and

[t(t)]1 the one-valued (∈ R) measurements of cloud coverage,

wind speed, humidity and temperature, respectively. It is

important to mention that during the training stage of the

forecasting model, the weather inputs [w(t)]1:4 are introduced

as measured values of actual weather data acquired at the

t time index. On the contrary, in an online implementation

of the model, future weather data [w(t+futuretimestep)]1:4 will

be unknown and replaced by weather predictions, therefore

introducing an additional uncertainty.

The use of inputs 9-10 described in Table 1 are justified as

the strong dependency of electric load time-series to current

value is commonly reported in the literature, as is also the

use of the previous day value [34]. A common tactic [35] is

also to involve the trend of electrical load, introducing the

differences between current and previous AP values, as in

inputs 6-8, while the implementation of past values average,

as declared by input 5, is also quite important according to the

literature [36]. Finally, the introduction of weather features,

represented by inputs 1-4, has been found to have an improv-

ing effect on the predictions [37], [5]. The resulting values

are considered to form the agnostic ambient space which will

be used in order to train the dictionaries and provide the sparse

codes.

After the pre-processing, resampling and input selection

operations are completed, the training subset has to be

selected. Following a careful examination of the available

data, it was concluded that data in the interval September –

November 2017 are more appropriate for the training dataset,

leaving the rest of the data available for testing. The training

data selection was based on the fact that data in this interval

presented the least possible amount of missing data and out-

liers compared to other intervals; furthermore, this selection

allows to keep a whole year available for testing, which helps

to better assess the generalized forecasting abilities of the

model in different seasons of the year. This is an important

issue, as the time series consists of a load and a generation

component and the statistical properties of these two compo-

nents are not static through the year, mainly due to weather

variability. Finally, a point of high significance is that no

data permutation is implemented before splitting the available

data to the training and testing datasets. Thus, the data used

for testing are completely unknown to the proposed model,

enhancing the reliability of predictions.

III. PROPOSED METHODS

This section provides an overview and the background for

sparse coding and associated dictionary learning methods

and techniques. At this point, some additional annotations
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have to be defined. One-dimensional column vectors of zeros

and ones are also represented as 0d ∈ Rd and 1d ∈ Rd ,
respectively. Let us also denote with ℓ0 and ℓq (for q ≥ 1)

the corresponding norms of a column vector: ℓ0(x)=, ‖x‖0 ,

#{j s.t. [x]j 6= 0}, ‖x‖q ,
(
∑m

i=1 |[x]i|
q
)1/q. Finally,

the Frobenius norm of a matrix is denoted as ‖X‖F ,
(

∑m
i=1

∑n
j=1

∣

∣([X]i,j)
2
∣

∣

)1/2
=

√

Tr(XTX) with Tr(·) the

trace operator and T the transpose operator.

A. PROBLEM FORMULATION

Sparsity, implemented with the corresponding SR methods,

is a concept (accompanied by the associated widespread

machine learning models), whose purpose is to reconstruct

in an efficient way, one or a set of signals, with only few

non-zero coefficients of an appropriate basis (or dictionary).

This basis is usually equipped with the overcomplete prop-

erty, which states that the number of dictionary elements

(or atoms) should be greater than the ambient space

dimensionality. Sparse methods encode any given query

observation by providing a solution which activates only

few components of the dictionary as possible. In the pre-

vious years, a number of seminal research papers provide

evidence that sparsity is a prevalent method for scientific

disciplines like signal and image processing, computer vision

and machine learning, information theory, neuroscience and

related areas [38]–[42]. It has been also alleged that the

V1 part of the brain is performing in a similar way under the

constraints of the sparsity objective [27].

We are now ready to introduce our sparse coding formula-

tion for short-term load forecasting according to the material

exposed in section IIB. Let us denote with x(k) ∈ R
11 a

k indexed vector train sequence whose last (most recent)

value [x(k)]11 corresponds to the electricity load demand

EL (k) = [x(k)]d at any k timeslot (e.g. ‘‘current load at any

k th time instance’’), while [x(k)]i, i ∈ [1 : 10] represent

previous (i.e. historical) instances of the electricity load for

a specific substation. Following, we define a set of columns-

sequences (i.e. a frame) by concatenating groups of N -length

x(k) sequences, X = [x(1), x(2), ..x(N )]: X ∈ R
d×N .

