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ABSTRACT 

An accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units’ 
planning commitment. STLF reduces the overall planning uncertainty added by the intermittent 

production of renewable sources; thus, it helps to minimize the hydro-thermal electricity production 

costs in a power grid. Although there is some research in the field and even several research 

applications, there is a continual need to improve forecasts. This project proposes a set of machine 

learning (ML) models to improve the accuracy of 168 hours forecasts. The developed models employ 

features from multiple sources, such as historical load, weather, and holidays. Of the five ML models 

developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor 

(XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based 

on neural networks. Additionally, because XGBoost models are based on an ensemble of decision 

trees, it facilitated the model’s interpretation, which provided a relevant additional result, the 
features’ importance in the forecasting. 

 

KEYWORDS 

Short-Term Load Forecasting; Machine Learning; Weekly forecast; Electricity market; Extreme 
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1. INTRODUCTION 

The electric power system operation is a continuous work that requires real-time coordination from 

the power plants to distribution substations to operate within a secure range and conclusively deliver 

the electricity service with quality and without interruptions. Before the real-time operational job 

arrives, planning should be done to consider the renewable energy production sources’ behavior, the 
power plants and grid maintenance, and weight the hydro-thermal resources, so the electricity 

production meets a projected demand. This real-time balance between energy generation and load 

should be sustained to avoid damages to the grid (Wood et al., 2013). 

A power system operation’s planning time scope can be decomposed into three frames, and each of 

these frames focuses on specific tasks (Hossein & Mohammad, 2011): short-term, mid-term, and long-

term. The short-term timeframe goes from 1 day to 1 week, focusing more on the power system’s 
operational and security aspects. The mid-term timeframe typically considers several weeks to several 

months, focusing more on managing the production resources and avoiding the energy deficits with 

the existing power plants. Consequently, the long-term timeframe focuses on years to decades, 

intending to define the installation of new power plants or changes on the transmission system. These 

criteria can vary from region to region; nevertheless, the concept should remain. 

1.1. BACKGROUND 

The National Dispatch Center (CND) is in charge of the power system planning and operation in 

Panama. According to CND methodologies, the goal of forecasting with an acceptable level of deviation 

is to anticipate and supply the demand with minimum costs. Short-term forecasting (following week) 

is needed to cover security aspects in the electrical system operation.  

As stated in the short-term and mid-term methodologies (CND, 2021b), CND does this forecast 

planning every week. For short-term scheduling, CND uses an hourly basis optimization software (PSR 

NCP, 2021). This optimization tool solves the weekly minimal dispatch cost, and it requires data about 

the load forecast, the power plants, and the power grid on an hourly basis. CND is currently using the 

Nostradamus tool by HITACHI ABB (HITACHI-ABB, 2021) to forecast the hourly load and feed the short-

term optimization tool to plan the following week’s hourly dispatch (CND-sitr, 2020). 

1.2. PROBLEM AND JUSTIFICATION 

This work project focuses mainly on predicting the short-term electricity load: this forecasting problem 

is known in the research field as short-term load forecasting (STLF), particularly, the STLF problem for 

the Panama power system, in which the forecasting horizon is one week, with hourly steps, which is a 

total of 168 hours. 

As introduced previously, an accurate load forecasting is a critical input for planning. The STLF will help 

reduce the planning uncertainty added by the intermittent electricity production from renewable 

sources. Afterwards, it will determine the optimum opportunity costs for hydroelectrical power plants 

with reservoirs. Consequently, an efficient thermal power plant dispatch can be achieved by 

minimizing the unit commitment production-transmission costs for the power system (Aguilar Madrid 

& Valdés Bosquez, 2017; Morales-España et al., 2013). Ultimately, the operational costs associated 

with dispatching the best set of power plants in real-time dispatch will also be reduced.  
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Because the electricity consumption patterns evolve, and new machine learning (ML) approaches are 

emerging, the motivation to explore and update the forecasting tools arises by seeking to implement 

the most efficient and robust methods to minimize errors. 

1.3. OBJECTIVES 

The current project aims to develop better STLF models. The models will be evaluated with the 

Nostradamus’ historical weekly forecasts for Panama’s power grid to benchmark the models’ 
performance against the Nostradamus forecasts in an effort to show that it is possible to improve the 

168 hours STLF. This project’s dataset includes historical load, a vast set of weather variables, holidays, 
and historical load weekly forecast features to compare the proposed ML approaches and achieve the 

above-declared objectives. 

It is essential to remark the exclusion of exports cross-border demand from this forecast since this load 

does not belong to Panama. Also, because this load is constrained for grid security aspects and 

planned, for instance, it does not obey natural consumption behavior.  
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2. LITERATURE REVIEW 

This section presents a review of the literature related to this project, taking as main references studies 

and books that expose methodologies and algorithms to forecast in the short-term, focusing on 

electricity load forecasting.  

2.1. SHORT-TERM LOAD FORECASTING 

The short-term electricity load forecasting is implemented to solve a wide range of needs, providing a 

wide range of applications, and for instance, there is a vast research field. The most evident difference 

between research is the load scale, from a single transformer (Becirovic & Cosovic, 2016), to buildings 

(Cao et al., 2020), to cities (Fernandes et al., 2011), regions (Sarmiento et al., 2008) and even countries 

(Adeoye & Spataru, 2019). The second most crucial distinction among the research field is the 

forecasting horizon. Varying from very short-term applications, like forecasting the next 900 seconds 

for machine tools (Dietrich et al., 2020), moving to a few hours (Lebotsa et al., 2018), forecasting for 

the day-ahead, which is the most common (Zhu et al., 2021), and  48 hours ahead (Ferreira et al., 2013), 

to weekly forecasts (Zou et al., 2019). The forecasting granularity also varies among the research field. 

Having granularities from 15 minutes, 30 minutes, but most of the approaches consider hourly 

granularity forecasting. Despite the variety of the forecasting applications, this literature review will 

focus on covering implemented methodologies, chosen variables, algorithms, and evaluation criteria, 

since the forecast success will heavily depend on the decisions made through these development 

stages. 

2.2. FORECASTING METHODS 

A wide variety of methodologies and algorithms have been implemented to address STLF. From the 

most straightforward Persistence method, proposed by (Dutta et al., 2017), which follows the basic 

rule of  “today equals tomorrow”. To the most recent deep learning algorithms as exposed in the 

review article by (Paterakis et al., 2017), which compares traditional machine learning approaches with 

deep learning methods on the electricity forecasting field, as well as the most trending algorithms 

Scopus-indexed publications from the year 2005 to 2015.  

2.2.1. Classical Statistical Time-Series models 

Time series analysis is considered one of the most widely discussed forecasting methodologies in which 

the Box-Jenkins and Holt-Winters procedures are extensively used. For example (Barakat & Al-Qasem, 

1998) used those methods to forecast the weekly load for Riyadh Power System in Saudi Arabia, 

concluding that these approaches give insights to decompose the electric load forecast. 

The autoregressive integrated moving average model (ARIMA) is a classical time series model which 

has been widely utilized in various forecasting tasks. (Amjady, 2001) proposed a modified ARIMA, to 

forecast the next 24 hours in Iran. This modified ARIMA combines the estimation with temperature 

and load data, producing an enhancement to the traditional ARIMA model. The ARIMA model by itself 

does not significantly improve the forecast accuracy and is computationally more expensive, 

demonstrating the need to complement these models with external inputs to enhance the results. 
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Overall, in most recent research, these models are less used for electricity STLF, since machine learning 

methods provide better results, as demonstrated by (Al-Musaylh et al., 2018), (Amin & Hoque, 2019), 

and more recently by (X. Liu et al., 2020). Particularly, in this last cited study, the authors compare the 

performance of six classical data-driven regression models and two deep learning models to deliver a 

day-ahead forecast for Jiangsu province, China, concluding that the ARIMA model had several 

limitations to solve the STLF problem. 

Based on researchers’ results and conclusions, it is noticeable that the ARIMA as a time series method 

has several limitations to solve the STLF problem. Firstly, because it can only consider time-series data 

to forecast based on the electrical load. Second, the determination of the model order is either 

computationally expensive or empirical. Lastly, to make residuals uncorrelated, several trials are 

required. At the same time, autocorrelation function (ACF) and partial autocorrelation function (PACF) 

graphs need to be iteratively checked to tune the model.  

2.2.2. Machine Learning Regression models 

From the wide range of machine learning (ML) models, regression models are suitable for the 

forecasting task. The developed state of art for STLF showed that the most used machine learning 

models are Multiple Linear Regression (MLR), Artificial Neural Networks (ANN), Support Vector 

Machine Regression (SVR), Decision Tree Regression (DT), Random Forest Regressor (RF), Gradient 

Boosted Regression Trees (GB) and Extreme Gradient Boosting Regressor (XGB). In some studies, 

models like K-Nearest Neighbors Regressor (KNN), Ridge regression, Lasso regression and Gaussian 

Process are used as a baseline to compare the accuracy of other models.  

