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Abstract: In recent years, efficient modeling and forecasting of electricity prices became highly
important for all the market participants for developing bidding strategies and making investment
decisions. However, as electricity prices exhibit specific features, such as periods of high volatility,
seasonal patterns, calendar effects, nonlinearity, etc., their accurate forecasting is challenging. This
study proposes a functional forecasting method for the accurate forecasting of electricity prices.
A functional autoregressive model of order P is suggested for short-term price forecasting in the
electricity markets. The applicability of the model is improved with the help of functional final
prediction error (FFPE), through which the model dimensionality and lag structure were selected
automatically. An application of the suggested algorithm was evaluated on the Italian electricity
market (IPEX). The out-of-sample forecasted results indicate that the proposed method performs
relatively better than the nonfunctional forecasting techniques such as autoregressive (AR) and
naïve models.

Keywords: functional autoregressive model; functional principle component analysis; vector autore-
gressive model; functional final prediction error (FFPE); naive method

1. Introduction

In the late 1980s, the worldwide electricity industry had undergone numerous funda-
mental changes when the state-owned monopolistic structure was restructured into the
deregulated and competitive electricity market. The main driving force behind the restruc-
turing of the electricity market was to promote competition among producers, retailers,
and consumers by boosting private investments in production, supply, and retail sectors.
Liberalization of this sector brought many benefits to the stakeholders in terms of reliable,
secure, and economical electricity trading. However, due to electricity’s inherent physical
characteristic of non-storability in large volumes, the uncertainty related to electricity prices
and demand forecasting increased. In addition, electricity prices and demand series gener-
ally exhibit specific features, such as multiple periodicities, long-trend, bank holiday effect,
spikes, jumps, etc. In the presence of these features, the forecasting problem is challenging
in all three forecasting horizons, i.e., short term, medium term, and long term [1].

In electricity markets, short-term forecasting refers to forecasting electricity prices
from a few minutes to a week ahead. Apart from the power scheduling, management,
and risk assessment, a short-term forecast is essential for market participants to optimize
their bidding strategies. Medium-term forecast generally refers to the forecast made for
a few weeks to a few months ahead. It is usually vital for expanding generation plants,
scheduling maintenance, developing investment, fuel contracting, bilateral contracting,
and hedging strategies. Forecasts ranging from a few months ahead to a few years ahead
are commonly referred to as long-term-ahead forecasts. They are used for planning and
investment profitability analysis, i.e., making decisions for future investments in power
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plants, inducing sites, and fuel sources [2,3]. In the literature, short-term forecasting has
received greater research attention as the maximum electricity trade takes place in this
market.

The literature concerning electricity price forecasting reported several statistical, ma-
chine learning, econometric, and hybrid models used to forecast short-term electricity
prices [4–7]. Different linear time series models, including AR, ARMA, ARIMA, SARIMA,
and ARIMAX [8–12], and nonlinear time series models, such as NPAR, ARCH, GARCH,
and their extensions [13–15], are extensively used for forecasting electricity prices. Para-
metric and nonparametric regression-type models considering multiple, local polynomial,
kernel, smoothing spline, and quantile regression are easy to implement and are widely
studied in the case of electricity price forecasting [2,16–21]. In addition, models based on
exponential smoothing including simple, double, and triple Holt’s winters models that
account for various periodicities [22–27] are often used for forecasting purposes. Artificial
intelligence models have also been used to predict day-ahead electricity prices [28–32], as
well as state-space models [33,34]. Various researchers combined the characteristics of two
or more models to build a new model generally referred to as a hybrid model [3,35–39].
Generally, the above-stated models have their own functional and structural form, and the
forecasting performance varies from market to market [40].

In the last three decades, technological developments simplified and decreased the
cost of data collection and storage processes. Such advancements helped us to examine and
record practical life activities in great detail. Examples include curves, images, surfaces,
or anything else varying over a continuum. Consequently, classical statistical analysis
techniques are inadequate and inefficient due to the large dimensions of data. To analyze
such datasets, some suitable statistical methods are required, and functional data analysis
(FDA) is one of the prominent methods to tackle such data in an efficient way. The FDA
presents the essential statistical background for the analysis of functional variables, where
every observation is a continuous function. The application of the FDA exists in almost
every field of science, including economics, environment, engineering, energy, etc. [41,42].
In this research work, the application of the FDA is proposed for the electricity market,
which is of primary interest for many researchers working in this field, especially after the
liberalization of this market.