Ideally, if one is equipped with an overcomplete dictionary

D = [d(1),d(2), . . . ,d(K )] ∈ R
d×K (which can be derived

from the frames X) and a query sequence q ∈ R
d , the formu-

lation of SR is usually articulated by the following equivalent

forms of either regularized, or constrained optimization prob-

lem, expressed by (1) and (2), respectively:

min
α

(
1

2
‖q − Dα‖22 + λψ(α)) (1)

min
α

(
1

2
‖q − Dα‖22), s.t: ψ(α) ≤ ρ (2)

The coefficient vector α ∈ R
K of (1) and (2), repre-

sents the sparsely distributed coefficients for the q ∈ R
d

query input signal, ‖q − Dα‖22 is the representation of the

reconstruction error between the query input signal q and its

sparse representation Dα, the parameter lambda (λ) denotes

the regularization parameter (or Lagrange multiplier) and

finally, the embedded ψ(·) penalizing function denotes the

sparsity-inducing term. In (2) the parameter ρ is used in order

to represent a direct measure of the sparsity level (i.e. number

of non-zero coefficients) of the representation vector α.

Typically, ψ(·) utilizes the ℓp norm, defined for 1 ≤

p ≤ ∞, of the coefficient vector α, i.e. ψ(α) = ℓp(α) =
(

∑K
j=1 ([a]j)

p
)1/p

for a specific value of p. Some of the most

popular forms found in literature are the ones that utilize

the ℓ0 and ℓ1 norms, respectively. In this work, we explore,

in addition to the typical aforementioned norms, the utiliza-

tion of other norms including the one which exploits atoms

placed at the convex hull of the ambient feature space by

means of archetypal analysis, as well as a ℓtree0 hierarchical

tree-structured sparse regularization norm [43], which has

been found to be useful in a number of cases exploring the

correlation between previous instances of the electricity load.

Although the aforementioned norms have been described

thoroughly in the literature, for completeness of this paper we

will provide critical details regarding their implementation in

the following sections.

As stated earlier, sparse representation employs an over-

complete set of sequences (or atoms) of the dictionary D.

The formation of the dictionary is achieved through a spe-

cific learning procedure which tries to fit the dictionary

members-atoms to the input-training data by means of linear

combinations of few of them. These unsupervised learning

methods evaluate the cost function over the reconstruction

error with remarkable results on several machine learning

disciplines. The dictionary learning is defined as a joint opti-

mization problem with respect to dictionary D = {d(j)}, j =

1 : K as well as the coefficients A = {α(k)}, k = 1 : N and it

is usually expressed as follows:

min
D∈C,A∈RK×N

(
1

2
‖X − DA‖2F + λψ(A)) (3)

min
D∈C,A∈RK×N

(
1

2
‖X − DA‖2F ) s.t: ψ(A) ≤ ρ (4)

Again, the embedded ψ(·) denotes the sparsity-inducing

term. The set C of the dictionary atoms is usually defined

to be the convex set of matrices that covers the following

constraint:

C , {D ∈ R
d×K s.t: ∀j=1:K , (d

(j))Td(j) ≤ 1} (5)

Equation (5) enables the use of normalized atoms in con-

trast to arbitrary ones in order to evade the cases of evaluating

small coefficient values. In this paper we also expand the

dictionary learning stage, in addition to the typical embed-

ding ψ(·) norms and C constraint of the dictionary D, by a)

addressing the idea of embedding the atoms of the dictionary

in a directed tree and b) by providing an archetypal oriented

solution in which the dictionary D of archetypes is subject to

two dual geometrical constraints: The first one, states that any

x(i) vector must be approximated by a convex combination

of some archetypes d(j), while the other, ensures that each
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FIGURE 2. Graphical depiction of the dictionary learning process D from a training frame X of N-length historical electric load consumptions. In this
example, the frame X consists of N eleven-dimensional sequences (d = 11). The dictionary D consists of K > 11 atoms and is learned throughout the
dictionary learning algorithm by eqs. (3)-(5). The dictionary matrix D will be used for sparse representation in the testing stage.

j-archetype must be approximated by a convex combination

of the x(i) vectors.

