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Short-Term Forecasting of Heat Demand of
Buildings for Efficient and Optimal Energy

Management Based on Integrated
Machine Learning Models

Abinet Tesfaye Eseye and Matti Lehtonen

Abstract—The increasing growth in the energy demand
calls for robust actions to design and optimize energy-
related assets for efficient and economic energy supply
and demand within a smart grid setup. This article pro-
poses a novel integrated machine learning (ML) technique
to forecast the heat demand of buildings in a district
heating system. The proposed short-term (24h-ahead) heat
demand forecasting model is based on the integration of
empirical mode decomposition (EMD), imperialistic com-
petitive algorithm (ICA), and support vector machine (SVM).
The proposed model also embeds an ML-based feature
selection (FS) technique combining binary genetic algo-
rithm and Gaussian process regression to obtain the most
important and nonredundant variables that can constitute
the input predictor subset to the forecasting model. The
model is developed using a two-year (2015–2016) hourly
dataset of actual district heat demand obtained from vari-
ous buildings in the Otaniemi area of Espoo, Finland. Sev-
eral variables from different domains such as seasonal-
ity (calendar), weather, occupancy, and heat demand are
used to construct the initial feature space for FS process.
Short-term forecasting models are also implemented using
the Persistence approach as a reference and other eight
ML approaches: artificial neural network (ANN), genetic
algorithm combined with ANN (GA-ANN), ICA-ANN, SVM,
GA-SVM, ICA-SVM, EMD-GA-ANN, and EMD-ICA-ANN. The
performance of the proposed EMD-ICA-SVM-based fore-
casting model is tested using an out-of-sample one-year
(2017) hourly dataset of district heat consumption of vari-
ous building types. Comparative analysis of the forecasting
performance of the models was performed. The obtained
results demonstrate that the devised model forecasts the
heat demand with improved performance evaluated using
various accuracy metrics. Moreover, the devised model
achieves outperformed forecasting accuracy enhancement,
compared to the other nine evaluated models.
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I. INTRODUCTION

THE RECENT growth of the energy demand has been
challenging the energy generation and its delivery. Energy

reliability and efficiency can be attained by implementing opti-
mal strategies at the generation and demand sides. In the current
smart grid context, smart grids encompass both electricity and
heating systems. A prediction platform is important for both
electricity and heating networks at the demand side.

There are different types of heating systems to deliver heat
energy to thermal loads. District heating system (DHS) is a
system for dispensing heat energy produced at a central place via
a network of highly insulated pipes for residential, commercial,
and industrial heating needs such as space heating/cooling and
water heating/cooling.

It has been found that buildings consume a large quantity of
energy. According to the Center for Clean Air Policy, build-
ings share almost 40% of the global energy demand [1] and
as Eurostat, buildings share 38.1% of the energy demand in
the European Union (EU), much greater than any other area,
comprising transport (33.3%), and industry/factory (25.9%) [2].
Specifically, heating demands share about 55% of the energy
demands of buildings globally [3]. The implementation of effi-
cient and optimal building energy management system (BEMS)
is anticipated to produce a peak saving of 8% of the consumption
in the EU [4]. For reducing the power consumption and enhance
compliance with the EU policies on buildings energy efficiency
[5], it is necessary to regulate effectively the available Heating,
Ventilation, and Air Conditioning (HVAC) systems. Therefore,
heat energy demand (consumption of HVAC systems) forecast-
ing is vital for optimal, efficient, and smart energy management.
This largely assists the control and management of BEMSs, in
the contemporary smart grid context.

In the DHS, several developments have been made to achieve
effective operational control from the economic and ecological
aspects. Nevertheless, most previous works are bounded to the
generation side [6]–[8]. However, for improved and flexible
planning and operation of smart grids, it is important to consider
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the energy demand sector where decentralized planning and
operation monitoring are possible. It assists smart grids to further
decrease energy demands, emissions, fuel consumptions (in
combined heat and power generation) and rush hour demands.
This can be realized via optimal management and decentralized
energy saving approaches, and through increasing of local gen-
erations close to the consumption centers. That is why the focus
of this article is to assist smart building energy management
from the demand control side using integrated machine learning
(ML) model to predict the heat energy consumption of buildings
integrated in DHS.