Given the temporal dependence, the FAR models have been suggested for the time
series of trajectories. The autoregressive Hilbertian (ARH) process proposed by [43], also
called the FAR model under Hilbert space, is likely the most popular pioneering work that
plays an important role in the FDA context.The FAR is an extension of the AR process to
infinite-dimensional space and is also used in electricity price forecasting. For example,
using functional analysis of variance (FANOVA) and FAR model, Ref. [44] studied the
seasonal patterns and improved prediction accuracy for electricity demand time series
used from the Nord Pool electricity market. The application of a local linear method with
functional explanatory variables was studied by [45]. They compared their proposed ap-
proach with the functional Nadaraya–Watson (NW) method and other finite-dimensional
nonparametric techniques. For empirical analysis, monthly electricity consumption data of
the United States of America (USA) were used, and the results suggest the superior perfor-
mance of their proposed methods. The forecasting performances of different parametric
and nonparametric functional models for electricity demand were studied by [46]. The
authors used data from the Italian and British electricity markets and concluded that the
nonparametric functional models give superior performance to their parametric counter-
parts. In another study, Ref. [47] used different functional models and compared their
results with the finite univariate dimension (univariate and multivariate) models. Data
from four different electricity markets, namely, the Nord Pool electricity market (NP),
Pennsylvania–New Jersey–Maryland electricity market (PJM), the Italian electricity market
(IPEX), and the British electricity market (APX Power UK), were used, and the results were
summarized using different descriptive measures. The results suggested that the functional
approach produces better results than the rest. Ref. [48] used the electricity demand curves
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data from Southern Australia. The author sliced the univariate time series into curves and
reduced their dimensionality by applying the functional principal components technique.
Finally, the author used univariate time series models to predict short-term electricity
demand.

The main aim of this research work is to propose a functional model that can efficiently
predict electricity prices. To this end, a method based on a two-components estimation
procedure is proposed. The first component, known as the deterministic component, is
computed using the additive modeling technique. The stochastic component, on the other
hand, is modeled using an FAR(P) model where the selection of the dimension and lags is
automatic. Finally, the model is tested for a whole year to see its forecasting performance.
The rest of this paper is organized as follows. Section 2 provides an overview of the
preliminaries. Section 3 describes a comprehensive review of the FAR(P) and functional
final prediction error (FFPE). Section 4 provides the application of the proposed method,
while Section 5 concludes the study.

2. Functional Modeling
2.1. Preliminaries

Let {Zi(t) : i ∈ N, t ∈ J } be an arbitrary stationary N-dimensional time series where
J represents a continuum bounded within a finite interval. For each i, the functional
observation Zi belongs to a Hilbert space H = L2([0, 1], ‖ · ‖) of square integrable functions
which is equipped with a norm ‖ · ‖ induced by the inner product < g, h >=

∫
g(t)h(t)dt.

The object {Zi(t)} is referred to as FTS with i as the time index [49,50]. Furthermore, all
stochastic functions are defined on a common probability space(Ω,A, P). The notation
Z ∈ Lp

H(Ω,A, P) is used to indicate E(‖Z‖p) < ∞ for some p > 0. When p = 1, Z(t)
has the mean curve µ(t); when p = 2, the covariance operators C(t, s) are defined as in
Equations (1) and (2) as under

µ(t) = E[Z(t)] (1)

C(t, s) = E[(Z(t)− µ(t))(Z(s)− µ(s))] (2)

Mercer’s theorem [51] provides the following convenient spectral decomposition of
Equation (2):

C(t, s) =
∞

∑
j=1

κj ϕj(t)ϕj(s) (3)

where ϕj denotes the jth orthonormal principal component, and κj denotes the jth eigen-
value. The principal component scores (PCSs) γi,j are given by the projection of [Zi(t)− µ(t)]
in the direction of the jth eigenfunction ϕj, i.e., γi,j =

〈
Zi − µ, ϕj

〉
. Based on the separability

of the Hilbert space, the Karhunen–Loève (KL) expansion [52,53] of the random function
Z(t) can be expressed as

Z(t) = µ(t) +
∞

∑
j=1

γi,j ϕj(t) (4)

The KL expansion provides the theoretical background for FPCA; see [54,55] for more
details about FPCA and its practical demonstration.