Summarizing, the dictionary D ∈ R
d×K is learned by

using (3)-(4) along with a) the typical dictionary constraints

of (5) as well as the additional above-mentioned ones and

b) appropriate forms for the embedding normsψ(·). The input

to the algorithms that implement (3)-(4) is the set X ∈ R
d×N

of N -sized, d-dimensional sequences of electricity load for

any substation. In order to provide an estimate (i.e. forecast)

for the electricity load of one specific moment indexed at

time k , EL (k) we create a query input sequence q ∈ R
d−1

due to the fact that the desired electricity load EL (k) now
is an unknown which needs to be predicted. For this reason,

we solve (1) or (2) by introducing a truncated dictionaryDtr ∈

R
(d−1)×K whose values are the first (d-1) rows of the original

D ∈ R
d×K dictionary. Having in mind that the solution

of (1) or (2) still provides a k-dimensional coefficient sparse

vector αtr ∈ R
K , we provide a prediction for the electric

load demand at the unknown time k , EL (k) by applying the

following reconstruction term:

EL (k) = Dαtr (6)

Note that in order to apply (6), the atoms d
(j)
tr of the

truncated dictionary Dtr must be re-normalized so that they

lie on the unit ℓ2 ball. Fig. 2 provides the general concept

of sparse representation via a graphical depiction of the

dictionary learning D ∈ R
d×K procedure which can be

seen as a matrix factorization problem with some additional

constraints. In addition, Fig. 3 depicts the proposed method

for predicting the EL (k) electric load by presenting a q ∈

R
d−1 vector with previous load values, the Dtr ∈ R

(d−1)×K

which is one of the outcomes of Fig. 2, and the corresponding

αtr ∈ R
K sparse coefficients.

B. PROPOSED METHODS OVERVIEW

Table 2 summarizes in a glance, a bouquet of the meth-

ods which will be explored in this work for electricity

load prediction. Specifically, we are exploring the following

FIGURE 3. Proposed method for prediction of the electric load by
a) utilizing a truncated dictionary Dtr for sparse coefficient evaluation and
b) applying them to the initial dictionary D.

method-cost functions for sparse representation and dictio-

nary learning, which will be used in eqs (3)-(5) for dictio-

nary learning and (1)-(2) for sparse coding: a) the ℓ0 norm

implemented with the K-SVD and orthogonal matching pur-

suit (OMP) algorithms, b) the ℓ1 norm implemented with

the online and least-angle regression-least absolute shrinkage

and selection operator (LARS-LASSO) algorithms, c) the

ℓ2 norm accompanied with simplex constraints on the atoms

by means of archetypal analysis and d) an ℓtree0 norm with the

atoms embedded in a tree structured group form g(T ). The
following sections provide the necessary short descriptions

of them.

1) THE ℓ0 NORM: K-SVD/OMP

It is common ground that the use of the ℓ0 norm leads

to a combinatorial NP-hard optimization problem, whose

solution can be achieved only through approximation meth-

ods. To this end, greedy based policies are employed in
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TABLE 2. List of explored dictionary learning (and corresponding sparse
representation) methods for electricity load prediction.

order to find and provide an optimized solution vector.

The strategy is to pursuit the atom who has the strongest

relation input sample, in order to minimize the reconstruc-

tion error in the least-squares sense. For this case, we are

using the popular method under the name of the orthogonal

OMP [44]. Given a dictionary D and any sample x(i), OMP

sequentially selects the atoms with the highest correlation

to the respective sample’s residual. At a step s: 0 < s ≤

ρ, with ρ being the sparsity level, the algorithm for the

selection of the most efficient atom is provided by ks =

argmaxj
∣

∣(d(j))T rs−1

∣

∣, where rs−1 is the current residual.

Then, upon the selection of an atom, the signal x(i) is pro-

jected onto the span of currently selected atoms as: âs =
(

DVs

)+
x(i), in which Vs = Vs−1 ∪ ks represents the set of

indices pointing at the currently selected dictionary atoms and

DVs is the subset of dictionary indexed by Vs. Concluding, the
value of the new residual is now provided by rs = x(i)−DVs âs
and the process now recaps until either ρ atoms are selected,

or the residual magnitude minimizes. In this work we use the

batch-OMP implementation [45], with the Cholesky decom-

position. At the dictionary learning stage, ℓ0-norm regular-

ized DL is addressed with the KSVD/OMP algorithm. Given

a set of training samples X and the corresponding set of

sparse coefficients A(t) evaluated with the use of OMP for

the dictionary D(t) =
[

d
(t)
1 ,d

(t)
2 , . . . ,d

(t)
K

]

at iteration t , our

target is to derive an updated dictionary D(t+1):

min
D(t+1)

{

∥

∥

∥
X − D(t+1)A(t)

∥

∥

∥

2

F

}

s.t.