Multiple Linear Regression (MLR) 

In contrast with the classical statistical time-series models, ML models can handle more valuable 

factors, such as weather conditions, to improve the STLF accuracy. Multiple linear regression (MLR) 

has been widely used for STLF, for example (Chapagain & Kittipiyakul, 2018) used it to forecast the 

hourly weekly load in Thailand, obtaining an average mean absolute percentage error (MAPE) of 7.71% 

for 250 testing weeks and pointing out that temperature is a primary factor to predict load. Similarly, 

(Adeoye & Spataru, 2019) utilized MLR to forecast electricity consumption 24 h ahead for 14 west-

African countries, considering weather variables like temperature, humidity, and daylight hours. (Do 

et al., 2016) propose to use estimated as 24 independent MLR models, one for each hour of the day, 

to forecast the day-ahead demand in Germany. They used temperature, industrial production, hours 

of daylight and dummies for days of the week and month of the year as explanatory variables. They 

conclude that despite using a simple MLR, forecasts hourly electricity demand more precisely than a 

single MLR for the 24 hours, obtaining a yearly MAPE of 2.3%. Researchers that have implemented 

MLR agreed on the fast training and interpretability this model offers, although it shows poor 

performance for irregular load profiles. 

Artificial Neural Network (ANN) 

The neural network's approach is widely used for STLF during the last decades due to the algorithm 

flexibility. For example (F. Liu et al., 2006) proposed  ANN with Levenberg-Marquardt training 

algorithm to forecast hourly, daily and weekly load in Ontario, Canada, presenting good results but 

without comparing with other algorithms. Furthermore, (Becirovic & Cosovic, 2016) forecasted a single 
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transformer hourly load, using quarter-hour load records and weather data with hourly records, 

obtaining a MAPE performance below 1% with ANN for summer and winter seasons. 

In a more recent study (Li, 2020) applies STLF for urban smart grid system in Australia, commenting 

that ANN has good generalization ability for the task. However, this approach still has many 

disadvantages as quickly falling into a local optimum, overfitting, and exhibiting a relatively low 

convergence rate. To overcome these obstacles, he implemented a multi-objective optimization 

approach to optimize the weight and threshold of the neural network to simultaneously enhance 

forecasting accuracy and its stability, which is a complex solution compared with others along with 

state of the art. Nevertheless, the complexity of forecasting smart grids loads with increasing 

renewable energy sources is challenging and deserves complex solutions to obtain good results. 

Support Vector Regression (SVR) 

The SVR model is the regression version of the Support Vector Machine algorithm (SVM) which was 

initially designed for classification problems. Nevertheless, it is a popular model for STLF, mainly with 

a linear kernel, due to the linearity between the inputs and the forecast, as concluded by (X. Liu et al., 

2020); who obtained a MAPE under 2.6 % for the day-ahead prediction of Jiangsu, performing better 

than MLR and multivariate adaptive regression splines. 

(Ferreira et al., 2013) proposed to forecast the 48 hours Portuguese electricity consumption by using 

SVR as a better alternative after submitting the use of ANN for the same task (Ferreira et al., 2010). 

The main reason for preferring SVR was the efficiency of the hyperparameter tunning on the daily on-

line forecast. The SVR achieve a MAPE between 1.9 % and 3.1 % for the first-day forecast and between 

3.1 % and 4 % for the second-day.  

A variant of SVR is compared against ANN by (Omidi et al., 2015) to forecast the south-Iranian day-

ahead hourly load. They proposed the nu-SVR, which improves upon SVR by changing the algorithm 

optimization problem and automatically allowing the epsilon tube width to adapt to data. They 

evaluate both models for each season; the average MAPE was 2.95 % for nu-SVR and 3.24 % for ANN.  

(Y. Cai et al., 2011) implemented genetic algorithms to search the optimal values of SVR parameters to 

predict the power load specifically for holidays in Hebei province of China. Holidays STLF is challenging 

due to the limited historical records and the irregular people’s electricity consumption during these 

periods. Their results achieved a mean relative error of 3.22% for a regular day and 3.92%. 

Random Forest Regressor (RF) 

Random Forest is part of the ensemble learning models; ensemble technique combines a set of 

independent learners to improve the forecasting ability of the overall model. (Pinto et al., 2021) took 

advantage of this principle to forecast the day-ahead hourly consumption in office buildings. They used 

many ensemble algorithms, with RF being one of them, including environmental variables such as 

temperature and humidity and lagged load records to improve the results. Finally, they obtained a 

6.11% MAPE for RF. 

Similarly, (Hadri et al., 2019) submitted a comparative study between many models to forecast smart 

buildings’ electricity load. ARIMA, Seasonal ARIMA (SARIMA), RF, and extreme gradient boosting (XGB) 
were on this set of models. Their experiments demonstrated that RF showed decent results, but XGB 
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outperformed the other methods, concluding that XGB gives better accuracy and better performance 

in terms of execution time. The study from (J. Cai et al., 2020) compares RF solely with XGB to forecast 

the next 24 hours load and also conclude that XGB, as an emerging ensemble learning algorithm, can 

achieve higher prediction accuracy. Producing a RMSE of 3.31 for RF and 2.01 for XGB. 

(Zhang et al., 2019) presented an interesting case study to forecast the day-ahead load from Southern 

California, with the difference that the increase in behind-the-meter residential PV generation has 

made it more difficult to predict the region load. Nonetheless, they elaborated a detailed variable 

selection along 45 variables, in which temperature, holiday, month, and previous week load were 

essential features to train the models. This study compares MLR, RF and Gradient Boosting. Their 

results showed that all three models were more accurate when the electrical load was low. In contrast, 

models had larger errors during peak hours and the summer season, when the electrical load was 

higher. The Gradient Boosting model was generally superior to the MLR and RF models. 

Extreme Gradient Boosting (XGB) 

As mentioned by the XGBoost documentation (XGB Developers, 2021): “XGBoost is an optimized 
distributed gradient boosting library designed to be highly efficient, flexible and portable. It 

implements ML algorithms under the Gradient Boosting framework”. For instance, it is an enhanced 

version of Gradient Boosting.  

Most recent research, like the one presented by (Suo et al., 2019) suggests the use of XGB. In this work, 

they use weather variables and historical load to forecast the hourly weekly load of a power plant. 

Remarking on the complexity of XGB hyperparameter phase and suggesting the fireworks algorithm to 

obtain the global minimum on the hyperparameter space, and for instance, getting a more accurate 

load forecast. 

As mentioned earlier, forecasting holidays is challenging. Though (Zhu et al., 2021) argue that there 

are many matured predictive methods for STLF, such as SVR, ANN, and deep learning (DL). However, 

those methods have some issues: SVR is not robust to outliers, ANN has the weakness of setting the 

correct number of hidden layers or can be easily trapped into a local minimum, and DL approaches 

require massive high-dimensional datasets for good performance. XGB lacks these issues and 

outperforms the others for solving STLF. Their results are based on averaging the daily profile curves 

for similar holidays plus the use of XGB, where this averaging plus XGB outperforms RF, SVR, ANN, and 

even the sole-use XGB. 

Despite the good XGB performance, some authors recommend training the model based on similar 

days to enhance the forecast (Liao et al., 2019; Y. Liu et al., 2019). A comparison between a traditional 

XGB and the similar days’ XGB is demonstrated by (Liao et al., 2019). The similar days’ approach 

showed a noticeable improvement, emphasizing that the accurate selection of similar days will directly 

affect the STLF. 

Similarly, (Liao et al., 2019) compare the results of the traditional XGB, a Long Short-Term Memory 

(LSTM), and an XGB based on similar days. The similar days’ pre-processing phase is based on a cluster 

analysis that subsequently will feed the XGB model. The MAPE of the proposed XGBoost model was 

8.8 % against 12 % of the traditional XGB and 13 % of the LSTM. 
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2.2.3. Deep Learning models 

Long Short-Term Memory (LSTM) 

From all neural network’s approaches, Recurrent Neural Networks (RNN) are taking an important place 

in the STLF field, especially LSTM, because contrary to standard feedforward neural networks, LSTM 

has feedback connections. Which is beneficial to deal with time-series forecasting applications. Many 

authors are recently using it because of its remarkable results in time series learning tasks like the 

hourly weather forecast, and solar irradiation (Zou et al., 2019). (Yan et al., 2019) attempt to forecast 

the next 24 hours load from a smart grid. They compared the LSTM results with a back-propagation 

ANN and SVR, demonstrating that LSTM can offer a MAPE of 1.9 % against 3.3 % from ANN and 4.8 % 

of SVR.  

The work published by (Abbasimehr et al., 2020) addresses the STLF for a furniture company with a 

method based on a multilayer LSTM and compare it to other models like ARIMA, exponential 

smoothing, k-nearest neighbors regressor, and ANN. Moreover, their results showed that LSTM 

performed better in both RMSE and MAPE, followed by SVM and ANN. 

A noteworthy contribution is published by (Atef & Eltawil, 2020), using Switzerland load and 

temperature data. According to these researchers, deep learning methods has a superior performance 

in electricity STLF, however, “the potential of using these methods has not yet been fully exploited in 
terms of the hidden layer structures.” For this reason, they evaluate deep-stacked LSTM with multiple 

layers for both Unidirectional LSTM (Uni-LSTM), Bidirectional LSTM (Bi-LSTM), and SVR as a baseline 

model. Their results showed that Bi-LSTM MAPE was 0.22% against MAPE above 2% for Uni-LSTM and 

SVR.  

