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a b s t r a c t 

The new Coronavirus (COVID-19) is an emerging disease responsible for infecting millions of people since 

the first notification until nowadays. Developing efficient short-term forecasting models allow forecast- 

ing the number of future cases. In this context, it is possible to develop strategic planning in the pub- 

lic health system to avoid deaths. In this paper, autoregressive integrated moving average (ARIMA), cu- 

bist regression (CUBIST), random forest (RF), ridge regression (RIDGE), support vector regression (SVR), 

and stacking-ensemble learning are evaluated in the task of time series forecasting with one, three, and 

six-days ahead the COVID-19 cumulative confirmed cases in ten Brazilian states with a high daily inci- 

dence. In the stacking-ensemble learning approach, the CUBIST regression, RF, RIDGE, and SVR models are 

adopted as base-learners and Gaussian process (GP) as meta-learner. The models’ effectiveness is evalu- 

ated based on the improvement index, mean absolute error, and symmetric mean absolute percentage 

error criteria. In most of the cases, the SVR and stacking-ensemble learning reach a better performance 

regarding adopted criteria than compared models. In general, the developed models can generate accu- 

rate forecasting, achieving errors in a range of 0.87%–3.51%, 1.02%–5.63%, and 0.95%–6.90% in one, three, 

and six-days-ahead, respectively. The ranking of models, from the best to the worst regarding accuracy, in 

all scenarios is SVR, stacking-ensemble learning, ARIMA, CUBIST, RIDGE, and RF models. The use of eval- 

uated models is recommended to forecasting and monitor the ongoing growth of COVID-19 cases, once 

these models can assist the managers in the decision-making support systems. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

The new Coronavirus (COVID-19) is an emerging disease re- 

sponsible for infecting millions of people and killing thousands 

worldwide since the first notification until nowadays, according 

to the World Health Organization (WHO) [1,2] . Also according to 

WHO, Brazil registered 40.581 confirmed cases until April 22nd 

2020, holding the 12th position in the world ranking in the num- 

ber of confirmed cases of COVID-19, and 2nd position in the Amer- 

icas (behind the United States of America). 

∗ Corresponding author at: Department of Mathematics, Federal Technological 

University of Parana (UTFPR) Via do Conhecimento, KM 01 - Fraron, Pato Branco, 

PR, 85503–390 Brazil. 

E-mail address: mribeiro@utfpr.edu.br (M.H.D.M. Ribeiro). 

Due to the impacts of the COVID-19 pandemic in people’s lives 

and the world’s economy, the governments and population are 

most concerned with (i) when the COVID-19 outbreak will peak; 

(ii) how long the outbreak will last and (iii) how many people will 

eventually be infected [3] . Further, Boccaletti et al. [4] have iden- 

tified at least three scientific communities that may cooperate in 

the effort to deal with the current pandemic: (i) the community 

of applied mathematicians, virologists and epidemiologists, devel- 

oping sophisticated diffusion models to the specific properties of a 

given pathogen; (ii) the community of complex systems scientists 

who study the spread of infections using compartmental models, 

using methods and principles from statistical mechanics and non- 

linear dynamics; and (iii) the community of scientists who incor- 

porate artificial intelligence (AI) and most specifically deep learn- 

ing approaches to produce accurate predictive models. Also, dif- 
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Table 1 

First and last report dates by state. 

State Number of observed days First report Last report Cumulative confirmed cases Cumulative deaths 

AM 34 13/03/2020 19/04/2020 2044 182 

BA 43 06/03/2020 19/04/2020 1249 45 

CE 35 16/03/2020 19/04/2020 3306 189 

MG 42 08/03/2020 19/04/2020 1154 39 

PR 36 12/03/2020 18/04/2020 960 49 

RJ 38 05/03/2020 19/04/2020 4675 402 

RN 30 12/03/2020 18/04/2020 561 26 

RS 38 10/03/2020 19/04/2020 869 26 

SC 39 12/03/2020 19/04/2020 1025 35 

SP 53 25/02/2020 19/04/2020 14267 1015 

ferent studies are evaluating the impacts of COVID-19 on society, 

whether through predictions of future cases, as well as variables 

capable of helping to understand the spread of this disease [5–9] . 