∥

∥

∥
a(i),(t)

∥

∥

∥

0
≤ ρ (7)

We define ωk to be the group of indices which are pointing

to those training samples that use the atom d (k),(t): ωk =
{

i|1 ≤ i ≤ N , [A]k,i 6= 0
}

, such that [A](k,:) denotes the

k th row of the coefficient matrix A ∈ R
d×N . Then, let �k ∈

RK×|ωk | be the matrix of ones on the (ωk (i) , i) entries and
zeros elsewhere. Following, a globally oriented error matrix

Ek = X −
∑

j 6=k
d(j),(t)[A]j,: represents the information that

cannot be explained with this representation. Therefore, the

k th atom can be optimized so as to better represent this infor-

mation. Summarizing, K-SVD updates the k th atom by apply-

ing singular value decomposition (SVD) on the matrix Eωk ,

where Eωk = Ek�k , by searching for the closest rank-1

matrix so that Eωk = U1VT . The updated value d
(t+1)
k of

the k th atom is defined as the first column of U, and the new

coefficient vector a
(k)
ω as the first column of V multiplied

by [1]1,1. This process is repeated for each atom, producing

an updated dictionary. The new dictionary is now utilized

by the OMP algorithm in order to derive the updated sparse

coefficients A(t+1) etc.

2) THE ℓ1 NORM: ONLINE/LARS-LASSO

The ℓ1 norm, is used extensively for solving sparse represen-

tation problems given the fact that it can provide an analytical

solution in polynomial time. For example, popular solvers

include the basis pursuit as well as the LASSO [46]. Contrary

to the coordinate descent methods, which assume that the

dictionary atoms exhibit low correlation, we apply homotopy-

based methods like the LARS-LASSO algorithm [47]. The

LARS-LASSO algorithm calculates the solution path by

repeatedly decreasing the value of λ and using as a

warm-restart the previously calculated solution. It has been

reported that the uniqueness of the solution for a specific

value of the parameter λ, is ensured and thus it can be proved

that the solution path is piecewise linear [12]. This property

is very important since the algorithm follows the direction of

each segment until it reaches a critical point, i.e. where either

a non-zero element becomes zero (so it is removed from the

active set of coefficients), or a new non-zero element is added

to the active set of coefficients. As a result, the homotopy

method initializes with an empty set of coefficients, and

iteratively updates it by one variable at a time. The complexity

of the method relies in reversing the covariance matrix of the

selected atoms at each critical point in order to update the

active set of coefficients, which is performed by the Cholesky

decomposition, or the Woodbury formula. In our proposal we

have adopted the LARS-LASSO algorithm. For this specific

ℓ1 oriented convex relaxation approach, the online learning

method along with the LARS-LASSO algorithm have been

employed for the corresponding tasks of dictionary learning.

3) THE ℓ2 NORM: ARCHETYPAL ANALYSIS

Archetypal analysis is an innovative unsupervised learning

method related to generative data analysis methods such as

sparse coding [48]. Archetypes are a special case of dictio-

nary elements, due to the fact that they are mainly placed in
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the convex hull of the ambient space. Archetypal analysis is

all about learning a factorial representation of X by address-

ing a corresponding archetypal problem. It searches for a

set D of archetypes in which each d(j) vector also belongs

to the ambient space, but their formation is constrained under

two dual geometrical restrictions. The first one, states that any

x(i)-sequence must be approximated adequately by a convex

combination of some archetypes d(j), while the second one

states that each d(j) archetype must also be approximated by

a convex combination of the x(i) sequence vector. Thus, given

a set of archetypes D, each x(i) sequence should be approx-

imated by x
(i)
apprx = Da(i), where a(i) ∈ R

K , is a coefficient

column vector which resides in the simplex 1K [49]:

1K ,

{

a(i) ∈ R
K s.t. a(i) ≥ 0 and

∑K

j=1
[a(i)]j = 1

}

(8)

and each archetype d(j) must be approximated by the product

Xb(j), with b(j) ∈ R
N is another coefficient column vector

which resides in the simplex 1N :

1N ,

{

b(j) ∈ R
N s.t. b(j) ≥ 0 and

∑N

i=1
[b(j)]i = 1

}

(9)

Then the above problem is expressed by the following mini-

mization of the residual sum of squares (RSS):

min
ai∈1p for i=1:N

N
∑

i=1

∥

∥

∥
x(i) − Da(i)

∥

∥

∥

2

2
(10)

where ∀j,d(j) = Xb(j), which is equivalent to:

min
a(i)∈1K for i=1:N
b(j)∈1N for j=1:K

‖X − XBA‖2F (11)

with A ∈ R
K×N ,B ∈ R

N×K and D = XB. Equation (10)

is a non-convex optimization problem, but we observe that

it is convex with respect to one of the variables A or B,

when the other variable is kept fixed. This allows us to enable

a block-coordinate descent scheme which guarantees in an

asymptotic way a stationary point of the problem. It should

be noted here that the main difference between sparse coding

and archetypal analysis, aside from the non- negativity of a(i),

is that the archetypes must be convex mixtures of the data

points X, and in a similar way, b(j) must be also constrained

to exist in the simplex1N , facts that inherently attribute them

a sparsified nature. The solution of the problem in Eq. (10)

can be addressed efficiently by an active set algorithm.