2.2.4. Combined techniques and other forecasting approaches 

Because XGB provides the feature importance property, the authors of Reference (Zheng et al., 2017) 

proposed a hybrid algorithm to classify similar days with K-means clustering fed by XGB feature 

importance results. Once the classification is done, an empirical mode method is used to decompose 

similar days’ data into several intrinsic mode functions to train separated long short-term memory 

(LSTM) models, and finally, a time-series reconstruction from individual LSTM model predictions. This 

hybrid model using LSTM performed better for STLF over 24 and 168 hours horizons, after comparing 

with ARIMA, SVR, and back-propagation neural network using the same similar day approach as initial 

input. 

(Xue et al., 2019) proposed a multi-step-ahead forecasting methodology using XGB and SVR to forecast 

hourly heat load, where “direct” and “recursive” forecasting strategies are compared. The direct 

method involves an independent model to predict each period on the forecasting horizon, while the 

“recursive” method considers a unique model that iterates one step at a time over the forecasting 

horizon, using the previous predicted steps as an input variable for the following forecasting step. 

Performance is the main disadvantage of the direct strategy because it needs to train as many models 

as desired periods to forecasts. The recursive strategy is sensitive to prediction errors, meaning that 

prediction errors will propagate along the forecasting horizon. 

A study to forecast the 10-day streamflow for a hydroelectric dam used a decomposition-based 

methodology to compare XGB and SVR (Yu et al., 2020). In this study, the streamflow time-series were 
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decomposed into seven contiguous frequency components using the Fourier Transform. Then, each 

component was forecasted independently by the SVR or XGB. The study results showed that SVR 

outperformed XGB in terms of evaluation criteria through the Fourier decomposition methodology. 

Another solution joining ANN with ensemble approaches is presented by (Khwaja et al., 2020), where 

the authors seek to improve ANN generalization ability using bagging-boosting. When training 

ensembles of ANNs in parallel, each ensemble uses a bootstrapped sample of the training data and 

consists of training the ANNs sequentially, and this method reduces the STLF error but increases the 

computational time because of the several training procedures. Alternatively, to training several ANN 

sequentially, (Singh & Dwivedi, 2018) propose an evolutionary novel optimization procedure for tuning 

an ANN. For instance, avoiding the issues related to ANN tuning like overfitting and selecting the best 

ANN architecture. Their results achieved a 4.86% MAPE. Based on the results from (F. Liu et al., 2006; 

Zheng et al., 2017), ANN for STLF can outperform other forecasting methods if a robust 

hyperparameter optimization is performed to avoid the issues related to ANN tuning. 

The hybridization of the successive geometric transformations model (SGTM) neural-like structure is 

another promising approach for STLF, as used by (Vitynskyi et al., 2018) to predict Libya’s solar 
radiation. This approach demonstrated a higher accuracy than MLR, SVR, RF, and multilayer 

perceptron neural network, besides having a faster training time due to the non-iterative training 

procedure. 
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3. METHODOLOGY 

3.1. HARDWARE AND SOFTWARE 

This project was developed on a computer with an i5-9300H processor and 8 Gigabytes of RAM. Colab 

(Google, 2020) hosted Jupyter notebooks service, which provides two vCPU and 12 Gigabytes of RAM 

per session, and JupyterLab notebook instances from Google Cloud Platform (GCP, 2021) for more 

extensive executions, selecting the 16 vCPU and 64 Gigabytes of RAM configuration. All the 

experiments were developed with Python (Rossum et al., 2009).  

3.2. DATA SOURCES, EXTRACTION, AND TRANSFORMATION 

All data sources to develop this project are publicly available; the data will consider hourly records 

from January 2015 until June 2020 and are the following: 

1. Historical electricity load from Panama, available on daily post-dispatch reports (CND, 2021c), and 

historical weekly forecasts available on weekly pre-dispatch reports (CND, 2021e). 

2. Calendar information related to holidays, and school period, provided by Panama’s Ministry of 
Education trough Official Gazette (Gaceta, 2020) and holidays websites (When On Earth?, 2021). 

3. Weather variables, such as temperature, relative humidity, precipitation, and wind speed from 

three main cities in Panama, are gathered from EarthData satellite data (GES DISC, 2015). 

The load datasets are available in Excel files on a daily and weekly basis, with hourly granularity. 

Holidays and school periods data is sparse, along with websites and PDF files. These periods are 

represented with binary variables, and date ranges are manually inputted into Excel files. Both Excel 

datasets are imported and converted into data frames (McKinney & Team, 2020). Weather data is 

available on daily NetCDF files, which can be treated with netCDF (Nadh, 2021) and xarray (Hoyer & 

Hamman, 2017) to select the desired variables and subsequently convert these datasets into data 

frames. Once all datasets were in the same data frame format, they were merged on date-time index.   

Finally, the result of these steps is: a time-series with the historical forecast along with its date-time 

timestamp as the index, and a data frame with the same timestamp index and 16 columns, one for 

each of the following features shown in Table 1. Both objects have 48,048 records. Where sub-index c 

stands for city, meaning that weather variables are available for David, Santiago, and Panama City. 

Variable Description Unit of measure 

National load National electricity load, excluding exports MWh 

Holiday Holiday binary indicator - 

Holiday ID Holiday identification number - 

School School period binary indicator - 

Temp. 2mc 2 meters air temperature ºC 

Hum. 2mc 2 meters specific humidity % 

Wind 2mc 2 meters wind speed m/s 

Precipitationc  Total precipitable liquid water l/m2 

Load Forecast Historical national load forecast, excluding exports MWh 

Table 1. Variables’ description and units of measure. 



19 
 

3.3. DATA PRE-PROCESSING 

3.3.1. Missing values and outliers  

There are no missing values on the datasets, and an initial outlier’s revision was made by normalizing 
each variable. Only a few low values on the load were detected due to hourly blackouts and damages 

in the power grid, but all records were kept.  

3.3.2. Feature Engineering  

The set of variables used to train the ML models, also called features, are treated in this section. New 

variables related to the date-time index are created to feed the ML models with this extra information 

about time, with this being one of the most critical steps for STLF (X. Liu et al., 2020; Zhang et al., 2019). 

The new features added to the datasets are year, month number, day of the month, week of the year, 

day of the week, the hour of the day, the hour of the week, weekend indicator. All being integer 

variables, except for the binary weekend indicator. It is essential to clarify that Saturday is considered 

the first day of the week. For instance, the first week of each year is the first complete week starting 

on Saturday, and this is respected to keep the CND reports calendar structure for further comparisons. 

Load weekly lags and load weekly moving average features were new calculated features that help to 

capture the most recent changes of load (Pinto et al., 2021), keeping the hourly granularity. These 

were calculated from the second preceding week until the fourth week, adding two more features to 

the current dataset. 

Given an hour 𝒉, to forecast the load 𝑳 at this hour 𝑳𝒉, the load’s lags can be denoted as 𝑳𝒉−𝒊, where 𝒊 remains in the hourly granularity. Following this notation, the included lag features are: 𝑳𝒉−𝟏𝟔𝟖,  𝑳𝒉−𝟑𝟑𝟔, 𝑳𝒉−𝟓𝟎𝟒 and 𝑳𝒉−𝟔𝟕𝟐 which corresponds to the previous week, the second last, third last and 

fourth last week’s load. The lags’ moving averages (LMA) are calculated from the weekly lags following 

equation (1). The independent variable 𝒎 represents the earliest week to consider, and 𝒏 stands for 

the latest week to consider in the moving average. Following equation (1), the considered LMA were 𝑳𝑴𝑨𝒉(𝟏, 𝟑) and 𝑳𝑴𝑨𝒉(𝟏, 𝟒). 𝑳𝑴𝑨𝒉(𝒎, 𝒏) = ∑ 𝑳𝒉−𝟏𝟔𝟖𝒎+𝑳𝒉−𝟏𝟔𝟖(𝒎+𝟏)+⋯ + 𝑳𝒉−𝟏𝟔𝟖(𝒏−𝟏)+𝑳𝒉−𝟏𝟔𝟖𝒏𝒏𝒎 𝒏−𝒎+𝟏  ;  𝑤ℎ𝑒𝑟𝑒 𝒎 ≥ 𝟏 ∧  𝒏 > 𝒎    (1) 

3.3.3. Feature Selection 

The decision of which variables should be used to train the ML models is critical to obtain good results. 

This process, known as feature selection, also reduces computation time, decreases data storage 

requirements, simplifies models, evades the curse of dimensionality, and enhances generalization, 

avoiding overfitting (Eseye et al., 2019). For these reasons, several feature selection techniques were 

performed along with the STLF state-of-the-art (Becirovic & Cosovic, 2016; X. Liu et al., 2020); and the 

problem understanding to select essential features. The explored Feature Selection techniques were: 

feature variance, correlation with the target, redundancy among regressors (Han et al., 2011), and 

feature importance according to the default models multiple linear regression, decision tree regressor, 

random forest regressor, and extreme gradient boosting regressor.  
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After having 28 regressors and a defined target, the feature selection analysis showed that 10 

regressors would significantly contribute to forecast. Consequently, the best regressors are:  

▪ 𝐿𝒉−𝟑𝟑𝟔 

▪ 𝐿𝒉−𝟓𝟎𝟒  

▪ 𝐿𝒉−𝟔𝟕𝟐  

▪ 𝐿𝑀𝐴𝒉(𝟏, 𝟒)  

▪ 𝑑𝑎𝑦_𝑜𝑓_𝑡ℎ𝑒_𝑤𝑒𝑒𝑘𝒉 

▪ 𝑤𝑒𝑒𝑘𝑒𝑛𝑑_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝒉 

▪ ℎ𝑜𝑙𝑖𝑑𝑎𝑦_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝒉 

▪ ℎ𝑜𝑙𝑖𝑑𝑎𝑦_𝐼𝐷𝒉 

▪ ℎ𝑜𝑢𝑟_𝑜𝑓_𝑡ℎ𝑒_𝑑𝑎𝑦𝒉  

▪ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_2𝑚_𝑖𝑛_𝑃𝑎𝑛𝑎𝑚𝑎_𝑐𝑖𝑡𝑦𝒉 

The temperature was an essential weather variable due to its positive relationship with electricity load 

(Boya, 2019), as illustrated in Figure 1. This figure shows the typical load range, from 800 to 1600 MWh, 

and a temperature range between 23 and 33 ºC. The dashed line identifies the linear equation (2):  𝑳𝒉 =  4.8 ∙ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_2𝑚_𝑖𝑛_𝑃𝑎𝑛𝑎𝑚𝑎_𝑐𝑖𝑡𝑦𝒉 − 867.5   (2) 

Which indicates that 1 °C increase in temperature represents a 74.8 MWh electricity load increase. 