Moreover, epidemiological time series forecasting plays an im- 

portant role in health public system, once it allows the managers 

to develop strategic planning to avoid possible epidemics. Forecast- 

ing diseases as accurate as possible is important due to their im- 

pact on the public health system. To ensure this accuracy, AI mod- 

els have been widely used to forecast epidemiological time series 

over the years [10–12] . Moreover, in the AI context, Vaishya et al. 

[13] presented a review of trends in COVID-19 data analysis. 

Regarding this context, the objective of this paper is to explore 

and compare the predictive capacity of machine learning regres- 

sion and statistical models, in the task of forecasting one, three, 

and six-days-ahead COVID-19 cumulative cases in Brazil. In this 

respect, datasets of ten Brazilian states some with a high inci- 

dence of COVID-19 until now, like Sao Paulo and Rio de Janeiro, 

are adopted to evaluates the forecasting efficiency through of the 

autoregressive integrated moving average (ARIMA), cubist regres- 

sion (CUBIST), random forest (RF), ridge regression (RIDGE), sup- 

port vector regression (SVR), and stacking-ensemble learning mod- 

els. In the stacking-ensemble learning modelling, which is an ef- 

fective ensemble learning approach [14,15] , CUBIST, RF, RIDGE, and 

SVR are used as base-learners (weak models), and Gaussian pro- 

cess (GP) as meta-learner (strong model). The out-of-sample fore- 

casting accuracy of each model is compared by some performance 

metrics such as the improvement percentage index (IP), mean ab- 

solute errors (MAE), and symmetric mean absolute percentage er- 

ror (sMAPE). 

The contributions of this paper can be summarized as follows: 

• The first contribution is related to the presentation of a novel 

analysis of the forecast model for cumulative confirmed cases of 

COVID-19 in Brazil, whose accuracy of the models assists gover- 

nors in decision-making to contain the pandemic and strategies 

concerning the health system; 
• The second contribution, we can highlight the use of hetero- 

geneous machine learning models, as well as the stacking- 

ensemble learning approach to forecast the Brazilian cumula- 

tive confirmed cases of COVID-19; 
• Also, this paper evaluates models forecasting in a multi-day- 

ahead forecasting strategy. The forecasting time horizons are 

the interval of one, three, and six-days-ahead. This range of the 

forecasting time horizon allows us to verify the effectiveness of 

the predicting models in different scenarios, helping in future 

strategies in fighting COVID-19. 

The remainder of this paper is organized as follows: 

Section 2.1 a brief description of the dataset adopted in this 

paper is given. The forecasting models applied in this study are 

described in Section 2.2 . Section 3 details the procedures applied 

in the research methodology. Results obtained and related discus- 

sion about models forecasting performance are given on Section 4 . 

Finally, Section 5 concludes this work with considerations and 

some directions for future research proposals. 

2. Material and methods 

This section presents the description of the material analyzed 

( Section 2.1 ) as well as the models description applied in this pa- 

per ( Section 2.2 ). 

2.1. Dataset description 

The collected dataset refers to the cumulative confirmed cases 

of COVID-19 that occurred in Brazil until April, 18 or 19 of 2020. 

The dataset was collected from an application programming in- 

terface [16] that retrieves the daily information about COVID-19 

cases from all 27 Brazilian State Health Offices, gather them, and 

make it a publicly available. Among the 27 federative units (26 

states and one federal district), ten states some with a high in- 

cidence of COVID-19 cases and other states with lower tempera- 

tures, states from south of Brazil, were chosen, among them are 

Amazonas (AM), Bahia (BA), Ceara (CE), Minas Gerais (MG), Parana 

(PR), Rio de Janeiro (RJ), Rio Grande do Norte (RN), Rio Grande do 

Sul (RS), Santa Catarina (SC), and Sao Paulo (SP). The measurement 

period of each state varies, once each state counts since the day of 

its first case until the day of the last report. The cumulative con- 

firmed cases and deaths of each state, as well as the period from 

the first and last reports, are illustrated in Table 1 . The change in 

the way of accounting for the number of cases, by the health de- 

partments, may change the data presented in this paper. 

A heatmap of the cumulative confirmed cases is presented in 

Fig. 1 . 

2.2. Methodologies 

This section describes a brief of each model employed in the 

data analysis. 