4) THE ℓtree
0 NORM: HIERARHICAL SPARSITY

In the proposed work we extent the typical sparse

representation framework by additionally introducing a

sparsity-inducing norm ψ(·) whose objective is to embed

the atoms of D and consequently the solution coefficients a

into a fixed hierarchical tree structure. Following [39] let us

consider a tree T with K nodes: T = {j}, j = {1, . . . ,K }.

We are interested in specific patterns of the non-zero coef-

ficients of α which are constrained under the assumption

that they are part of a connected and rooted subtree of a tree

structure T . We provide an example in order to make clear

the above-mentioned statement in Fig. 4. Given a solution

a ∈ R
8, we define the ancestors(j) of a node j to be formed

by the subset of indices which correspond to the ancestors

of the node j. Then, the solution vector a is subjected to the

condition: aj 6= 0,⇒ [ak 6= 0] for all k in ancestors (j),
which impose the following rule: the contribution of the atom

d(j) ∈ R
d in the reconstruction of the signal x, is allowed only

if it’s ancestors (j) are also part of the contributing subgroup.
Jennaton et al. propose a complementary description by

declaring the descendants(j) as follows: aj = 0,⇒ [a = 0],

for all k in descendants(j), which intuitively states that if

an atom d(j) ∈ R
d does not contribute actively to the

representation of x, then neither should its descendants within

tree T [50]. Now, we denote as T , {descendants(j)}, with
j = 1 : p, the set of elements with the descendants (j) of each
node. Each element g of T is referred as a group. Then, we can

penalize the number of groups g in G, that contribute to the

representation of x, by using a tree norm ψ(α)l tree0 , (α),

which records at least one non-zero coefficient of α as:

ψ , (α)ltree0 (α) =
∑

g∈T

δg(a), with

δg =

{

1 if there exists j ∈ g such that αj 6= 0

0 otherwise
(12)

FIGURE 4. (a) An example of a solution vector that is embedded within a
tree structure T. (b) Solution with non-zero valued (non-shadowed) nodes
in which the ancestor property applies: α8 6= 0 ⇒ α(ancestors(8)) 6= 0.

Then, (1) combined with the constraint of (12), results to

the following nonconvex formulation:

min
α∈RK

(
1

2
‖x − Dα‖22 + λ

∑

g∈T

δg) (13)

Equation (13) is solved by approximation from dyadic

partitions which provide a solution to:

min
α∈RK

(
1

2
‖u − a‖22 + λ

∑

g∈T

δg(a)) (14)

where u ∈ R
K is a fixed signal, and the other parameters

retain their previous notions. This problem is addressed with

the introduction of a proximal operator for the nonconvex reg-

ularization term λ ·ℓtree0 (α). It has been shown in the literature

that (14) can be solved efficiently by performing a sequence
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of thresholding operations on the variable a with the iterative

shrinkage thresholding algorithm (ISTA) [39]. Dictionary

learning, in the context of the proposed hierarchical sparse

coding framework, is articulated with the use of:

min
D∈C,A∈RK×N

(

0.5 ‖X − DA‖2F + λℓtreeo (A)
)

= min
D∈C,A∈RK×N

1

N

N
∑

i=1

(

0.5

∥

∥

∥
x(i)−Da(i)

∥

∥

∥

2

2
+λℓtreeo

(

a(i)
)

)

(15)

in which C is the convex set of matrices C , D ∈ R
N×K

s.t. ∀j=1:K , (d
(j))Td(j) ≤ 1.

C. EXPERIMENTAL PROTOCOL – IMPLEMENTATION

DETAILS

This section deals with the implementation of the aforemen-

tioned sparse coding methods for the construction of hourly

net load prediction models. More specifically, we analyze

the choice of each methodology and provide all the relevant

technical details.