The heat demand curves of small-scale energy systems such
as microgrids, residential entities, commercial areas, industrial
units, buildings, and homes (offices or single rooms) have
quite different characteristics from the typical heat consump-
tion curves that generally represent national or regional de-
mands. In small-scale energy units, the amount of heat demand
is many times less than national- or regional-level demands,
the heat demand profile manifests higher fluctuation, and it
is much more stochastic. This makes the conventional mod-
eling and forecasting methodologies established for national-
or regional-level demands unsuitable for straightforward use
in small-scale energy entities. That is why modeling and fore-
casting of energy (electricity, heat, gas, and water) demands of
small-scale energy systems have become a hot research and de-
velopment issue in both academia and industry since the last few
years.

The prior works in the area of heat demand prediction can
generally be classified as classical (statistical) and data-driven
techniques [9], [10]. The classical methods use equations that
define the physical characteristics of systems to estimate the
outcome (value of the target variable). The data-driven tech-
niques relate to artificial intelligence (AI), ML, and deep learning
(DL) tools where observations of system inputs and outputs are
gathered to develop the forecasting model. The observed data
are, then, employed to describe model of the system [9].

Numerous research groups have recently taken into account
the use of AI, ML, and DL to build data-driven systems for
improved modeling and forecasting energy generations and
demands. This is due to the fast development and deployment of
the Internet-of-Things, smart meters, sensor networks, big data,
and cloud computing technology to collect and process large
amount of system data.

Various data-driven AI/DL/ML approaches have been em-
ployed for heat demand prediction in different application sce-
narios, for instance, support vector regression [11], multiple
regression [12], and artificial neural network (ANN) [6], [13].
Idowu et al. [10] proposed a data-driven method to forecast the
heating energy demand of apartment buildings in a DHS. The
method takes into account the external and internal factors affect-
ing the heat consumption of the buildings and used them as input
for the forecasting model. Several ML-based forecasting models
were also implemented and compared for varying prediction
horizons up to 24 h. Several ML tools for day-ahead forecasting
of heat consumption of thermal loads in DHS network in the
city of Riga, Latvia are implemented in [14]. The forecast
results are used as inputs for decisions in day-ahead operation

planning and whole electricity market participation. The fore-
casting tools were implemented using ANN, polynomial regres-
sion, and hybrid of the former two techniques. Performance
comparison among these tools was carried out and it is shown
that the hybrid tool performs better.

The data-driven models have shown considerable accuracy
improvements over the classical methods. Data-driven methods
have the advantages of establishing models from big data, easy
adaptability, and fast model parameter updating capability [15].
The fast parameter updating capability is especially very im-
portant for energy demand forecasting problems because of the
nonstationary behavior of energy demand profiles.

The literature survey in this article, as reported above, indi-
cates that most of the prediction models have aimed to predict
large-scale heat energy usage at the national or regional lev-
els. Nevertheless, there exists quite limited number of research
works on prediction of heat energy consumptions in small-scale
energy systems. In addition, there have been quite few previous
works on data-driven-based heat demand forecasting for small-
scale energy systems. Therefore, this article can contribute to the
field of heat demand modeling and forecasting for small-scale
energy systems in general and buildings in particular by making
use of data-driven integrated ML models.

Besides, most of the heat demand forecasting models by the
prior researchers employed randomly or subjectively selected
predictors (features or variables) to form the input dataset for
the prediction model. This has become a major challenge to
maintain the performance consistency of forecasting models
over different operation scenarios and changing conditions. To
overcome this problem, we use an ML [hybrid of binary genetic
algorithm (BGA) and Gaussian process regression (GPR)] fea-
ture selection (FS) methodology to find the most relevant and
nonredundant variables to establish the training input data for
the proposed heat demand forecasting model.

Moreover, most of the previous data-driven ML energy de-
mand prediction models have employed a supervised back
propagation (BP) training technique to find their parameters.
However, BP training methods are often trapped by suboptimal
(local) solutions and unable to attain global (system-level) op-
timum and this, in turn, reduces the accuracy of the forecasting
models. To alleviate this problem, we use the imperialistic
competitive algorithm (ICA) optimization algorithm to search
for the global optimum values of the ML [support vector machine
(SVM)] model parameters. The ICA, unlike the BP algorithms,
is capable to find global optimum solution. Hence, optimal
parameter set of the SVM model and, thus, accurate heat demand
forecasts are obtained, in this article, through the parameter
optimization process using the ICA algorithm. In addition,
important advantages of SVMs over ANNs are that they have
a simple geometric interpretation, few parameters to adjust,
and give a sparse solution. Unlike ANNs, the computational
complexity of SVMs does not rely on the dimensionality of the
input space. ANNs use empirical risk minimization, while SVMs
use structural risk minimization. Besides, SVMs are less prone
to overfitting problems than ANNs. The ICA has few parameters
to adjust, easy to implement, and fast convergent compared to
the other evolutionary algorithms.
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Furthermore, unlike the prior works on data-driven ML energy
demand forecasting, this article employs a feature extraction
technique using the empirical mode decomposition (EMD) tech-
nique to extract the most relevant features of the target variable
(heat demand) for use in the prediction model training.