• ARIMA is a Box & Jenkins modelling usually employed to deal 

with non-stationary time series. In fact, the ARIMA model is full 

specified by autoregressive ( p ), different degrees of trend dif- 

ferences ( d ), and moving average operators ( q ). These parame- 

ters are used do define the model order, and usually defined 

by grid-search, as well as by autocorrelation and partial auto- 

correlation function. In this context, the model is described as 

ARIMA (p,d,q) [17] . 
• CUBIST is a rule-based model, which performs predictions fol- 

lowing the regression of trees principle [18] . Through the use of 

a committee of the rules, and using the neighborhood concept 

similar to k -nearest-neighbor modelling, the final forecasting is 

obtained. 
• GP is composed of a set of random variables Gaussian dis- 

tributed and fully specified by its mean and covariance (ker- 

nel) function [19] . In this paper, the GP with a linear kernel is 

adopted. 
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Fig. 1. Heatmap of the cumulative confirmed cases of the analyzed states. 

• RIDGE is a regularized regression approach [20] which employs 

a penalization term in the ordinary least squares algorithm. It 

is an effective tool, once it reduces the bias of parameter esti- 

mates by controlling the standard errors. Moreover, the model 

can deal with inputs multi-collinearity problem. 
• RF is a bagging ensemble-based model, which combines the 

bagging advantages characterized by the creation of multiple 

samples, with refitting through of the bootstrap technique, from 

the same set of data, and random selection of predictors to 

compose each node of the decision tree [21] . RF is a fast and ro- 

bust supervised learning method able to deal with the random- 

ness of the time series. Furthermore, it is interesting because, 

in addition to being an ensemble approach, only the number of 

predictors for each node needs to be tuned. 
• SVR consists in determining support vectors (points) close to 

a hyperplane that maximizes the margin between two-point 

classes obtained from the difference between the target value 

and a threshold. To deal with non-linear problems SVR takes 

into account kernel functions, which calculates the similarity 

between two observations. In this paper, the linear kernel is 

adopted. The main advantages of the use of SVR lies in its 

capacity to capture the predictor non-linearity and then use 

it to improve the forecasting cases. In the same direction, it 

is advantageous to employ this perspective in this case study 

adopted, since that the samples are small [22] . 
• Stacked Generalization or stacking-ensemble learning is an 

ensemble-based approach [23] which combines through a 

meta-learner the predictions of a set of weak models (base- 

learners) to obtain a stronger learner. This approach usually op- 

erates into two levels, where in the first level the base-learners 

are trained and its predictions are obtained. In the next stage, 

a meta-learner uses, as inputs, the predictions of the previous 

level in the training phase. The stacking predictions are ob- 

tained from meta-learner. The main advantage of the stacking- 

ensemble learning is that this approach can improve the accu- 

racy and additionally reduce error variance [14] . 

3. Proposed forecasting framework 

This section describes the main steps in the data analysis 

adopted by CUBIST, RF, RIDGE, SVR, and stacking-ensemble learn- 

ing models. Also, the ARIMA modelling is described. 

Step 1 : Firstly, the raw data is split into training and test 

datasets. The test dataset is composed of six last observations, and 

the training dataset by the remain samples [14] . The training data 

are centered by its mean value and divided by its standard devia- 

tion. To develops multi-days-ahead COVID-19 cases forecasting, re- 

cursive strategy is employed [24] . In this aspect, one model is fit- 

ted for one-day-ahead forecasting. Next, the recursive strategy uses 

the forecasting value as an input for the same model to forecast 

the next step, continuing this manner until reaching the desirable 

horizon. The training structure adopted in this paper is stated as 

follows, 

y (t+1) = f 
{

y t , . . . , y t+1 −n y 

}

+ ǫ ǫ ∼ N(0 , σ 2 ) , (1) 

in which f is a function related to the adopted model in the train- 

ing stage, y t+1 is the COVID-19 case one-day-ahead, n y = 5 are the 

past confirmed cases, ǫ is the random error, following a normal 

distribution with zero mean ( 0 ) and constant variance σ 2 . In this 

paper, the aim is to obtain the cases up to H next days, espe- 

cially up to 1 (ODA, one-day-ahead), 3 (TDA, three-days-ahead), 

and 6-days-ahead (SDA, six-days-ahead), respectively. The follow- 

ing structures are considered, 

ˆ y t+ h = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

ˆ f 
[

y t , y t−1 , . . . , y t−n y +1 

]

if h = 1 

ˆ f 
[

ˆ y t+ h −1 , . . . , ̂  y t+1 , y t , . . . , y t+ h −n y 

]

if h ∈ [ 2 , ..., n y ] 