Starting this task, we first encounter the algorithm

K-SVD. As previously described in detail, K-SVD is an

iterative method that alternates between sparse coding of

the examples based on the current dictionary, and a pro-

cess of updating the dictionary atoms to better fit the data.

Since its introduction, it has been employed successfully

in several image processing-oriented applications, such as

restoration, denoising and face recognition. Therefore, being

a well-known and tested algorithm, it was chosen for electric-

ity load signal forecasting. With respect to the overcomplete

dictionary property, the number of atoms is set to 60, six

times greater than the dimension of input space. Another

term to be defined during dictionary learning is the number

of non-zero elements contained in the atoms. As a rule of

thumb, this value usually does not exceed 10% of the number

of atoms; the so-called sparsity level is selected to be equal

to 6, following the aforementioned rule. As the K-SVD algo-

rithm is flexible with regards to its compatibility with the

sparse decomposition technique, OMP is used here. Finally,

the update of the dictionary is performed with a maximum

number of 100 iterations.

The online dictionary learning algorithm described

in [38], is then applied in combination with LARS-LASSO

for decomposition purposes. In this strategy, a sparsity

penalty based on ℓ1 norm, is imposed as shown in Eq. (3). The

regularization parameter λ was set to 0.1. For completeness

purposes we also provide results with the elastic-net [51],

which combines the ℓ1 and the ℓ2 norms. For this case, the

regularization coefficients λ1 and λ2 were set to 0.1 and 0.01,

respectively. Finally, an alternative model is developed, fea-

turing dictionary learning with the online algorithm and OMP

for sparse coding [52] instead of LASSO. As previously,

the value of λ was set to 0.1, following a trial-and-error pro-

cedure. For comparison reasons, the dictionary size remains

the same for all experiments that take place throughout

this study. Another parameter that affects the performance

of the method is the execution time of the algorithm, which

was set to 20 seconds, as it was observed that there is no

improvement beyond this limit.

The next learning method that was implemented in the

context of the present study employed the archetypal anal-

ysis. In this case, the dictionary identification consists of the

non-convex optimization problem in (10) and (11), which is

solved by the active set algorithm proposed in [49]. As it

can be observed and differently to the approaches that were

mentioned so far, sparsity is induced by the ℓ2 norm by

placing atoms at the vicinity of the convex hull of the ambient

data space. Therefore, in addition to highlighting the most

appropriate sparse coding methodology for our problem in

hand, the effect of the various regularization norms is also

being considered.

Towards this direction, an additional concept, that of hier-

archical sparsity, is incorporated into the net load prediction

model. This is done by introducing the idea of embedding

the atoms of a dictionary in a directed tree in both dictionary

learning and sparse representation stages. The conducted

experiments with the use of hierarchical sparsity for STLF

employ a ℓtree0 tree-structured sparse regularization norm,

which has been found to be useful in a number of cases. The

number of atoms depends on the tree configuration. Here,

we select the branching structure of
[

4 4 2
]

, that concep-

tualizes a shallow, three-level depth tree, where the first two

levels have four branches and the last one has two. This results

to a 53-dimension dictionary, so that there is an agreement

with the rest of the methods, as well as a reasonable execution

time. As stated above, the sparsity level of the dictionary is

regulated by the parameter λ. After trial and error, λ was set

to 0.01 as theminimumvaluewhich produces valid dictionary

elements, in the sense of crisp atoms.

In order to highlight the superiority of the proposed sparse

coding methodology, standard linear or non-linear machine

learning methods, including simple linear regression, support

vector regression and MLP neural networks, are also tested.

To ensure a fair comparison between the methods, all the

comparative models use exactly the same input variables

and training dataset with the proposed one. Furthermore,

the hyper-parameters of each model are optimized using

trial and error, in conjunction with suggestions in literature,

as described below.

Probably the most common and simple modelling method

is linear regression [53]. Thus, a least squares regression

model was built and used as baseline; it should be noted that in

this case, there are no hyper-parameters to be optimized. Sub-

sequently, an SVR model with gaussian kernel function was

employed [54]. Sequential minimal optimization (SMO) was

selected as training algorithm, while Bayesian optimization

was used to optimize the model’s hyperparameters, namely

epsilon, kernel scale and box constraint [55]. Themost repre-

sentative class of non-linear load forecasting methods is MLP

neural networks [56]; to provide a comparison with similar

approaches, a two-layered MLP network was developed and
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trained with the Levenberg-Marquardt backpropagation algo-

rithm [57]. The structure of the MLP networks constitutes

an important set of hyper-parameters, which in this case

was selected following an exhaustive search procedure; to be

more specific a two-hidden layer structure was selected and

all possible combinations of neurons between 5 and 20 in

each hidden layer were tested. An architecture with 15 and

5 neurons in each layer was finally selected. It should be

noted that, due to the fact that MLP training methods are very

sensitive to initialization, the training procedure was repeated

20 times, each one using a different random initialization for

the NN weights.