Expansion (4) facilitates dimension reduction as the first D terms often provide a
good approximation to the infinite sums, and, thus, the information contained in Z(t) can
be adequately summarized by the jth-dimensional vector (γ1, . . . , γj). The approximated
processes can be defined as

Z(t) = µ(t) +
D
∑
j=1

γj ϕj(t) + ε(t) (5)

where ε(t) denotes the zero-mean white noise function that captures the variation excluded
from the first D leading functional principal components (FPCs). There are different
methods available in the literature for choosing the value of D: (i) scree plots or the
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fraction of variation explained by first few PCSs [56], (ii) using the Akaike information and
Bayesian information criteria [57], (iii) cross-validation with one-curve-leave-out or k-fold
method [58], or (iv) bootstrap techniques [59].

Once the sample functional data are available, the sample mean can be obtained as

µ̂(t) =
1
N

N
∑
i=1

Zi(t), t ∈ [0, 1], (6)

and the sample covariance function is defined as

Ĉ(t, s) =
1

N− 1

N
∑
i=1

(Zi(t)− µ̂(t))(Zi(s)− µ̂(s)) (7)

Ref. [60] proved that the estimators are consistent for weakly dependent process.

2.2. Functional Autoregressive Model

Autoregressive (AR) models are one of the most popular forecasting models used
in time series analysis. In the AR modeling framework, the response variable is linearly
dependent on it past p lags with an error term. The theory of AR and more general linear
processes in Hilbert spaces is developed in the monograph of [50], containing sufficient
technical details. In addition, more relevant information can also be found in [49,61].

Recall a sequence of stationary random curves (Zi(t), i ∈ N ) in L2([0, 1]) defined in
Section 2.1. The functional AR model of order P (FAR(P)) can be written as [50]:

Zi(t)− µ(t) =
P
∑
k=1

Ψk(Zi−k(t)− µ(t)) + ξi(t) (8)

where Ψk(k = 1, . . . ,P) are the FAR operators (functional parameters), µ(t) is the mean
function of Zi(t), Zi−k(t) denotes kth lag of curve Zi, and ξi(t) is a strong H-white noise
with zero mean and finite second moment (E‖ξi(t)‖2 < ∞). For the prediction and
forecasting of the model given in Equation (8), the following forecasting algorithm is used,
which is based on Equations (5)–(7) [62].

1. First, the dimension which is denoted by D is fixed by using the method described in
Section 2.3, and the estimated FPC scores are obtained as γ̂i,j =

∫
Ẑi(t)ϕ̂j(t)dt for each

observation Ẑi(t), i = 1, . . . ,N, j = 1, . . . ,D, and the estimated j-variate FPC scores
vectors γ̂γγi = (γ̂1,i, . . . , γ̂D,i)

t, i = 1, . . . ,N.
2. Next, the order P is fixed using the technique described in Section 2.3 and we fit

the vector AR model, VAR(P), as γγγi = ∑P
k=1 Ψkγγγi−k + εi for eigenscores vectors to

produce forecasting γ̂γγN+1 = (γ̂N+1,1, . . . , γ̂N+1,D)
t. Durbin–Levinson and innovations

algorithm can be readily applied here, given the vectors γ̂γγ1, . . . , γ̂γγN.
3. In the last step, the multivariate time series are converted back to functional version

using the KL theorem ẐN+1(t) = µ̂(t) + γ̂N+1,1 ϕ̂1(t) + · · ·+ γ̂N+1,D ϕ̂D(t). The FPC
scores and sample eigenfunctions result in ẐN+1(t), which is then used as a one-step-
ahead forecast of ZN+1(t).

As can be seen, the selection of the dimension D and lags P is an important step in
the above algorithm. The following section illustrates how to select the optimal values for
these variables.

2.3. Selection of Order and Dimension of FAR(P)

The main goal of the current article is the accurate forecasting through FAR(P), which
requires the appropriate order P selection as well as the dimension D, in such a way that
the mean square error (MSE) is minimized.
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As the eigenfunctions ϕj and the PCS’s γN,j are uncorrelated, the MSE can be decom-
posed as

E
{∥∥∥ZN+1 − ẐN+1

∥∥∥2
}

= E


∥∥∥∥∥ ∞

∑
j=1

γN+1,j ϕj −
D
∑
j=1

γ̂N+1,j ϕj

∥∥∥∥∥
2


= E
{∥∥∥ZZZN+1 − ẐZZN+1

∥∥∥2
}
+

∞

∑
j=D+1

κj

where ‖.‖2 denotes the usual l-2 Euclidean norm of vectors. We suppose that the vector ZZZN
is stationary and follows a D-variables vector AR of order P, VAR(P), that can be written as