ˆ f 
[

ˆ y t+ h −1 , . . . , ̂  y t+ h −n y 

]

if h ∈ [ n y + 1 , . . . , H ] , 

(2) 

where, ̂  y t+ h is the forecast value at time t and forecast horizon up 

to h , y t+ h −n y and ˆ y t+ h −n y are the previously observed and forecast 

cases lags in n y = 5 days. The n y value is chosen through grid- 

search with purpose to capture the best data behavior. 
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Fig. 2. Proposed forecasting framework. 

Step 2 : In the stacking-ensemble learning modelling, the base- 

learners CUBIST, RF, RIDGE, SVR are trained and its forecasting are 

used as inputs for meta-learner GP. In the training stage, leave- 

one-out cross-validation with a time slice is adopted [14] . Finally, 

the out-of-sample forecasts are computed. These approaches are 

developed using the caret package [25] . The ARIMA modeling 

is performed through the use of forecast package [26,27] with 

use of auto.arima function. To define the ARIMA order, grid- 

search is adopted, and the most suitable order is that reach a lower 

Akaike and Bayesian Akaike criteria information. Both analyses are 

developed using R software [28] . All hyperparameters employed in 

this study are presented in Table B.1 in Appendix B . 

Step 3 : To evaluate the effectiveness of adopted models, from 

obtained forecasts out-of-sample (test set), performance IP (3) , 

MAE (4) , and sMAPE (5) criteria are computed as 

MAE = 
1 

n 

n 
∑ 

i =1 

∣

∣y i − ˆ y i 
∣

∣, (3) 

sMAPE = 
2 

n 

n 
∑ 

i =1 

∣

∣y i − ˆ y i 
∣

∣

| y i | + 

∣

∣ ˆ y i 
∣

∣

, (4) 

IP = 100 ×
M c − M b 

M c 
, (5) 

where n is the number of observations, y i and ˆ y i are the i th ob- 

served and predicted values, respectively. Also, the M c and M b rep- 

resent the performance measure of compared and best models, re- 

spectively. 

Fig. 2 presents the proposed forecasting framework. 

4. Results 

This section describes the results of the developed experiments 

in forecasts out-of-sample (test set). First, Section 4.1 compares the 

results of evaluated models over ten datasets and three forecast- 

ing horizons adopted. In Table A.1 in Appendix A , the best results 

regarding accuracy are presented in bold. Additionally, Figs. 3 up 

to 4 illustrate the relation between observed and predicted values 

achieved by models with best set of performance measures de- 

picted in Table A.1 , as well as box-plots for out-of-sample errors 

are illustrated in Fig. 5 . 

4.1. Performance measures for compared models 

In this section, the main results achieved by the best model re- 

garding MAE and sMAPE criteria are presented for short-term fore- 

casting multi-days- ahead of cumulative cases of COVID-19 from 

ten Brazilian states. 

• AM: In this state, CUBIST, and RIDGE approaches could be con- 

sidered to forecasting COVID-19 cases. In fact, in respect to ODA 

and TDA, CUBIST outperforms models, while for SDA the RIDGE 

achieves better accuracy regarding MAE and sMAPE than oth- 

ers. The improvement in the MAE for ODA and TDA achieved 

by CUBIST ranges between 6.58%–92.77%, and 11.39%–88.54%, 

respectively. Through sMAPE analysis, the RIDGE model outper- 

forms other models, and this criterion is reduced in the range 

of 16.46%–91.88%, for SDA horizon. 
• BA, MG, RS, and SP: For these states, in all forecasting windows, 

the SVR approach achieved better accuracy than other mod- 

els, for both MAE and sMAPE criteria in the multi-days-ahead 

forecasting task of the confirmed number of COVID-19. In fact, 
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Fig. 3. Predicted versus observed cumulative confirmed cases of COVID-19 for AM, BA, CE, and MG states. 