 

Figure 1. National electricity load vs. Temperature in Panama City. 

3.3.4. Dataset split into train and test datasets 

Before splitting the data into training and test datasets, the hourly records at the beginning and the 

end of the horizon are dropped if they do not belong to a complete 168 hours weekly block for 

consistency on training, validation, and testing. After this, 283 complete weeks are available with 

hourly records. The dataset is split into train and test, keeping the chronological records. Records are 

sorted by date-time index, always leaving the last week for testing and the remaining older data for 

training. Based on this logic, there are 14 pairs of train-test datasets selected. Twelve pairs, having a 

testing week for each month of the last year of records before the 2020 quarantine started due to the 

COVID-19 pandemic, and two more after the quarantine began. To note, the official lockdown in 

Panama started on Wednesday, 25 March of 2020, which corresponds to week 12—2020 (La Estrella 

de Panamá, 2021). More details about the 14 train-test pairs are available in appendices 2 and 3. 
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These criteria test the models under regular and irregular conditions since the quarantine period 

presented a lower demand with atypical hourly profiles. The selected testing weeks also included 

typical days and holidays to test the models on different conditions throughout the year. 

As mentioned in the background section, the planning process is weekly done, typically starting every 

Wednesday to forecast the week starting on Saturday as the first day of the weekly planning horizon. 

So, the available records for forecasting usually are updated every Tuesday at midnight, then executed 

on Wednesdays for the planning 168 hours horizon that starts every Saturday and finishes on each 

Friday. For this reason, the forecast should consider at least a gap of 72 hours of unseen data before 

the first period to predict. 

3.4. MODELLING 

3.4.1. Machine Learning candidate models 

Studies have shown that many decision-makers exhibit an inherent distrust of automated predictive 

models, even if they are proven to be more accurate than human forecasters (Dietvorst et al., 2015). 

One way to overcome “algorithm aversion” is to provide them with interpretability (Bertsimas et al., 

2019). For these reasons, the current project explores a set of candidate ML models that have been 

proven as forecasters within the STLF state-of-the-art, but also models that can offer a certain level of 

interpretability. 

The candidate ML models considered in this project are Multiple Linear Regression (MLR), k-nearest 

neighbors regressor (KNN), epsilon-support vector regression (SVR), random forest regressor (RF), and 

extreme gradient boosting regressor (XGB). All these estimators were executed using a pipeline with a 

default Min–Max scaler as the first step. These ML models, the pipeline structure, and the scalers were 

from sci-kit learn (Pedregosa et al., 2011), except for XGB (XGB Developers, 2021). 

MLR uses two or more independent variables to predict a dependent variable by fitting a linear 

equation. This method’s assumptions are that: the dependent variable and the residuals are normally 
distributed, there are linear relationships between the dependent and independent variables, and no 

collinearity should exist between regressors. Since MLR can include many independent variables, it can 

provide an understanding of the relationships (Zhang et al., 2019), but it presents the disadvantage of 

being sensitive to outliers. 

KNN is not typical for STLF. Nevertheless, their results can be interpreted, and some researchers used 

it as a baseline model (Johannesen et al., 2019). The KNN method searches for the k most similar 

instances; when the k most similar samples are found, the target is obtained by local interpolation of 

the targets associated with the k found instances (Abbasimehr et al., 2020). The main disadvantage of 

this method is that it tends to overfit, and it has few hyperparameters to change this situation. 

SVR is a regression version of the Support Vector Machine (SVM) which was initially designed for 

classification problems (Vinet & Zhedanov, 2011). In contrast to ordinary least squares of MLR, the 

objective function of SVR is to minimize the L2-norm of the coefficient vector, not the squared error. 

The error term is then constrained by a specified margin ε (epsilon). SVR is frequently used for STLF 
with the linear (X. Liu et al., 2020) or radial basis function (RBF) kernel (Cao et al., 2020), identifying 

load patterns better than other linear models (Amin & Hoque, 2019).   
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RF is an ensemble learning method with generalization ability. It fits many decision trees on various 

sub-samples of the dataset and uses averaging to improve the forecast and avoid overfitting. For these 

reasons, it seems suitable for STLF, but the few researchers that consider this model have 

demonstrated a weak performance on their results (Pinto et al., 2021). 

XGB is another ensemble ML algorithm based on gradient boosting library, but enhanced and designed 

to be highly efficient, flexible, and portable (XGB Developers, 2021). Providing a forward stage-wise 

additive model that fits regression trees on many stages while the regression loss function is 

minimized. Due to its recent development, XGB is not a matured STLF method, though, researchers 

are starting to use it, showing outstanding performances against traditional methods (J. Cai et al., 2020; 

Hadri et al., 2019). 

In STLF, forecasting holidays’ load is one of the most challenging problems due to the lack of records, 
the low frequency of these events, and their unusual consumption patterns. A way to improve the 

holidays’ forecasts accuracy is to develop and train a particular model specialized in forecasting 

holidays (Zhu et al., 2021), along with another model for non-holidays. This project considered a hybrid 

model that merges the weekly forecasts of non-holidays and holidays, as illustrated in Figure 2. This 

hybrid model structure was applied to each candidate algorithm. Thus, each hybrid model is composed 

of two models with the same regression algorithm. The main reason to develop a hybrid model was to 

train the holidays’ model only with holidays’ records and including the largest number of records 

possible. 
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3.4.2. Models training and hyperparameter tuning 

Once the training and testing weeks pairs were defined, models were trained with the earliest train-

test pair, following the forward sliding window approach (Sugiartawan & Hartati, 2019) for time-based 

cross-validation (Herman-Saffar, 2021). The idea for time-based cross-validation is to iteratively split 

the training set into two folds at each step, always keeping the validation set ahead of the training set. 

This process of defining folds, training the model, predicting the validation fold, and evaluating the 

model performance while changing hyperparameters and moving the training/validation sets further 

into the future is illustrated in Figure 3.  

 
Figure 3. Sliding window time-based cross-validation. 

The regular days’ model’s sliding window characteristics are 149 weeks (2.8 years) for 
training/validation. Within those, 64 are validation weeks, excluding the last 72 hours from each 

validation fold to comply with the three-day unknown gap when forecasting the weekly demand on 

real conditions; finally, the forward step on the training/validation process is one week (168 hours). 

For the holidays’ model, only holidays records are kept, and the sliding window considers all holidays 

records available since the year 2015 (as shown in Figure 2). The forecasting horizon for the holidays’ 
model is 24 hours; for instance, the sliding window process also considers forecasting a holiday during 

the training process. 

The hyperparameter tuning was performed with Optuna optimization framework (Akiba et al., 2019), 

keeping the sliding window attributes. The models’ tuning process consists of maximizing the “negative 

mean root squared error” (-RMSE) while sampling the defined hyperparameter space with the Tree-

structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011). The optimization studies were 

constrained to 30 trials, which implies that 30 different hyperparameter combinations are explored in 

the training process. On each trial, for each parameter, TPE fits one Gaussian Mixture Model (GMM) 𝒍(𝒙) to the set of parameter values associated with the best objective values, and another GMM 𝒈(𝒙) 

to the remaining parameter values (Optuna, 2018a). Then TPE chooses the parameter value 𝒙 that 

maximizes the ratio 𝒍(𝒙)/𝒈(𝒙).  

It is valuable to mention that as a first trial to address this STLF task, all candidate’s models were trained 

with a two-step randomized and grid-search cross-validation approach as suggested by (Dietrich et al., 

2020), but it resulted computationally too expensive. To reduce the computational work and execution 

time, but without losing quality on results, Optuna hyperparameter optimization was chosen; aiming 

to simulate the models' updates along the time by training each candidate model before forecasting 

each testing week.  



24 
 

This hyperparameter tuning was performed individually for both models inside the Hybrid mode: the 

regular’s days model and the holidays’ model. The hyperparameter optimization was performed for 

each testing week, aiming to predict each testing week with updated models along the time. The 

explored hyperparameter space for each algorithm is shown in Table 2. The absent parameters were 

considered with their default value, and the hyperparameter spaces are expressed in terms of the trial 

method from Optuna, which describes more precisely the explored distributions and ranges of values 

for each parameter (Optuna, 2018b). 