ZZZN+1 = Φ1ZZZN + Φ2ZZZN−1+, . . . ,+ΦPZZZN−P+1 +YYYN+1. (9)

Ref. [63] showed that (YYYN) is a white noise process such that

√
N(ρ̂− ρ)

D→ NNN(0, ΣYYY ⊗ ∆−1
P ) (10)

where ρ = vec [Φ1, . . . , ΦP]
t and ρ̂ = vec [Φ̂1, . . . , Φ̂P]

t is the least squares estimator in
vector form, and ∆P = var[vec(ZZZP, . . . , ZZZ1)] and ΣYYY = E[YYY1,YYYt

1]. Assume that the ρ̂ are

estimated from independent training sample (XXX1, . . . , XXXN)
D
= (ZZZ1, . . . , ZZZN) . It follows then

that

E
{∥∥∥ZZZN+1 − ẐZZN+1

∥∥∥2
}

= E
{∥∥∥ZZZN+1 − (Φ̂1ZZZN + · · ·+ Φ̂PZZZN−P+1)

∥∥∥2
}

= E
{
‖YYYN+1‖2

}
+E

{∥∥∥(Φ1 − Φ̂1)ZZZN + · · ·+ (ΦP − Φ̂P)ZZZN−P+1

∥∥∥2
}

= trace{ΣYYY}+E
{∥∥IP ⊗ (ZZZt

N, . . . , ZZZt
N−P+1)(ρ− ρ̂)

∥∥2
}

(11)

For some further derivation by using Equation (10), Ref. [64] showed that Equation (11)
can be approximated as

E
∥∥∥ZZZN+1 − ẐZZN+1

∥∥∥2
≈ N+P∗D

N−P∗D trace(Σ̂YYY) + ∑j>D κj.

The suggested functional final prediction error selects order P and dimension D simultane-
ously by minimizing error term.

f FPE(P,D) = N+ P ∗D
N− P ∗D trace(Σ̂YYY) + ∑

j>D
κj (12)

Using the fFPE method, the suggested forecasting procedure works in a completely data-
driven-based way and does not require any subjective specification of parameters. It is
specifically important that the choice of D depends upon the sample size N. For more
technical details, the interested readers are referred to [64] and the references cited therein.

3. Modeling Framework

This section provides the general modeling framework used to model and forecast
electricity prices. As described in Section 1, electricity prices exhibit specific features, e.g.,
extreme values (outliers), multiple periodicities, bank holidays effect, etc. Incorporating
these specific features in the model greatly improves the forecasting accuracy [47]. To this
end, the price time series is first filtered using the moving window filter on prices discussed
in the following section.
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3.1. Moving Window Filter on Prices

The identification of outliers, also known as the extreme values, in the data is one of
the growing research areas. Various methods and ideas have been used in the literature to
detect and impute outliers in the data. The significant developments in terms of outliers
detection techniques in time series are suggested by [65–68]. Generally, the presence of
outliers in the original electricity price data can substantially influence most forecasting
models, which can result in poor forecasting performance. Therefore, identifying and
analyzing outliers in the data is an essential step in constructing a forecasting model.

The moving window filter on price (MFP) [69] is an extension of the standard deviation
filter on prices (SFP) technique. The SFP technique is based on the idea that the prices
whose absolute deviation is taken from the mean µ̂ and are greater than some multiple of
the sample standard deviation σ̂ are referred to as outliers. However, the MFP technique
differs from the SFP in the sense that it works out with the rolling window having fixed
width of intervals. Using the MFP technique, the original price series is divided into
N = T/M parts, where M is the width of the windows. Then, the SFP technique is applied
to the first window of the given time series. Next, the window is shifted into the next fixed
interval of M width, and the SFP is applied. Finally, the process is repeated until the last
window is treated. Our work considers the same predictive interval used in [69], with the
width of the window being equal to ten weeks. Thus, the subset of outliers Z∗, obtained by
the MFP with a moving window of width M, is obtained as

Zo
i =

⋃
i=1,...,N

{Zτi : |Zτi − µ̂i| > 1.64 · σ̂i

τi ∈ ((i− 1) ·M+ 1, i ·M)}
(13)

Once the outliers are identified, they are replaced by normal values [70]. In this work, they
are replaced by the median value price of the specific window period.