Therefore, the proposed data-driven ML-based heat demand
forecasting approach in this article consists of integrated EMD-
ICA-SVM model augmented with BGA-GPR-based FS pro-
cess. This approach is novel and proposed mainly because of
its improved training mechanism, higher accuracy, and short
learning time. As far as we have investigated, this is the first
ML-based approach applying the integrated EMD-ICA-SVM
model augmented with BGA-GPR-based FS method for energy
demand modeling and forecasting.

Moreover, the proposed integrated EMD-ICA-SVM heat de-
mand prediction model is compared with persistence, ANN
(BP trained ANN), genetic algorithm (GA)-ANN (GA trained
ANN), ICA-ANN (ICA trained ANN), SVM (BP trained SVM),
GA-SVM (GA trained SVM), ICA-SVM (ICA trained SVM),
EMD-GA-ANN, and EMD-ICA-ANN models to demonstrate
its effectiveness with respect to different forecasting perfor-
mance evaluation metrics. This article is the extension of [16].

The key contributions of the article are as follows.
1) This article presents a novel and effective integrated ML

model for 24h-ahead district heat demand forecasting in
small-scale energy systems (buildings).

2) This article improves forecasting accuracy by the aug-
menting robust ML-based FS technique to the forecasting
model.

3) The article evaluates the performance the proposed
forecasting model over different building types (customer
classes) such as residential, educational, office and
mixed-use.

4) This article enhances prediction accuracy, taking into
account accuracy values achieved by other nine models.

The rest of this article is structured as follows. Section II
describes the proposed forecasting approach. Section III
presents the data collection and preparation methods. The
features selection strategy is provided in Section IV. The
forecasting model configuration and development is presented in
Section V. The forecasting performance evaluation metrics are
defined in Section VI. The experimental findings and discussions
are presented in Sections VII. Section VIII concludes this article.

II. PROPOSED FORECASTING APPROACH

The day-ahead hourly forecast results of the proposed model
are aimed to be employed as input information for efficient
and optimal energy management decisions in smart grid opera-
tion planning. Specifically, the forecasts are employed as input
information for smart BEMS and/or other operational control
systems, as shown in Fig. 1.

This article devises a novel heat demand forecasting approach
using the hybridization of the EMD, ICA, and SVM (integrated
EMD-ICA-SVM). The approach also includes an FS method-
ology using the combination of the BGA and GPR (integrated
BGA-GPR). First, the most important and nonredundant
variables that can constitute the input dataset for the integrated

Fig. 1. Heat demand forecast for BEMS.

EMD-ICA-SVM forecasting model are chosen by the integrated
BGA-GPR FS method. Several candidate variables are collected
from different domains to form the initial feature space for the
FS process, and, then, the final selected features are used as
predictor (input) subset for the forecast model training. The
BGA in the FS is the main feature selector tool while the GPR
is the performance measure tool used to score or rank the
variables’ importance. The EMD in the hybrid EMD-ICA-SVM
forecasting model is used to extract the important characteristics
of the heat demand profile. It converts the original heat demand
time series data into a set of improved subseries data before the
model training commences. The ICA is used to find the optimal
values of the SVM parameters. The SVM is the basic regression
tool or prediction engine of the forecast model.

The historical values of the selected predictors (input features)
and the EMD extracted subseries of the heat demand data are
used to the train SVM model using the ICA parameter opti-
mization process. Once the trained model is obtained, the future
values of the predictors are fed to the trained model to obtain the
forecasted subseries of the heat demand. Finally, the forecasted
heat demand time series data is obtained by applying the inverse
(reconstruction) EMD on the forecasted subseries.

Fig. 2 illustrates the proposed heat demand forecasting ap-
proach. As shown in Fig. 2, the proposed forecasting approach
consists of three stages. The first stage (Stage #1) obtains the
predictors. The second stage (Stage #2) fits the forecast model.
The third stage (Stage #3) forecasts the future values of the heat
energy demand based on the fitted (trained) forecast model.

The detail working principle and mathematical formulations
of the FS methodology and the forecaster model will be pre-
sented in Sections IV and V, respectively. The sequential op-
erations and calibrations of the proposed forecasting approach
are illustrated with the flowchart shown in Fig. 3. A two-year
(2015–2016) 1-h resolution dataset of the initial feature space
and the target variable (heat demand) are used for the FS process.