Model Hyperparameter Hyperparameter space 

KNN 

n_neighbors suggest_int('n_neighbors', 3, 50, 2) 

weights suggest_categorical('weights', ['uniform', 'distance']) 

metric suggest_categorical('metric', ['minkowski', 'euclidean', 'manhattan']) 

leaf_size suggest_int('leaf_size', 1, 50, 5) 

SVR 

kernel suggest_categorical('kernel', ['linear', 'rbf']) 

epsilon suggest_loguniform('epsilon', 0.0001, 10) 

C suggest_loguniform('C', 0.001, 3000) 

tol trial.suggest_uniform('tol', 1×10−5, 1×10−2) 

gamma suggest_categorical('gamma', ['scale', 'auto']) 

RF 

criterion mse 

n_estimators suggest_int('n_estimators', 40, 200, 20) 

max_samples suggest_discrete_uniform('max_samples', 0.6, 0.9, 0.05) 

max_depth suggest_int('max_depth', 7, 21, 3) 

ccp_alpha suggest_loguniform('ccp_alpha', 1×10−6, 1×10−3) 

random_state 123 

XGB 

eval_metric rmse 

n_estimators suggest_int('n_estimators', 300, 500, 50) 

max_depth suggest_int('max_depth', 3, 7) 

subsample suggest_discrete_uniform('subsample', 0.6, 0.9, 0.05) 

colsample_bytree suggest_discrete_uniform('colsample_bytree', 0.6, 0.9, 0.05) 

colsample_bylevel suggest_discrete_uniform('colsample_bylevel', 0.6, 0.9, 0.1) 

colsample_bynode suggest_discrete_uniform('colsample_bynode', 0.6, 0.9, 0.1) 

learning_rate suggest_loguniform('learning_rate',0.0001, 0.1) 

min_child_weight suggest_int('min_child_weight', 1, 7, 2) 

gamma suggest_loguniform('gamma', 0.00001, 2) 

lambda suggest_loguniform('reg_lambda', 1, 5) 

alpha suggest_loguniform('reg_alpha', 0.00001, 2) 

random_state 123 

Table 2. Hyperparameter space by model. 

  



25 
 

3.5. EVALUATION METRICS 

This project addresses many evaluation metrics to systematically evaluate the ML models’ 
performance, including the traditional metrics for ML forecasting, as well as other specific metrics for 

STLF. These evaluation metrics and their formulation are listed in Table 3. Where 𝑨 is a weekly set of 

actual hourly load values, 𝑭 is a weekly set of forecasted hourly values, and subindex 𝒉 stands for a 

specific hour. For this project, all testing sets were whole weeks with 168 hours, so 𝒏 is equal to 168. 

Metric Definition Equation Unit 

MAPE Mean Absolute Percentage Error 𝑀𝐴𝑃𝐸 =  1𝑛 ∑ |𝐴ℎ − 𝐹ℎ𝐴ℎ |𝑛ℎ=1 × 100% % 

RMSE Root Mean Square Error 𝑅𝑀𝑆𝐸 =  √1𝑛 ∑ (𝐴ℎ − 𝐹ℎ)2𝑛ℎ=1  MWh 

Peak Peak Load Absolute Percentage Error 𝑃𝑒𝑎𝑘 =  |max(𝐴) − max(𝐹)max(𝐴) | × 100% % 

Valley Valley Load Absolute Percentage Error 𝑉𝑎𝑙𝑙𝑒𝑦 =  |min(𝐴) − min(𝐹)min(𝐴) | × 100% % 

Energy Energy Absolute Percentage Error 𝐸𝑛𝑒𝑟𝑔𝑦 =  |∑ 𝐴ℎ𝑛ℎ=1 − ∑ 𝐹ℎ𝑛ℎ=1∑ 𝐴ℎ𝑛ℎ=1 | × 100% % 

Table 3. Evaluation metrics. 

 



26 
 

4. RESULTS AND DISCUSSION 

4.1. FORECAST RESULTS 

The overall hourly evaluation along the 14 testing weeks is displayed in Figure 4, showing the MAPE 

and RMSE error distributions with box-whiskers plots by ML candidate model and the historical weekly 

pre-dispatch forecast. The lower end of each boxplot represents the 25th percentile, the upper end 

shows the 75th percentile, and the central line depicts the 50th percentile or the median value. In this 

case, the lower whiskers are zero for all forecasts. In contrast, the upper whiskers represent the upper 

boundaries for errors distribution, calculated as 1.5 times the inter-quartile range plus the 75th 

percentile value. The values outside these boundaries are considered outliers, which means large 

errors. A statistics summary to complement the error’s distribution is shown in Table 4. 

 
(a) 

 
(b) 

Figure 4. Box-whisker plots for each candidate model and the pre-dispatch load forecast:    
(a) MAPE evaluation results; (b) RMSE evaluation results. 

This overall evaluation shows that the pre-dispatch forecast, also abbreviated as ‘Pre-Disp.’ in the next 

tables, has a larger interquartile range on both metrics, which implies that the ML candidates’ models 
improve the STLF task. Nevertheless, MLR and SVR show several outliers with a high magnitude. The 

best ML models were XGB, RF, and SVR with RBF kernel, having a similar performance by looking at 

these two charts in Figure 4. Considering a reasonable computational time for training and predicting, 

XGB is more efficient than RF and SVR but even more flexible in hyperparameter tuning. RF showed 

the slowest computational performance, followed by SVR, XGB, KNN, and being MLR, the fastest model 

but the least accurate. 
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Model Metric Mean Std. Dev. Min. 25th perc. 50th perc. 75th perc. Max. 

Pre-disp. 

MAPE 4.95 3.88 0.00 1.90 4.10 7.00 22.30 

RMSE 59.20 44.45 0.00 23.13 49.50 85.80 224.60 

Peak 2.76 2.19 0.10 0.70 2.40 4.30 7.10 

Valley 4.48 3.02 0.30 2.10 4.15 5.90 11.90 

Energy 2.81 2.06 0.60 1.40 2.20 3.10 8.20 

MLR 

MAPE 4.11 3.25 0.00 1.60 3.40 5.80 23.80 

RMSE 49.75 39.03 0.10 19.20 41.30 70.10 254.20 

Peak 2.56 2.40 0.00 0.90 1.95 3.78 8.50 

Valley 3.94 3.29 0.30 1.28 3.55 5.08 13.30 

Energy 1.85 1.46 0.30 0.68 1.40 2.78 5.60 

KNN 

MAPE 4.08 3.09 0.00 1.70 3.40 5.80 19.50 

RMSE 48.99 37.41 0.00 19.70 41.05 69.10 223.10 

Peak 3.32 2.33 0.20 1.38 2.90 4.80 8.40 

Valley 2.68 2.58 0.10 0.50 1.55 4.45 8.80 

Energy 1.94 1.75 0.00 0.95 1.60 2.20 6.80 

SVR 

MAPE 3.91 3.24 0.00 1.50 3.30 5.40 32.50 

RMSE 47.07 38.57 0.00 18.63 39.45 64.68 354.40 

Peak 2.67 2.28 0.00 0.83 2.10 3.85 8.50 

Valley 3.39 3.25 0.10 1.25 2.15 5.20 12.90 

Energy 1.96 1.48 0.30 0.80 1.40 2.73 5.70 

RF 

MAPE 3.96 2.94 0.00 1.70 3.30 5.60 17.60 

RMSE 47.65 35.50 0.00 20.00 41.40 68.20 198.90 

Peak 3.07 2.29 0.40 1.38 2.25 4.70 8.70 

Valley 3.79 3.36 0.40 1.63 2.75 4.83 13.60 

Energy 1.63 1.47 0.10 0.60 1.10 2.45 5.70 

XGB 

MAPE 3.84 2.81 0.00 1.60 3.30 5.60 17.40 

RMSE 46.24 34.07 0.10 19.15 39.90 65.95 203.80 

Peak 2.76 2.15 0.10 1.33 2.05 4.10 8.10 

Valley 3.82 2.88 0.00 1.15 3.30 5.68 10.90 

Energy 1.89 1.54 0.20 0.60 1.30 3.35 5.70 

Table 4. Errors distribution by model, by metric. Perc. stands for percentile. 

Moreover, all models were also evaluated by testing week, knowing that each week has a different 

context, hence a different load profile. These models’ evaluation results are displayed in Table 5.  
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Model 

year 2019 2020 

Average week 15 21 24 29 33 37 41 44 51 1 6 10 20 24 

month Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar May Jun 

Pre-disp. 