the improvement in sMAPE is ranged in 13.26%–95.11%, 4.23%–

94.88%, and 38.59%–95.24%, respectively, in ODA, TDA, and SDA 

forecasting horizons. Moreover, the same behavior is observed 

when the improvement in sMAPE criterion is obtained. 
• CE and RN: In the CE state, the ARIMA model has a better 

performance in the forecasting out-of-sample than other mod- 

els for ODA and TDA time windows. In this aspect, for MAE 

criterion, the improvement is ranged between 72.36%–98.03%, 

and 45.93%–92.40%, for ODA, and TDA time windows, respec- 

tively. For sMAPE, the improvement on ODA, and TDA horizons 

is 65.06%–97.84%, and 32.81%–92.53%, respectively. The SVR has 

better results than ARIMA model for SDA. Considering the RN 

state, the same analysis is developed for ODA, and TDA hori- 

zons. The exception to the SDA horizon, in which the CUBIST 

model has better effectiveness in the MAE and sMAPE criteria 

than remain models. 
• PR, RJ, and SC: For these states localized into the south region 

(PR and SC) and southeast region (RJ) of Brazil, the most appro- 

priate approach to forecast cumulative cases of COVID-19 is the 

stacking-ensemble learning, exception in ODA horizon, when 

ARIMA model has better results. Stacking overcomes the draw- 

back of single models and achieves the best accuracy than other 

models. In fact, for these states, the improvement in MAE and 

sMAPE are between 14.01%–94.68%, and 17.48%–95.41%, respec- 

tively, for ODA horizon. The improvement in order forecasting 

horizons presents the same behavior of ODA, with the greatest 

magnitude of improvement for TDA and SDA. 

Remark: In this experiment, 180 scenarios (10 datasets, 3 fore- 

casting horizons, and 6 models) were evaluated for the task of 

forecasting cumulative COVID-19 cases. In an overview, the best 

models for each state, obtained sMAPE ranged between 0.87%–

3.51%, 1.02%–5.63%, and 0.95%–6.90% for ODA, TDA, and SDA fore- 

casting, respectively. The ranking of models in all scenarios is SVR, 

stacking-ensemble, ARIMA, CUBIST, RIDGE, and RF models. In con- 

trast to finds of [29] , for the datasets evaluated in this paper, 

ARIMA modelling was effective in some situation for very-short 

horizons When the horizon is SDA, ARIMA model has worst per- 

formance than most of compared models. However, for ODA the 

applications are limited. From a broader perspective, the efficiency 

of SVR is due to its ability to deal with small size dataset, while 

the stacking-ensemble learning combines the advantages of sev- 

eral single models to learn the data behavior and obtain forecasts 

similar to observed values. On the other hand, the difficulty of the 

RF model to forecasting cumulative COVID-19 cases could be at- 

tributed to the fact that this approach requires more observations 

to effectively learn the data pattern. 
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Fig. 4. Predicted versus observed cumulative confirmed cases of COVID-19 for PR, RJ, RN, RS, SC, and SP states. 
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Fig. 5. Box-plot for absolute error according to model and state for COVID-19 forecasting up to SD A. 

According to the information depicted in Figs. 3 and 4 it is pos- 

sible to identify that the behavior of the data is learned by the 

evaluated models, which can forecasting compatible cases with the 

observed values. The good performance obtained in the training 

phase persists in the test stage. In the Fig. 3 a and 4 c the mod- 

els, RIDGE and CUBIST, as well as in Fig. 3 d and 4 f, SVR presented 

difficulties to capture the variability of the first observations. The 

dataset is reduced for all states, which justifies the difficulties of 

the mathematical models to learn the behavior. 

Fig. 5 shows the box-plots of out-of-sample forecasting errors in 

the SDA horizon for each model and dataset used. This horizon is 

chosen to analysis due to the recursive strategy adopted, once the 

errors increase according to the growth of the forecasting horizon. 

The box diagram depicts the variation of absolute errors for each 

model, which reflects the stability of each model. In this context, 

the dots out of boxes are considered outliers errors, and the black 

dot inside of the box is the MAE for each model. 

Through the box-plot analysis, boxes with lower size indicate 

models with lower variation in the errors, and the results pre- 

sented in Table A.1 are corroborated by the depicted in Fig. 5 . Mod- 

els with lower errors also reach better stability, which means that 

the most suitable modelling for each state can maintain a learning 

pattern, achieving homogeneous prediction errors. 