In addition, the two-year (2015–2016) 1-h resolution dataset
of the selected predictors and subseries of the target variables
are used to learn and validate the ICA-SVM forecast model. The
proposed forecast model can be retrained every time (with 24 h
rolling period) when new daily training dataset is available.

The efficacy of the devised prediction model is tested
with a one-year 1-h resolution out-of-sample (2017) dataset.
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Fig. 2. Proposed heat demand forecasting approach.

The forecast results and performance evaluation analysis will
be discussed in Section VII.

III. DATA COLLECTION AND PREPROCESSING

The dataset used to construct the proposed forecasting model
consists of variables (fi) collected from different domains or
sources, namely seasonality (calendar), weather, heat demand,
and demography (occupancy of people). The initial feature space
is established through basic assessment of the characteristics of
the heat demand data and its association with the previous con-
sumption (time-lag-similarity) and exogenous factors (i.e., the
domain variables, fi). The accessibility of the data sources for
the domain variables is also another key issue to build the initial
predictor space. In total, 20 variables are used to establish the
initial feature space for the FS process. Among those variables,
11 of them are weather variables, four of them are seasonal
variables, three of them are heat demand-derivative variables,
and two of them are occupancy-representative variables. The
target variable is of course the heat demand data. Table I shows
the list of the variables and their associated domain (i.e., type or
source).

A three-year (2015–2017) window length of historical values
of the variables are collected with 1-h resolution. The two-year
(2015–2016) historical data are used for the FS task and forecast
model training and validation. While the one-year (2017) data
are employed for the model testing (forecasting).

The district heat demand data are actual data collected from
various building types (residential, educational, office, and
mixed-use) in the Otaniemi area of Espoo, Finland.

The weather data are collected from the nearby (to the build-
ings) weather stations (open source) of the Finnish Meteorologi-
cal Institute [17]. The seasonality data are taken from the official

Fig. 3. Proposed district heat demand forecasting algorithm.

annual calendar of the country where the buildings are located
[18]. The people occupancy is also the domain variable in the
feature space.

Occupancy represents the number of heat energy users (peo-
ple) in the building at each time interval. It has been found that
building energy consumptions have a high correlation with their
user (people) occupancies [19].

However, due to limitation of time and resources for direct
measurement of occupancy at the buildings, we have used
indirect representation of buildings occupancy using two ad-
ditional variables, the holiday indicator and period of the day.
The holiday indicator variable has binary values (0 or 1), where
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TABLE I
FEATURE SPACE VARIABLES AND THEIR DOMAIN

0 indicates the particular hour is in a holiday (or weekend) and
1 specifies the hour is in a working day (in weekday). The list
of holidays and calendar information in the years 2015, 2016,
and 2017 are taken from [18]. The period of the day is another
variable used to represent the occupancy. It has three numeric
values (1, 2, or 3), where a value of 1 indicates an idle mode
(nonworking hours) in the time period [9PM, 7AM), 2 indicates
working mode in the time period [7AM, 5PM), and 3 indicates
cool-down mode in the time period [5PM, 9PM). Hence, these two
predictor variables, the holiday indicator and the period of the
day, are used as representative variables of the people occupancy
in the buildings. The last three variables (f18, f19, and f20) in
Table I are derived from the original heat demand data based
on the time-lag similarity behavior of the heat consumption
profile. They are important variables to demonstrate whether
the heat demand at the current time depends on the demand at
the previous times.

Regarding the data preprocessing task, some of the predictors
must be treated to further suitable forms and synchronized
timestamps ahead of the BGA-GPR FS, EMD extraction, and
ICA-SVM learning tasks. All the dataset values are converted
into hourly mean values. The predictors and target datasets are
timestamped in one-hour resolution to synchronize the times-
tamp dissimilarities of the various data sources. The weather
stations timestamps are in UTC and, thus, they are changed to
the local time to fit them with the time zone of the city (Espoo,
Finland) where the buildings are located (i.e., heat demand data
timestamps).

IV. FEATURE SELECTION

FS is the process of finding a cluster of the most significant
features (attributes, variables, or predictors) for use in fore-
casting model development. It enhances prediction accuracy,
reduces model training time, and overfitting [19]. The major

premise when using an FS is that the initial dataset contains some
attributes that are either repetitive or superfluous, and can, thus,
be eradicated without persuading loss of relevant information.
Several research works have demonstrated that repetitive or
superfluous variables decrease the performance, flexibility, and
generalization potential of forecasting models.