3.2. The Model

Once the filtered price series is obtained, it is modeled using the following model.

Yi = Di +Zi i = 1, · · · , N (14)

where Yi is the filtered time series and Zi is a stochastic term. The deterministic component
captures the long trend, the yearly and weekly periodicity, and the bank holidays effect.
Mathematically, it is defined as

Di = li + yi + wi + bi

where the terms li, yi, wi, and bi represent the long-term trend, yearly periodicity, weekly
periodicity, and bank holidays effect, respectively. In this work, the estimation procedure
for the deterministic component described in [71] is used.

Once the deterministic component is estimated, the stochastic component Zi is ob-
tained as

Zi = Yi − Di (15)

which is modeled using the aforementioned FAR(P) and two alternate competing models.
The alternate competing models used in this work are the univariate AR(P) model and a
naïve benchmark model. The details of the competing models are as below.

3.2.1. Autoregressive (AR) Model

The univariate AR is one of the popular forecasting models used in time series analysis.
It is similar to a regression model where the response variable is regressed over its lagged
values. More specifically, in the AR modeling, a response variable is linearly dependent on
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its P lagged (past) values and an error term. Denoted by AR(P), mathematically, it can be
written as

Zi = β +
P

∑
k=1

αkZi−k + εi (16)

where Zi is a univariate stationary time series, β is a constant, αk(k = 1, . . . , P) are the
autoregressive parameters, and εi is a white noise process having zero mean and a constant
variance. The choice of appropriate lag order selection is one of the most important steps
in AR modeling. Different methods, including the Akaike information criterion (AIC) or
Bayesian information criterion (BIC), or residual plots, e.g., autocorrelation function (ACF)
and partial autocorrelation function (PACF), can be used to determine the lag order to
be used in the model. In our work, the ACF and PACF are used, which indicate to use a
restricted AR(7) model with αk = 0 for k = 3, 4, 5, 6. The maximum likelihood estimation
(MLE) method is used to estimate the parameters of the above model.

Once both the deterministic and stochastic components are modeled and forecasted,
the final forecast is obtained as

Ŷi+1 = D̂i+1 + Ẑi+1 i = 1, · · · , N. (17)

The flowchart of the proposed general modeling framework is given in Figure 1.

Original Price
Time Series

Outliers Treatment

Filtered Price
Time Series

Deterministic
Component

Stochastic
Component

FAR AR

Final Forecast

Figure 1. Flowchart of the proposed modeling framework.

3.2.2. The Naïve Benchmark

This section provides details about a naïve forecasting method that belongs to a similar
day technique and has reported greater accuracy than other naïve methods [2]. This method
works as follows.
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1. To forecast a given day, for example, Thursday, select the day before Thursday, which
is Wednesday, and denote it by x∗.

2. From the validation dataset, select all the Wednesdays (except x∗) and compare them
with x∗ using the mean absolute error (MAE).

3. Obtain a value of the MAE for each comparison that will result in a vector of the
MAE values.

4. Find and locate the smallest value of the MAE in the vector. Once the Wednesday
having the lowest MAE is located, use its next day, i.e., Thursday, as the forecast
for the concerned Thursday. This process is repeated for all the remaining days of
the week.

4. Out-of-Sample Forecast

The dataset used in this empirical study includes electricity prices data called “Prezzo
Unico Nazionale (PUN)” from the Italian Electricity Market (IPEX), collected from 1 January
2012 until 31 December 2017. Each day consists of 24 observations, where each observation
corresponds to a load period. For modeling and forecasting purposes, we split the data
into two periods. The period from 1 January 2012 to 31 December 2016 (1827 days) is used
for model estimation. This period is used to optimize the parameters of the models. The
out-of-sample period ranges from 1 January 2017 to 31 December 2017 (365 days). This
period is used for forecasting the performance of the models. The one-day-ahead out-of-
sample forecast is obtained through the window expending technique. In Figure 2, the spot
electricity prices series is depicted for six years with a sample of functional (smoothed)
curves for a week plotted on the right-hand side. The weekly periodicity is evident in
the price time series as the prices profile for working days is relatively different from the
non-working days.

Year

P
ric

es
(M

W
h)

2012 2013 2014 2015 2016 2017 2018

0
50

10
0

15
0

20
0

25
0

30
0

5 10 15 20

40
60

80
10

0
12

0
14

0

Hours

 P
ric

es
(M

W
h)

Figure 2. Electricity prices: (left) the original time series of 52,608 hourly electricity spot prices and
(right) electricity prices smoothed curves for one week.