5. Conclusion and future research 

In this paper, six machine learning approaches named CU- 

BIST, RF, RIDGE, SVR, and stacking-ensemble learning, as well as 

ARIMA statistical model, were employed in the task of forecast- 

ing one, three, and six-days-ahead the COVID-19 cumulative con- 

firmed cases in ten Brazilian states with a high daily incidence. The 

COVID-19 cumulative confirmed cases for AM, BA, CE, MG, PR, RJ, 

RN, RS, SC, and SP states were used. The IP, MAE, and sMAPE crite- 

ria were adopted to evaluate the performance of the compared ap- 

proaches. Moreover, the stability of out-of-sample errors was eval- 

uated through box-plots. 

In respect of obtained results, it is possible to infer that SVR 

and stacking-ensemble learning model are suitable tools to fore- 

cast COVID-19 cases for most of the adopted states, once that these 

approaches were able to learn the nonlinearities inherent to the 

evaluated epidemiological time series. Also, ARIMA can be consid- 

ered in some aspects for ODA, while CUBIST and RIDGE models 

deserve attention for the development of this task in TDA and SDA 

time windows. Therefore, the ranking of models, from the best 

to the worst regarding accuracy, in all scenarios is SVR, stacking- 

ensemble learning, ARIMA, CUBIST, RIDGE, and RF models. How- 

ever, even though the models discussed in this paper presented 

forecasting cases similar to those observed, they should be used 

cautiously. This fact is attributed to the chaotic dynamics of the 

analyzed data, as well as the diversity of exogenous factors that 

can affect the daily notifications of COVID-19. 

For future works, it is intended (i) to adopt deep learning 

approaches combined to stacking-ensemble learning, (ii) to em- 

ploy copulas functions for data augmentation dealing with small 

samples, (iii) to use multi-objective optimization to tune hy- 

perparameters of adopted forecasting models, (iv) to adopt set 

of features which can help to explain the future cases of the 

COVID-19. 
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Appendix A. Performance measures 

Table A.1 presents the performance measures for each model in 

each state and forecasting horizon. 

Appendix B. Hyperparameters 

Table B.1 presents the hyperparameters obtained by grid-search 

for the models employed in this paper. In the stacking-ensemble 

learning modeling, for the GP meta-learner there is no hyperapa- 

rameter to be tuned. 

https://doi.org/10.13039/501100003593
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Table A1 

Performance measures for each evaluated model. 