MAPE 3.90 3.10 6.08 5.55 4.16 4.68 5.04 6.65 5.38 4.06 3.79 2.93 9.06 4.96 4.95 

RMSE 64.9 49.5 94.9 84.4 63.8 67.5 70.4 87.4 80.2 58.7 61.1 43.6 112.9 66.7 71.9 

Peak 2.30 0.10 7.10 3.80 0.30 4.30 4.80 6.20 2.50 0.80 3.70 1.30 0.70 0.70 2.76 

Valley 2.10 4.10 4.50 2.40 11.90 2.70 6.20 9.20 5.50 1.90 1.80 4.20 5.90 0.30 4.48 

Energy 2.20 1.40 6.00 1.10 0.60 2.80 4.80 2.20 1.30 1.40 3.10 2.50 8.20 1.70 2.81 

MLR 

MAPE 4.40 2.68 5.64 4.69 3.70 3.64 3.78 4.58 4.73 4.50 2.40 2.67 6.45 4.25 4.15 

RMSE 78.8 42.8 88.7 69.7 57.1 51.1 51.2 64.5 69.4 65.7 37.6 45.4 81.3 57.7 61.5 

Peak 1.00 1.10 8.50 4.30 2.80 2.20 1.70 6.70 0.90 0.00 0.90 0.00 3.60 2.20 2.56 

Valley 0.90 3.80 1.40 3.80 13.30 2.20 6.80 4.50 2.70 0.30 3.70 0.90 3.40 7.40 3.94 

Energy 2.60 0.70 5.60 1.50 0.30 1.60 3.30 0.90 1.30 0.60 0.50 1.20 3.90 1.90 1.85 

KNN 

MAPE 4.95 2.58 6.72 4.08 3.89 3.02 3.02 4.17 4.44 3.47 3.01 2.64 6.19 4.07 4.02 

RMSE 71.3 45.0 100.9 62.3 59.6 42.9 41.1 59.1 73.0 51.2 47.8 42.1 78.0 58.1 59.5 

Peak 6.60 2.80 8.40 4.00 4.40 0.20 0.60 6.00 1.60 2.80 3.80 3.00 1.60 0.70 3.32 

Valley 0.50 1.80 4.30 1.20 8.80 0.50 6.50 1.30 0.20 4.90 2.30 0.80 0.10 4.30 2.68 

Energy 4.50 1.20 6.80 0.00 2.00 0.10 1.80 1.40 1.20 0.20 1.90 2.00 2.80 1.20 1.94 

SVR 

MAPE 4.42 2.49 5.75 4.10 3.76 3.33 3.20 3.93 4.64 3.54 2.68 2.38 6.30 4.30 3.92 

RMSE 85.3 39.9 89.4 62.4 56.8 47.2 44.1 57.0 69.8 51.3 42.0 36.1 78.9 60.3 58.6 

Peak 3.70 2.40 8.50 3.10 4.30 0.90 0.20 6.10 0.60 1.60 1.90 2.30 1.80 0.00 2.67 

Valley 1.70 2.30 3.50 1.70 12.90 0.10 5.00 1.10 0.90 5.80 2.20 2.10 1.30 6.90 3.39 

Energy 4.00 0.30 5.70 0.90 0.80 0.80 2.40 1.30 1.90 1.10 0.80 1.50 3.70 2.20 1.96 

RF 

MAPE 3.69 3.05 5.63 3.86 3.82 3.32 3.47 4.23 4.18 4.78 3.13 2.19 5.95 4.02 3.95 

RMSE 55.2 49.9 88.1 59.2 59.0 47.2 47.2 58.7 63.5 68.2 50.4 33.9 74.9 57.0 58.0 

Peak 5.60 1.80 8.70 4.40 2.90 2.50 0.40 5.70 1.50 2.00 1.00 0.50 4.20 1.80 3.07 

Valley 2.90 4.60 2.10 2.40 13.60 0.50 7.50 3.90 2.00 2.60 4.60 0.50 0.40 5.50 3.79 

Energy 3.60 0.10 5.70 0.60 1.00 0.60 2.60 2.40 0.90 1.20 0.30 1.20 1.80 0.80 1.63 

XGB 

MAPE 3.69 2.46 5.65 3.78 3.53 3.37 3.27 4.70 4.16 3.88 3.09 2.19 6.13 3.91 3.84 

RMSE 54.6 41.5 86.4 59.3 53.3 46.9 44.5 63.7 62.5 55.7 48.1 34.0 77.1 54.6 55.9 

Peak 4.40 1.80 8.10 4.00 3.30 2.90 0.50 5.80 1.90 1.60 0.30 0.10 2.20 1.70 2.76 

Valley 2.10 3.10 4.30 2.50 10.90 0.80 7.10 6.50 1.20 5.10 3.50 1.00 0.00 5.40 3.82 

Energy 3.60 0.20 5.70 0.60 1.10 0.60 2.30 3.30 1.00 1.30 0.30 1.30 3.50 1.70 1.89 

Table 5. Evaluation metrics by model, for each testing week, and horizon average.



29 
 

The weekly evaluation demonstrates that XGB improved MAPE and RMSE for all the testing weeks. 

XGB was also accurate in predicting the peak load, valley load, and weekly energy. MLR is the simplest, 

but it also showed the smallest peak deviation overall, followed by SVR. KNN did not expose this issue, 

but it predicted unusual hourly load profiles on holidays. It also tends to forecast lower demands. For 

instance, it was the best model to predict load valleys, followed by SVR, but the worst to predict load 

peaks. RF showed a good performance for peaks and valleys and had the smallest energy deviation 

along all testing weeks, followed by XGB. The RF forecast’s negative side was the irregular spikes that 
do not follow the typical hourly profile. In general, all algorithms were benefited by hybridization by 

improving holidays’ forecast. Mostly MLR, since it solely, could not predict lower demands for holidays.  

Since XGB demonstrated the best performance, providing an average MAPE of 3.84% and an RMSE of 

55.9 MWh, only hourly results from this model are plotted along with the pre-dispatch forecast, and 

the real load, illustrated in Figure 5. These testing weeks include holidays, regular days, and periods 

with quarantine restrictions due to the COVID-19 pandemic. Figure 6 shows another testing week, with 

all the candidates’ ML models forecast. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Pre-dispatch and XGB forecast comparison with the real load. (a) Week 51, 2019 (21st to 
27th, Dec 2019); (b) Week 10, 2020 (7th to 13th, Mar 2019); (c) Week 24, 2020 (13th to 19th, Jun 2020) 
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Overall, all models distinguished between weekends and weekdays load. Since weekends had a lower 

demand with low variance, all models showed a decent performance for these periods. For periods 

with similar characteristics, like the early morning, most of the forecasts were reasonably good. The 

most difficult hours to forecast were daytime periods during working days due to their high variance. 

The most challenging was holidays due to fewer records, different contexts, and the natural 

randomness of consumers’ demand. Examples of holiday forecasting are shown in Figure 5a, on 

Tuesday 24 and Wednesday 25 December 2019, and another holiday example is illustrated in Figure 

6a for Thursday 18 and Friday 19 April 2019. The quarantine period brings another challenge for STLF 

task since the load profiles changed abruptly for this period, and fewer records are available for 

training. Besides, the load profiles do not follow a steady pattern. Differences between the quarantine 

period and no quarantine are shown in Figure 5b, c, respectively. 

 

(a) 

 

(b) 
Figure 6. Weekly pre-dispatch vs. ML candidates’ models. (a) Hourly forecast for Week 15, 2019 (13th 

to 19th, Apr 2019); (b) Frequency distribution of error by forecast, for Week 15, Apr 2019. 

4.2. FEATURE IMPORTANCE RESULTS 

Beyond having an accurate forecast, it is relevant to know the factors contributing to a specific STLF 

task. Some of the ML candidates’ models proposed in this project provide a straightforward way to 

check the feature importance, except for KNN and SVR, which only provide coefficients for the linear 

kernel. Still, feature permutation importance (Raschka, 2021) is applied to those two models with ten 

permutation rounds to estimate their feature importance. For MLR, feature importance is obtained 

through the coefficient property by multiplying each coefficient by the feature standard deviation to 

reduce all coefficients to the same measurement unit. Each feature’s absolute value is then scaled to 

get the contribution percentage. For RF and XGB, the feature importance property directly returns 

contribution percentage by feature. Table 6 shows the feature importance by ML model, where each 

value is the average from evaluating each model on the 14 testing weeks. 
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Feature 
Regular days' model Holidays' model 

MLR KNN SVR RF XGB MLR KNN SVR RF XGB 𝐿𝒉−𝟑𝟑𝟔  6.91 3.04 1.84 0.83 16.14 11.28 12.17 5.50 4.91 11.22 𝐿𝒉−𝟓𝟎𝟒 7.19 2.73 2.10 0.81 11.83 12.49 7.08 7.77 3.52 5.70 𝐿𝒉−𝟔𝟕𝟐 6.70 3.99 2.58 0.68 14.29 10.81 3.01 3.38 2.72 9.81 𝐿𝑀𝐴𝒉(1,4) 57.43 10.52 70.55 89.51 25.56 53.21 22.45 50.57 54.15 20.47 𝑑𝑎𝑦_𝑜𝑓_𝑡ℎ𝑒_𝑤𝑒𝑒𝑘𝒉  0.56 4.43 1.74 0.41 1.66 0.36 21.27 12.43 7.19 8.97 𝑤𝑒𝑒𝑘𝑒𝑛𝑑_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝒉  2.43 18.31 5.47 0.10 4.76 3.54 8.72 8.84 0.30 5.72 ℎ𝑜𝑙𝑖𝑑𝑎𝑦_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝒉  9.13 18.53 7.00 2.15 7.85 - - - - - ℎ𝑜𝑙𝑖𝑑𝑎𝑦_𝐼𝐷𝒉  1.65 1.40 0.46 2.63 2.41 1.77 1.04 1.49 14.83 12.64 ℎ𝑜𝑢𝑟_𝑜𝑓_𝑡ℎ𝑒_𝑑𝑎𝑦𝒉  1.69 17.59 2.50 0.70 10.56 6.06 19.87 5.11 7.46 21.72 𝑡𝑒𝑚𝑝_𝑃𝑎𝑛𝑎𝑚𝑎_𝑐𝑖𝑡𝑦𝒉  6.31 19.44 5.76 2.17 4.94 0.48 4.38 4.92 4.90 3.75 

Table 6. Average feature importance by ML model expressed in percentage (%). 