The forecasting performance of the proposed and alternative models is compared
using three standard descriptive forecast error measures. The point forecast accuracy is
evaluated using three standard accuracy measures, namely, mean absolute percentage error
(MAPE), MAE, and root mean square error (RMSE). Mathematically, the MAPE, MAE, and
RMSE are given as
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MAPE =
1
N

N

∑
i=1

∣∣∣Zi,j − Ẑi,j

∣∣∣
Zi,j

× 100

MAE =
1
N

N

∑
i=1

∣∣∣Zi,j − Ẑi,j

∣∣∣
RMSE =

√√√√ 1
N

N

∑
i=1

[Zi,j − Ẑi,j]2

where N represents the number of observations in the out-of-sample forecasting period,
Zi,j denotes the original observed prices of the ith day and jth hour, and Ẑi,j denotes the
forecasted price of the aforementioned day and hour with j = 1, 2, . . . , 24.

In addition, directional forecast statistics can be very beneficial for traders in the
electricity market in making investment decisions. These direction moments or turning
points can be measured using directional statistic defined as [72]

Dstat =
1
N

N

∑
i=1

αi ∗ 100

where

αi =

{
1, if (Zi+1,j −Zi,j)(Ẑi+1,j −Zi,j) ≥ 1
0, otherwise

The electricity prices forecast through the FAR(P) model have the following steps.
In the first step, the moving window filter method was used for the identification and
accommodation of outliers. In the second step, a logarithm (log) transformation was
performed to stabilize the variance of the series. In the third step, model (17) is applied to
the data and the series Zi is obtained using Equation (15). In the fourth step, the Fourier
basis functions are used to transform the discrete data into functional data to obtain 2192
daily functional trajectories, say, Z1(t), . . . ,Z2192(t), t ∈ J. Once the functional data are
obtained, the FAR(P) model described in Section 2.1 is applied, and one-day-ahead forecasts
are obtained for the whole year. In the case of the competing models, the univariate AR
model and the naïve benchmark are applied directly to Zi, and the one-day-ahead forecasts
are obtained for the whole out-of-sample period.

Figure 3 highlights the population mean function µ(t) and the functions obtained by
adding and subtracting a suitable multiple of the eigenfunctions to the mean. Such plots
are helpful to understand the variability in the direction of certain eigenfunctions. The first
eigenfunction is positive, indicating that subjects with positive scores on this component
will contribute to obtaining a consistently larger proportion (77.1%) of the total variation
of the data. The second eigenfunction displays an oscillatory behavior, suggesting that
subjects with positive scores will have lower electricity prices from midnight till early
morning and then slightly more between hours 7 a.m. and 10 a.m., and explain 10.5% of the
total variation of the data. Similarly, the third and fourth eigenfunctions explain 4.8% and
2.7% of the total variation of the data, respectively. The first four eigenfunctions collectively
explain more than 95% of the total variability in the electricity prices data.
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Figure 3. The effect of 1st FPC (upper left panel), the effect of 2nd FPC (upper right panel), the effect
of 3rd FPC (lower left panel), and the effect of 4th FPC (lower right panel).

Concerning the forecasting results for the proposed and alternative models, Table 1
compares the overall forecasting ability of the FAR(P), AR(7), and naïve models through
out-of-sample forecasting errors computed by MAE, MAPE, and RMSE. The table also
provides the directional forecasting performance for these models. From the results, it is
evident that our proposed functional model performs significantly better than the other
competing models. The proposed FAR(P) models produce MAE, MAPE, and RMSE of
5.16, 8.99, and 8.65, respectively. Although the univariate AR model produces better results
than the naïve model, it produces considerably higher forecasting errors compared to the
proposed functional model. Looking at the directional forecasting results, note that the
value of Dstat for FAR(P) is 88.34%, whereas values of 82.96% and 53.64% are obtained
in the case of AR and naïve models, respectively. Hence, our proposed functional model
performs relatively well compared to the competing models. From the number of forecast
direction moments, it can be seen that the FAR(P) forecast 1525 out of the total 8760 load
periods accurately (the“SAME” in Table 1 refers to the absolute difference of the forecasted
value minus the actual value to be less than EUR 1), whereas this value for the AR and naïve
models is 1272 and 385, respectively. The number of over-forecasted values for FAR(P) and
AR(7) are 3743 and 4084, respectively. Again, the poor performance of the naïve model is
evident from the results of the directional forecast.
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Table 1. IPEX electricity prices: out-of-sample forecasting errors MAE, MAPE, and RMSE for FAR(P),
AR(7), naïve models, and the directional statistics Dstat with number of forecasting directions (same,
up, down).