State Forecasting Horizon Criteria Model 

ARIMA CUBIST RF RIDGE Stacking SVR 

AM 

ODA MAE 95 45 622.17 48.17 121.5 56.33 

sMAPE 6.61% 2.80% 42.50% 2.83% 7.13% 3.18% 

TDA MAE 101.33 71.33 622.17 83.67 176.67 80.5 

sMAPE 6.55% 4.50% 42.50% 4.49% 10.47% 4.19% 

SDA MAE 119.17 162.17 622.17 62.33 233.17 79.17 

sMAPE 6.97% 9.55% 42.50% 3.45% 13.87% 4.13% 

BA 

ODA MAE 12 93.83 366.33 45.33 107.67 42.33 

sMAPE 1.56% 9.16% 42.02% 4.36% 10.68% 4.15% 

TDA MAE 70 132 366.33 74.33 171.67 59.67 

sMAPE 8.00% 12.92% 42.02% 7.46% 17.32% 5.63% 

SDA MAE 155.67 152.33 366.33 152.83 215.83 73.17 

sMAPE 15.41% 15.08% 42.02% 15.16% 22.25% 6.90% 

CE 

ODA MAE 18 65.17 916 70.33 220.83 87.67 

sMAPE 0.87% 2.49% 40.28% 2.81% 8.20% 3.17% 

TDA MAE 69.66 128.83 916 149.83 382.17 136.67 

sMAPE 3.01% 4.48% 40.28% 5.39% 14.48% 4.78% 

SDA MAE 257 118.17 916 98.17 484.33 164.17 

sMAPE 9.34% 4.11% 40.28% 3.52% 18.78% 5.77% 

MG 

ODA MAE 32 17.5 235.5 24.33 56.5 16 

sMAPE 3.63% 1.81% 26.21% 2.50% 5.59% 1.57% 

TDA MAE 26 21.33 235.5 21.67 78.17 21 

sMAPE 3.08% 2.20% 26.21% 2.13% 7.81% 2.04% 

SDA MAE 55 36.83 235.5 32.17 97.83 14.33 

sMAPE 5.43% 3.58% 26.21% 3.14% 9.88% 1.41% 

PR 

ODA MAE 31 27.33 163.5 38 23.5 35.33 

sMAPE 3.96% 3.26% 21.09% 4.50% 2.69% 4.18% 

TDA MAE 51.66 57.33 163.5 76.5 28.17 60.17 

sMAPE 6.21% 6.56% 21.09% 8.61% 3.21% 6.89% 

SDA MAE 73.67 118 163.5 151 24.17 117.17 

sMAPE 8.20% 12.56% 21.09% 15.75% 2.75% 12.53% 

RJ 

ODA MAE 110 165.5 1305.67 273.67 69.5 360.83 

sMAPE 3.17% 3.82% 37.06% 6.25% 1.70% 8.09% 

TDA MAE 120 275.67 1305.67 462.83 68 429.33 

sMAPE 3.18% 6.24% 37.06% 10.20% 1.65% 9.49% 

SDA MAE 158.33 532.67 1305.67 696.17 65.17 529.5 

sMAPE 3.67% 11.34% 37.06% 14.67% 1.58% 11.43% 

RN 

ODA MAE 6 17 152.5 24.83 30.33 18.33 

sMAPE 1.61% 3.87% 39.28% 5.56% 6.45% 4.14% 

TDA MAE 8.33 30.83 152.5 37.67 54 35.5 

sMAPE 2.11% 6.54% 39.28% 8.51% 11.66% 7.69% 

SDA MAE 36.33 15.83 152.5 62 54 18.5 

sMAPE 7.61% 3.42% % 39.28% 12.76% 11.66% 4.15% 

RS 

ODA MAE 12 12.83 146.67 11.33 45.5 8.17 

sMAPE 1.64% 1.62% 19.82% 1.43% 5.76% 0.97% 

TDA MAE 24 19.17 147.33 18.67 71.33 8.5 

sMAPE 3.22% 2.47% 19.92% 2.42% 9.14% 1.02% 

SDA MAE 34.5 34.17 147.5 37.67 91.83 7.83 

sMAPE 4.31% 4.26% 19.95% 4.74% 11.89% 0.95% 

SC 

ODA MAE 21 93.67 179.5 180.5 33.83 177.67 

sMAPE 2.43% 9.66% 20.97% 17.53% 3.66% 17.27% 

TDA MAE 44.33 100.33 179.5 277 41 257.33 

sMAPE 4.76% 10.30% 20.97% 25.34% 4.39% 23.79% 

SDA MAE 56 102.83 179.5 338.5 43.83 330.33 

sMAPE 5.65% 10.53% 20.97% 29.95% 4.68% 29.23% 

SP 

ODA MAE 436 1587 3799 537.33 1363.83 409 

sMAPE 4.65% 13.47% 35.85% 4.44% 11.44% 3.51% 

TDA MAE 1485.66 2471.83 3801 579.17 2243 326.67 

sMAPE 14.56% 21.81% 35.88% 4.79% 19.47% 2.77% 

SDA MAE 2779 3054.67 3801.5 591.83 2665.83 362.83 

sMAPE 24.74% 27.60% 35.88% 4.95% 23.55% 3.04% 
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Table B1 

Hyperparameters selected by grid-search for each evaluated model. 

State Model 

ARIMA CUBIST SVR RIDGE RF 

(p,d,q) Committees Neighbors Cost Regularization 

Number of randomly 

selected predictors 

AM (1,2,0) 10 5 1 3.16E-03 2 

BA (0,2,1) 20 9 1 1E-04 2 

CE (2,2,1) 1 9 1 0 4 

MG (0,2,1) 1 9 1 1E-04 2 

PR (0,2,1) 20 5 1 3.16E-03 3 

RJ (0,2,1) 1 9 1 1E-04 3 

RN (1,1,0) 1 9 1 3.16E-03 5 

RS (0,1,0) 1 9 1 1E-04 3 

SC (0,2,1) 10 0 1 3.16E-03 5 

SP (0,2,0) 20 9 1 1E-04 5 
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