The feature importance results show that the load’s lags, and consequently, the moving average, have 

a strong influence on the forecasting. Feature importance differs by model, showing that XGB has the 

most balanced features’ contribution. A significant difference between regular and holidays’ model is 
that the holidays’ model has a more considerable contribution from holiday_ID and hour of the day, 

making this model specialized on holidays. The hour of the day is also a crucial feature for regular days’ 
model, especially for KNN; also, temperature resulted in an essential feature for KNN, but as a 

secondary feature for the rest of the models. Lastly, the binary indicators for holidays and weekends 

show minor importance but still relevant, mainly to mark the difference between a higher load peak 

for working days and a lower peak for non-working days.  

4.3. HYPERPARAMETER SEARCH RESULTS 

The hyperparameter search results for regular days’ models and holidays’ models are shown in Table 
7 and Table 8, respectively, except for MLR, which does not possess a hyperparameter space to 

enhance the predictions. As exposed, XGB demonstrated the best performance; for this reason, only a 

description of these parameters will be addressed. For the ‘eval_metric’ parameter, ‘rmse’ was the 
most suitable option to penalize large errors. The default ‘gbtree’ booster was kept to take advantage 
of the generalization ability of the ensemble of trees instead of the weighted sum of linear functions 

provided by ‘gblinear’. The ‘n_estimators’ is the number of iterations the model will perform, in which 
a new tree is created per iteration. For this reason, values above hundreds of trees are considered to 

make a sizeable iterative process that can adapt to the problem. The ‘max_depth’ parameter was kept 
with low values to avoid overfitting by training weak tree learners. The ‘learning_rate’ had the most 
extensive search to adapt the hyperparameter search during each boosting step, preventing 

overfitting. The parameters ‘subsample’, ‘colsample_bytree’, ‘colsample_bynode’, and 
‘col_sample_bylevel’ were reduced to provide generalization ability to the model, restricting the 
training process with sub-samples of the data. A range of larger values and the default zero were 

explored for ’gamma’, to control partitions on the leaves’ nodes, making the algorithm more 
conservative. Similarly, because ‘min_child_weight’ controls the number of instances needed to be in 
each node, for this reason, values above the zero-default setting were explored. A log-uniform 

distribution with values lower than five was considered for ‘alpha’ and ‘lambda’, aiming to add a small 

bias to make the model conservative and avoid overfitting. 
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Model 

year 2019 2020 

week no. 15 21 24 29 33 37 41 44 51 1 6 10 20 24 

month Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar May Jun 

KNN 

n_neighbors 41 31 31 31 41 31 31 37 31 37 37 31 29 35 

weights dist. dist dist dist dist dist dist dist dist dist dist dist dist dist 

metric manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. 

leaf_size 11 1 1 1 16 16 1 46 46 1 16 16 21 46 

SVR 

kernel rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf 

epsilon 2.48927 8.25782 0.00082 0.01421 0.00033 0.00092 0.02024 0.86639 0.00013 6.93334 0.00014 0.02678 7.16092 0.02286 

C 415.13 409.21 299.93 304.05 318.07 332.74 331.23 367.35 315.65 2938.91 296.54 307.96 243.53 308.42 

tol 0.00694 0.00350 0.00868 0.00780 0.00853 0.00811 0.00012 0.00876 0.00024 0.00931 0.00293 0.00772 0.00072 0.00882 

RF 

n_estimators 140 140 100 80 120 200 180 180 200 180 200 200 200 180 

max_samples 0.60 0.65 0.70 0.70 0.60 0.65 0.70 0.70 0.65 0.65 0.60 0.60 0.60 0.60 

max_depth 10 10 10 13 13 13 10 13 13 10 13 13 10 10 

ccp_alpha 1.59×10−4 2.33×10−6 2.86×10−5 1.50×10−5 9.16×10−5 9.83×10−4 3.87×10−6 1.68×10−4 1.19×10−6 8.10×10−5 1.73×10−5 3.65×10−6 3.54×10−4 9.72×10−4 

XGB 

n_estimators 350 400 350 400 500 400 600 550 350 600 500 600 600 550 

max_depth 5 4 4 5 4 5 4 5 5 5 5 5 4 4 

subsample 0.75 0.75 0.70 0.65 0.65 0.75 0.65 0.65 0.60 0.75 0.75 0.65 0.70 0.75 

colsample_bytree 0.75 0.70 0.65 0.80 0.70 0.60 0.75 0.80 0.60 0.60 0.70 0.70 0.75 0.65 

colsample_bylevel 0.70 0.90 0.80 0.65 0.70 0.85 0.80 0.60 0.75 0.60 0.90 0.65 0.85 0.85 

colsample_bynode 0.70 0.75 0.80 0.60 0.65 0.70 0.90 0.60 0.90 0.70 0.85 0.85 0.75 0.75 

learning_rate 0.050016 0.066828 0.057397 0.030956 0.051173 0.039766 0.036783 0.022305 0.052250 0.041089 0.042121 0.027303 0.027487 0.021568 

min_child_weight 7 3 3 7 7 1 7 3 5 3 1 7 7 3 

gamma 1.7696 0.9889 0.0440 0.1366 0.0039 5.81×10−5 1.65×10−3 1.71×10−4 0.9251 7.12×10−4 0.0220 1.34×10−3 1.35×10−5 0.8903 

lambda 1.1940 1.4665 3.1788 1.1477 3.6228 3.6026 2.5763 1.6005 3.2689 3.7203 2.6808 1.7332 1.0280 3.6871 

alpha 1.0194 0.1336 0.0457 0.0209 2.94×10−3 0.0183 3.00×10−3 4.55×10−4 0.0338 7.46×10−5 7.47×10−4 9.20×10−5 0.0738 0.2525 

Table 7. Hyperparameter optimization results for regular days’ models, by testing week. 
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Model 

year 2019 2020 

week no. 15 21 24 29 33 37 41 44 51 1 6 10 20 24 

month Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar May Jun 

KNN 

n_neighbors 25 25 33 21 15 27 21 15 39 39 21 29 21 29 

weights dist. dist dist dist dist dist dist dist dist dist dist dist dist dist 

metric manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. manht. 

leaf_size 1 11 1 26 46 26 21 1 26 6 46 16 11 26 

SVR 

kernel rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf 

epsilon 0.00264 0.00045 0.00017 9.45318 6.31538 1.09855 5.73192 0.00023 0.20928 0.90036 2.22753 8.30718 0.00029 0.62205 

C 2802.99 626.41 460.37 807.35 303.19 257.51 609.51 248.33 149.49 151.74 142.09 111.01 2774.43 234.76 

tol 0.00794 0.00852 0.00967 0.00998 0.00185 0.00361 0.00556 0.00671 0.00540 0.00417 0.00991 0.00606 0.00321 0.00592 

RF 

n_estimators 100 100 140 200 100 200 100 200 80 100 140 140 100 100 

max_samples 0.80 0.80 0.80 0.60 0.80 0.80 0.80 0.80 0.60 0.80 0.80 0.80 0.80 0.80 

max_depth 19 13 19 16 16 16 16 19 19 13 19 19 16 19 

ccp_alpha 2.24×10−5 5.31×10−5 1.51×10−6 4.70×10−5 6.03×10−5 8.83×10−4 2.24×10−5 4.45×10−5 2.09×10−5 2.84×10−4 7.46×10−6 4.46×10−5 8.40×10−6 1.06×10−4 

XGB 

n_estimators 300 500 500 300 500 300 500 500 300 450 350 450 500 300 

max_depth 4 6 4 5 7 4 7 4 6 7 4 6 4 7 

subsample 0.80 0.90 0.60 0.80 0.75 0.80 0.70 0.75 0.90 0.70 0.80 0.70 0.60 0.85 

colsample_bytree 0.70 0.90 0.90 0.65 0.75 0.60 0.60 0.80 0.90 0.65 0.80 0.65 0.70 0.90 

colsample_bylevel 0.80 0.90 0.90 0.80 0.90 0.80 0.90 0.90 0.70 0.90 0.80 0.90 0.80 0.80 

colsample_bynode 0.90 0.80 0.90 0.90 0.90 0.90 0.80 0.70 0.90 0.80 0.80 0.90 0.90 0.60 

learning_rate 0.059702 0.022990 0.099259 0.096232 0.058822 0.046665 0.026215 0.046144 0.096558 0.031292 0.072094 0.090842 0.065184 0.090743 

min_child_weight 5 3 7 3 3 5 5 5 7 7 7 3 3 3 

gamma 2.86×10−3 1.47×10−3 0.0464 6.64×10−4 2.29×10−3 0.5343 3.46×10−5 2.52×10−3 1.20×10−5 3.40×10−5 1.8331 0.4352 1.93×10−5 0.0833 

lambda 3.6348 1.2237 1.1215 1.0615 1.6029 1.4756 3.2333 4.3853 1.6743 1.0481 1.2192 2.0430 1.6593 1.7202 

alpha 4.44×10−5 2.85×10−3 1.11×10−3 3.07×10−4 6.56×10−4 1.99×10−5 8.60×10−5 1.61×10−3 9.33×10−5 1.06×10−4 1.62×10−4 4.51×10−3 9.24×10−4 6.46×10−4 

Table 8. Hyperparameter optimization results for holidays’ models, by testing week.
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4.4. BENCHMARKING 

The results obtained in this project can be interpreted from the perspective of any time-series 

forecasting research using ML techniques since the standard ML methodologies for STLF were applied 

to train and evaluate results, as exposed in the literature review. For example, the selected features 

across the STLF field of study match this project’s best features: the load’s lags, the hour of the day, 

and temperature. Holidays and weekends’ binary indicators also contribute since they help determine 
a high or low load range. 