IV. RESULTS

The main goal of this work is to investigate the use of

sparse representation techniques for net load forecasting with

1 hour prediction horizon. In the context of the case study,

several experiments were conducted, implementing different

methodologies. The simulation results are presented in a

comparative form in this section.

A very important point in evaluating a forecasting model

is first of all the accuracy it achieves in estimating the actual

measurements. In order to be able to compare and evaluate

the experimental results, it was considered appropriate to

use a summary table. Table 3 contains the values of the

performance indices for the proposed approach, alongside

with the rest sparse-based methods. For reasons of better

readability, each method of the table is accompanied by the

norm it incorporates. As the hierarchical model proves to

be the most efficient among all sparce coding approaches,

its performance is compared to that of known linear and

non-linearmethods in Table 4. As common and representative

metrics, R2, MAE and RMSE are employed to measure the

models’ efficiency. In the context of investigating the predic-

tive accuracy of the proposed model, the performance indices

were also calculated individually for daylight and nighttime

scenarios, and included in Table 5.

The prediction performance of the hierarchical structured

model is presented graphically in Figs. 5a, 5b, and 6. The

data shown in all the following figures are normalized in

the range [−1, 1] for confidentiality reasons. A snapshot of

the hourly actual and predicted values spanning a randomly

chosen interval of 24 hours, is depicted in Fig. 5a; it should be

reminded that the predictions for the next hour are provided

every 15 minutes. As a complementary graph, the respective

forecasting errors are presented in Fig. 5b as the residuals

between normalized actual and forecasting values. Finally,

the actual AP values against predictions are presented using

a scatterplot (Fig. 6).

V. DISCUSSION

Following are the remarks and conclusions drawn from the

experimental results. At first, the reliability of the models

is examined through their predicting performance, which

is determined with R2, MAE and RMSE. As can be seen

from Table 3 the hierarchical sparsity-based model seems to

TABLE 3. Performance of sparse methods for 24 hours scenario.

TABLE 4. Performance of proposed and comparison methods for
24 hours scenario.

outperform the other sparse representation techniques, estab-

lishing its superiority. Attempting to contrast the sparse

methodologies with each other, we observe that archety-

pal analysis is not a competent approach in comparison

with the proposed one. This is most likely due to the con-

vexity constraints under which the dictionary and coeffi-

cients are extracted, making it impossible to adequately

represent the signal, thus leading to inaccurate predictions.

Beyond that, the underlying l2 norm may not be con-

ducive to creating an efficient forecasting model. However,

a significant improvement in performance is noted with

the use of K-SVD/OMP, Online-OMP/LARS-LASSO and

Online/LARS-LASSO algorithms, which incorporate ℓ0, ℓ1
or ℓ1+ℓ2 norm induced sparsity. In this case, finding the dic-

tionary atoms is not subject to any convexity or non-negativity

constraints, which probably make these models superior to

archetype analysis. In addition, the small difference of 6%

for the MAE, in favor of the ONLINE/LARS-LASSO, leads

us to the conclusion that the ℓ1 norm is more appropriate for

the problem in hand.

One point worth commenting on, concerns the method by

which the atoms are obtained, in each case. Despite the fairly

large difference in their performance, the ℓ1 and ℓtree0 norm

sparse models share the same dictionary learning algorithm,

that of online matrix factorization. This remark leads us to

the conclusion that the superiority of the hierarchical model

stems from its operating principle which imposes the selec-

tion of non-zero coefficients that necessarily belong to a sub-

set of the original tree. The subordinate predictive behavior

of the models incorporating K-SVD/OMP and archetypes
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TABLE 5. Performance of proposed and comparison methods for daylight and nighttime scenario.

FIGURE 5. Hierarchical sparse model (a) real and predicted net load
values, and (b) residuals between real and predicted net load values.