Model MAE MAPE RMSE Dstat (%) SAME UP DOWN

FAR(P) 5.16485 8.99009 8.65032 88.34342 1525 3743 3492
AR(7) 5.65833 10.09469 9.20305 82.95525 1272 4084 3404
Naive 6.86278 12.63467 10.09929 53.63626 385 4137 4238

Table 2 reports the daily forecast accuracy for the electricity prices using different
models. From the table, one can see that the FAR(P) model produces lower forecasting
errors compared to the univariate AR(7) and naïve models. Although the forecast errors
vary from day to day, they are lower on Thursday and Friday when considering MAPE.
The poor performance of the naïve model is evident from this table. The hourly forecast
errors for different models are listed in Table 3, which shows that the forecast errors vary
throughout the day. Although the FAR(P) model produces better results on most hours, the
AR(7) has better results on two hours when considering the MAPE. It is worth mentioning
that the proposed FAR(P) model performs significantly well during peak hours compared
to the competing models. Again, the poor performance of the naïve model is evident from
the results.

Table 2. IPEX electricity prices: daily forecast errors for FAR(P), AR(7), and naïve models.

Model Error
Days of a Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

FAR(P)
MAE

5.63112 5.87795 6.53440 5.00897 4.88412 4.06196 4.17448
AR(7) 6.16619 6.34358 6.95023 5.86286 5.45145 4.54586 4.31402
Naive 7.58172 7.38245 6.39990 6.93643 6.40897 6.86697 6.47056

FAR(P)
MAPE

9.87044 9.23202 9.30545 7.72602 7.85736 8.58661 10.32703
AR(7) 11.14407 10.06261 10.35827 9.02434 8.86721 9.91458 11.26919
Naive 13.82605 12.47558 11.01666 10.93947 11.04299 13.52881 18.26894

FAR(P)
RMSE

8.72362 9.56184 11.93833 9.59608 7.97935 5.43820 5.36185
AR(7) 9.34377 10.08267 11.97317 10.87680 8.79962 5.86412 5.60787
Naive 11.60842 10.63521 10.37988 10.76548 8.88560 9.54221 8.54465

Finally, the results obtained by our proposed functional model in this study are
compared with the results listed in the literature. Here, it is worth mentioning that such
a comparison is only to evaluate the performance of our model, as different authors
considered different forecasting horizons, different periods, and different error summary
measures. Using the Italian electricity market and considering a one-day-ahead forecast,
Ref. [2] obtained an MAPE value of 9.74 using the NPAR model, which is significantly
higher than our proposed model MAPE value of 8.99. The research work of [73] used the
Italian electricity market data, and their proposed model produced an MAE of 8.58, whereas
our proposal reported an MAE value of 5.16, 60% lower. For a one-day-ahead forecast,
Ref. [70] reported an MAPE value of 9.05, which is slightly higher than our obtained MAPE
value. Using an ARX-EGARCH model for the Italian electricity prices time series, Ref. [74]
obtained an RMSE of 11.58, whereas our proposed model produced an RMSE value of
8.65. The work of [75] reported RMSE values of 16.72 and 15.79 using ARMA and GARCH
models, respectively, significantly higher than our value of 8.65.
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Table 3. IPEX electricity prices: hourly forecast errors for FAR(P), AR(7), and naïve models.

Model Hour MAE MAPE RMSE Hour MAE MAPE RMSE

FAR(P)
1

3.17448 10.32703 5.36185
13

5.03299 9.77343 7.50008
AR(7) 4.09499 8.20630 5.48352 5.50527 10.81530 8.32688
Naive 2.99810 5.71016 4.35740 5.89142 10.72254 8.54265

FAR(P)
2

5.63112 9.87044 8.72362
14

5.13495 10.97364 7.45864
AR(7) 3.90162 8.62680 5.04521 5.69565 12.52584 8.52711
Naive 3.99566 8.14583 5.04110 5.15640 10.87232 7.39582