In contrast with most of the studies where researchers forecast 24 or 48 hours, this project addressed 

a 168-hour horizon, considering a 72-hour gap before the first forecasting period. A second 

differentiation is the implementation of a hybrid model to enhance the holidays’ forecast; within the 

weekly forecasting horizon. Besides the typical MAPE and RMSE evaluation metrics, this project 

proposed load peak, load valley, and energy evaluation as secondary, practical metrics that analysts 

can easily monitor. Another distinction of this project is the diversity for testing periods, presenting 

STLF for regular working days, holidays, and irregular periods during the 2020 quarantine. This project’s 
most important distinction is comparing the official weekly pre-dispatch forecast as a baseline and 

validating the results. 

As exposed in the introduction section, this project’s direct implication is forecasting Panama’s 
national load. However, these models can be trained and applied to countries or regions with similar 

conditions. 
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5. CONCLUSIONS 

This project’s main objectives were to evaluate current Panama’s official load forecast and develop a 
set of Machine Learning models to improve this official load forecast. For instance, the models were 

developed and benchmarked with data and previous forecasts from Panama’s power system. This 

project presented a novel hybrid methodology to improve the weekly STLF forecast for the Panama 

case study to address the forecasting task, keeping a 72-hour gap. A set of five proven algorithms 

across the research field were chosen to develop the hybrid models and subsequently compare their 

results against the official forecasting tool records on diverse testing weeks. Results along 14 testing 

weeks confirmed the suitability of the XGB algorithm for the hybrid methodology. First, for time 

efficiency on training and predicting; second, for flexibility due to the parameter space; and third, for 

the ease of providing certain interpretability through its feature importance property. 

For the above-exposed reasons, this project makes several significant contributions to the field of 

study. First, it shows that models built with XGB have superior performance to models built with other 

algorithms. Second, it confirms that temperature plays an important role in STLF. Third, it 

demonstrates the excellent performance of ML models by forecasting for a longer horizon than typical 

research; and even with a three-day gap of data before the forecast. Lastly, this project identifies public 

data that other researchers can use to improve a framed forecasting task. Details about this project 

dataset repository are available in Appendix 1. 

This project also has several practical implications. The first and main implication is to replace the 

current forecasting tool for the Panama case study, thus allowing Panama to reduce costs and improve 

STLF performance. Second, this model could be trained and applied in other countries or regions with 

similar conditions. Furthermore, the positive impacts of providing a more accurate STLF will reduce 

the planning uncertainty added by the intermittent renewable production and subsequently be closer 

to the optimal hydro-thermal costs scheduled in the weekly unit commitment. This third practical 

implication leads to a fourth: for the specific case of the Panama energy spot market, because it is a 

marginalist market, accurate STLF can also reduce the hourly energy price uncertainty in the wholesale 

electricity market. 
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6. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

Future work within this specific research can include more historical load records to train models in 

particular situations, like holidays. Another approach to enhance forecasts is to classify load profiles 

using clustering techniques prior training (Zheng et al., 2017), and use stacking techniques to enhance 

the forecast accuracy, even though it increases the training and predicting time (Massaoudi et al., 

2021). 

In the particular case study of Panama’s national load, there are special consumers named auto-

generators: the Panama Canal and Minera Panama (CND, 2021a). These consumers have a significant 

load, but as their agent’s name suggests, they supply their own demand with their own power plants 
most of the time, except for scheduled maintenance periods on their power plants or unforeseen 

unavailability on their power plants (CND, 2021d). Those agents will consume energy from the national 

power system during those events, causing an extra increase in the national load. If this additional load 

can be scheduled, it is better to track the electricity load by consumer and forecast only the residential, 

commercial, and industrial load, then add auto-generators if needed. This load segregation avoids 

distortions on the load forecast, as stated in auto-generators methodology (CND, 2021b). In this 

context, another research avenue to develop STLF by consumers emerges, but it requires data with 

this segregation. 

Since DL models are out of this project scope, and DL models require more records than ML models, 

unidirectional and bidirectional LSTM were not compared in the research. However, future studies 

should evaluate these algorithms’ performance that have proven good for STLF (Atef & Eltawil, 2020). 

Similarly, non-iterative ANN-based algorithms can be explored due to their good performance and low 

training time, like (Vitynskyi et al., 2018) compared with a set of ML models. 

Although there are currently several weather forecasts available with hourly granularity (Visual 

Crossing, 2021), because the temperature is crucial for STLF, it is advisable to count with an accurate 

temperature forecast to feed this STLF model. Hence, a temperature forecast model can complement 

this project. 

It is advised to do a weekly load patterns revision since consumption patterns can change in the future. 

An example of abrupt changes on the hourly load profile was exposed in this project during the 2020 

quarantine period. However, other trending consumption patterns (Andersen et al., 2019), like 

recharging more electric vehicles and having more solar production behind-the-meter, will produce 

residential and commercial hourly consumption changes. This revision implies that forecasting models 

should be updated more often, and even that they need to be more robust. 

A possible solution to overcome these issues is to automatically enable the models to learn with new 

data every week by deploying the “Champion-Challenger” approach (Abbott, 2014). A weekly 

hyperparameter tuning is executed to update the models and make them compete to ensure the best 

performance along time. 

The final goal of STLF is to reduce the uncertainty on real-time dispatch of hydro-thermal power plants 

because the wind and solar farms are non-dispatchable power plants. Consequently, another way to 

reduce the planning uncertainty and complement the STLF is by providing an accurate forecast for 

wind and solar production and other non-dispatchable power plants, if any. 
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8. APPENDICES 

8.1. APPENDIX 1. DATA REPOSITORY  

The data used in this project is accessible in repository: http://dx.doi.org/10.17632/byx7sztj59.1 

The original data sources provide the post-dispatch electricity load in individual Excel files on a daily 

basis, and weekly pre-dispatch electricity load forecast data in individual Excel files on a weekly basis, 

both with hourly granularity. Holidays and school periods data is sparse, along with websites and PDF 

files. Weather data is available on daily NetCDF files.  

For simplicity, the dataset is published already pre-processed by merging all data sources on the date-

time index. The published datasets are available in the following formats:  

▪ A CSV file containing all records in a single continuous dataset with all variables. 

▪ A CSV file containing the load forecast from weekly pre-dispatch reports. 

▪ Two Excel files containing the 14 training-testing datasets pairs used in this project as 

described by the splits in Appendix 2 table and illustrated by Appendix 3 charts.  

8.2. APPENDIX 2. DATE-TIME SPLITS 

# Week, month Date-time split  # Week, month Date-time split 

1 Week 15, Apr 2019 2019-04-13 01:00  8 Week 44, Nov 2019 2019-11-02 01:00 

2 Week 21, May 2019 2019-05-25 01:00  9 Week 51, Dec 2019 2019-12-21 01:00 

3 Week 24, Jun 2019 2019-06-15 01:00  10 Week 01, Jan 2020 2020-01-04 01:00 

4 Week 29, Jul 2019 2019-07-20 01:00  11 Week 06, Feb 2020 2020-02-08 01:00 

5 Week 33, Aug 2019 2019-08-17 01:00  12 Week 10, Mar 2020 2020-03-07 01:00 

6 Week 37, Sep 2019 2019-09-14 01:00  13 Week 20, May 2020 2020-05-16 01:00 

7 Week 41, Oct 2019 2019-10-12 01:00  14 Week 24, Jun 2020 2020-06-13 01:00 

Note: Appendix 2 table specify the 14 dataset splits according to each training-testing pair. An illustration of 
these splits along the dataset horizon is shown solely for the electricity load variable in Appendix 3 charts. 

http://dx.doi.org/10.17632/byx7sztj59.1
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8.3. APPENDIX 3. HOURLY LOAD ILLUSTRATION FOR EACH TRAINING-TESTING PAIR 

8.3.1. Testing week 1. Week 15, April 2019. Holy week. 

 

8.3.2. Testing week 2. Week 21, May 2019. 
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8.3.3. Testing week 3. Week 24, June 2019. 

8.3.4. Testing week 4. Week 29, July 2019. 
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8.3.5. Testing week 5. Week 33, August 2019. 

 

8.3.6. Testing week 6. Week 37, September 2019. 
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8.3.7. Testing week 7. Week 41, October 2019.  

 

8.3.8. Testing week 8. Week 44, November 2019. National holidays. 
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8.3.9. Testing week 9. Week 51, December 2019. Christmas. 

 

8.3.10. Testing week 10. Week 1, January 2020. Martyrs Day. 
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8.3.11. Testing week 11. Week 6, February 2020. 

 

8.3.12. Testing week 12. Week 10, March 2020. 
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8.3.13. Testing week 13. Week 20, May 2020. Quarantine period. 

 

8.3.14. Testing week 14. Week 24, Jun 2020. Quarantine period. 
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