FIGURE 6. Scatterplot of actual net load values against predictions from
the hierarchical sparse model.

can be interpreted similarly. An additional advantage of

this methodology lies in the flexibility it provides in the

selection of the atoms, during the dictionary learning pro-

cess, through different branching configurations. As already

has been stated, net load time series despite its volatility,

is characterized by seasonal effects, that stem from calendar

factors and consumers’ profile. Taking advantage of the prop-

erties of group sparsity, we built a model that is inherently

capable of extracting specific features of the net load with

strong correlation, and thus providing high-accuracy predic-

tions. It should be noted that hierarchical sparse coding has

already been proven to be an effective approach for model-

ing time-series presenting structured patterns, according to

the literature, where a sparsity-controlled vector autoregres-

sive model is established in [58] and tested upon several

datasets. Finally, group sparsity has also been found bene-

ficial in different types of time-series, e.g. microgrid recon-

figuration [59] and representative selection in choreographic

time-series [60].

The results so far can be visualized through Fig. 5a, where

the high predictive ability of the hierarchical model is con-

firmed, especially during the evening hours, according to

Table 5. It is easy to see that the predictions follow with quite

high accuracy the time series of the actual net load. These

results are perfectly reasonable if we take into account the

high penetration of photovoltaics that characterizes the data

of the substation. Obviously, their operation during daylight,

makes it difficult to make accurate predictions. Additionally,

Fig. 5b shows that the forecast error for the given 24-hour

period ranges from −0.15 to 0.135, which is in line with the

value of the total MAE concerning forecasts for a period of

one year. In order to further assess the reliability of the hier-

archical model, the scatterplot of Fig. 6 is illustrated. Based

on this graph we conclude that the methodology generally

manages to provide valid forecasts. However, as indicated by

the reference line, the predictions are less accurate for small

values of the actual net load.

Moreover, the proposed method prevails not only against

sparse competing models, but also against some established

forecasting methodologies. Looking at Table 4, it is obvious

that the tree-structured approach has a positive effect on the

net load forecasts, as the achieved MAE and RMSE are

17% and 6% lower, respectively, while the R2 coefficient

is 2.3% higher than that of LR. The SVR model appears

similarly inferior, but with a slight improvement in rela-

tion with LR. This is justified, as we expect higher perfor-

mance from non-linear methodologies, taking into account

the non-linear behavior of the electric load. However, this
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is not the case with neural networks. The weak performance

of MLP, compared to LR and SVR, evidenced by the metric

values is probably due to overfitting. In conclusion, the hier-

archical model achieves a remarkable supremacy against

both linear and non-linear methods. This outcome is partic-

ularly important for the evaluation of the proposed method

and enhances its predictive reliability. As stated above, the

tree-based dictionary learning constitutes a strong and robust

training tool, leading to a high-performance model, avoiding

the risk of data noise sensitivity which characterizes the non-

linear methods.

VI. CONCLUSION

The prediction of the net load with a time horizon of one

hour is studied in this article, presenting a new method

based on sparse representation. The proposed model adopts

a hierarchical tree structure approach in order to derive the

coefficients, while the sparsity is induced by ℓtree0 norm. The

underlying load forecasting problem is also confronted by a

number of sparse-based techniques. Through the experimen-

tal simulations that are performed, these methodologies are

compared with each other and their strengths and weaknesses

are highlighted. Finally, the obtained results testify to the

superior performance of the hierarchical sparsity model not

only in relation to the other sparse approaches but also to

common and established methods, such as linear regression,

support vector regression and MLP neural networks.

Starting from the superiority of the hierarchical sparsity

model for net load forecasting, a proposed future research

direction would be to further exploit the way the method

works, such as by assigning the prediction of different load

patterns to different branches. Given the promising results

obtained in the current work when applying STLF at the

substation level using sparse coding for the first time, the

development of similar prediction models is strongly recom-

mended. An upcoming challenge of the current power grids,

is the integration of energy storage systems, in order to meet

the ever-growing energy needs. For this reason, the authors

are convinced that such models, can be exploited for conges-

tion management and fault detection, significantly enhancing

the stability and security of future distribution grids. Also,

taking into account the limited scope of application of sparse

coding methods in the electricity sector, the extension of

their use to additional areas, such as RES generation forecast,

as well as long-term net load and reactive power forecasting,

is considered to be a fruitful direction.

Another appealing pillar which can be further exploited has

to do with the potential extension of sparse coding principals

to deep learning methods. In order to proceed to this extent,

we need to incorporate two relative parametric and genera-

tive models for managing signals: a) Convolutional Sparse

Coding (CSC), and b) multi-layered Convolutional Sparse

Coding ML-CSC [15]. Specifically, the ML-CSC addresses a

number of common deep learning architectures which makes

ML-SCS an interesting candidate for a new line of research

for developing deep-learning models.
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