FAR(P)
3

5.87795 9.23202 6.46184
15

4.91392 10.19534 9.29372
AR(7) 3.82670 9.05766 4.96036 6.52555 13.92227 10.37498
Naive 3.66855 8.12195 4.42199 5.40823 11.21776 7.62226

FAR(P)
4

3.39714 8.41575 4.46110
16

6.20807 11.99534 9.73345
AR(7) 3.97490 10.11668 5.28032 6.91072 13.74287 10.63356
Naive 3.52617 8.48418 4.64024 6.07377 11.75996 9.43945

FAR(P)
5

3.39652 8.35320 4.46989
17

6.63385 10.73122 10.96537
AR(7) 3.89939 9.77731 5.18900 7.02079 11.61225 11.34363
Naive 6.33318 12.83398 9.91261 6.47302 10.62784 10.48912

FAR(P)
6

4.88413 7.85736 7.97935
18

6.95788 9.73444 12.11111
AR(7) 3.73582 8.64474 5.02575 7.32959 10.47554 12.35075
Naive 7.59001 8.59831 4.74848 7.04453 13.45730 10.9536

FAR(P)
7

4.06196 8.58661 5.43820
19

7.83811 9.91660 14.00040
AR(7) 4.27194 8.50246 5.79461 7.99731 10.31619 13.91400
Naive 4.98340 11.28051 6.28747 7.35881 11.86122 11.68502

FAR(P)
8

4.94668 8.16684 7.92432
20

7.35007 9.7326 11.80230
AR(7) 5.60254 9.18891 9.23695 7.40072 9.98525 11.66830
Naive 6.25091 11.78682 8.76700 8.46851 12.49491 13.42239

FAR(P)
9

7.28609 10.34856 12.47580
21

6.28777 9.03979 9.63504
AR(7) 8.17881 11.92595 13.42361 6.26023 9.14635 9.46692
Naive 7.14544 11.18423 11.62178 8.05637 12.35241 11.55807

FAR(P)
10

6.73647 9.88567 11.63280
22

5.11291 7.86378 8.41742
AR(7) 7.67803 11.57003 12.60697 5.18257 8.05526 8.48756
Naive 6.95444 10.27270 11.25744 7.08351 10.66474 10.11036

FAR(P)
11

6.09630 9.80792 9.88950
23

3.86946 6.64648 6.09351
AR(7) 6.80914 11.15632 10.81531 3.93445 9.78030 6.12057
Naive 6.40122 10.11695 9.80316 6.14502 9.13875 9.47691

FAR(P)
12

5.79828 10.13717 8.84841
24

3.55292 6.70792 5.27639
AR(7) 6.45438 11.43950 9.81589 3.55885 6.69256 5.32193
Naive 5.94363 10.01007 8.73133 4.49332 7.98897 6.5533

5. Conclusions and Future Direction

In today’s competitive electricity market, modeling and forecasting electricity prices
are critical for market participants to optimize their strategies. However, electricity prices
exhibit specific features, including long-trend, periodicities, spikes or jumps, bank holidays,
etc. In the presence of these features, the forecasting problem is a great challenge for
researchers. This paper proposes a functional model for modeling and forecasting electricity
prices. To this end, the price time series is first treated for the extreme values. The filtered
series is then divided into deterministic and stochastic parts. The deterministic part
modeled the effects of long-trend, annual, and weekly periodicities, and bank holidays.
For the stochastic component, a functional AR model (FAR) is proposed that is capable of
automatic selection of lags and dimensions. To evaluate the performance of our proposed
model, two alternate models, namely, the univariate AR and a naïve benchmark, are also
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used in this study. For empirical comparison, data from the Italian electricity market are
used and the out-of-sample one-day-ahead forecast errors measured through MAPE, MAE,
and RMSE are calculated for a complete year.

The empirical results suggest that the proposed FAR(P) model is significantly better
than the competing model, as it produced considerably lower forecasting errors. Further-
more, the component estimation procedure is highly effective in forecasting electricity
prices. Moreover, the directional forecast results suggest that this approach can significantly
increase the number of accurate forecasts. Accurate forecasting can be very helpful for the
traders (buyers and suppliers) to optimize their bidding strategies to maximize their gains
and to use the resources required for electricity generation more effectively. Consequently,
this will also benefit the end-user in terms of reliable and economical electricity facilities.

As the current study does not consider any exogenous variable effect in the model, this
effect can be investigated in the future. Furthermore, as the current study only considers
linear models, nonlinear models can also be compared with the proposed functional model.
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