Quite few studies have done FS ahead of learning energy
demand forecasting models. This article devises an ML-based
integrated predictor selection methodology to find the most
significant and nonrepetitive features for enhanced short-term
building heat demand prediction. The devised FS methodology
employs the BGA for the attribute selection task and GPR for
measuring the fitness score or importance of the variables. The
variables are sorted and chosen based on their calculated value of
the GPR residual. The BGA runs to minimize the GPR residual
(i.e., performance index or evaluation measure) for obtaining
the most significant and nonrepetitive variables. The subset
of variables (feature subset) that gives the best value of the
performance index is selected at the end.

The feature space for the heat demand forecasting contains
several candidate variables from various domains as given in
Table I. The variables fi, i = 1, 2, …, 20, in Table I form the
predictor space required for the FS task. Hence, the predictor
space is m by n matrix, where m = 17 544 is the number of
observations, which is a two-year (2015–2016) hourly sample
of the predictors and n = 20 is the size of the predictor space
(i.e., number of candidate variables in the original dataset).

The BGA is a type of GA that works by first designating
(encoding) the given predictor space (candidate solutions) with
binary bitstrings. This brands the BGA very suitable for FS
applications than the traditional real-valued GA [20]. The BGA
operates on the set of candidate solutions (chromosomes) to
generate new chromosomes (offsprings) using three genetic op-
erators known as selection, crossover, and mutation. The fitness
of the chromosomes is evaluated by defining a fitness function.
The fitness function gives numerical values that are used to sort
the chromosomes.

The GPR is a powerful algorithm for regression. It has a robust
competence of approximating a nonlinear relationship between
variables using probabilistic distributions [21]. GPR has few
adjustable parameters and it is simple for implementation. The
GPR output y of the function f at feature x is defined as

y = f (x) + ε (1)

where ε ∼ N(0, σ2
ε) is a normal distribution with zero mean

and σ standard deviation. The function f(x) is considered as a
Gaussian Process (GP) distribution and its GP formulation is
given below

f (x) = GP (m (x) , k (x, x′)) . (2)

The GP is expressed by the mean and covariance functions.
The mean m(x) designates the expected value of the function
at x

m (x) = E [f (x)] . (3)
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The covariance k(x, x′) describes the relation between the
values of the function at different points x and x′

k (x, x′) = E [(f (x)−m (x)) (f (x′)−m (x′))] . (4)

The covariance k is generally called the GP kernel [22]. The
GPR in this article uses the squared exponential kernel expressed
beneath

k (x, x′|θ) = σ2
fexp

(
−1

2

d∑
r=1

(xr − x′
r)

2

σ2
r

)
(5)

where σr symbolizes the scale-length of the GPR predictor r, r
= 1, 2, …, d and σf is the standard deviation of the GPR training
dataset. The parameter θ is expressed as follows:

θr = logσr , for r = 1, 2, . . . , d (6)

θd+1 = logσf . (7)

σr and σf are controlled to increase or diminish the correlation
between the points and, therefore, manage the distribution of the
function. Following the determination of the mean and kernel,
the GP is, then, applied to find the prior and future values of the
function using the historical observations (dataset).

The flowchart of the BGA-GPR-based FS methodology for
the proposed heat energy demand prediction approach is shown
in Fig. 4.

The fitness (suitability) of the variable subsets is calculated
employing the mean squared error (MSE) of the GPR model
residual. The GPR model is established for all the variable
subsets using the features whose position in the chromosomes
is indexed by “1.” Thus, the MSE of the actual target and GPR
output is employed as the fitness function (performance index),
and it is defined by

fit =
1
n

n∑
i=1

(Ti − yi)
2 (8)

where T is a vector of the actual target (heat demand), y is a
vector of the GPR model output (estimate), and n is length of
the model training dataset that equals 17 544 samples (a two-year
(2015–2016) hourly record).

The objective of the BGA is to minimize the fitness function
formulated in (8) by selecting a feature subset from the original
variable space that can give the best fitness value (lowest MSE)
through iterations.

A gene value of “1” in the chromosomes indicates that the
particular variable in that position is selected, whereas a value
of “0” means that the variable indexed in that position is not se-
lected. While the BGA is running, the chromosomes (candidate
variables) in the population are evaluated, and their fitness values
are ranked. The chromosome with a better fitness value (lower
MSE) has a higher probability of persisting with the following
generation.

At the end of the BGA running (i.e., convergence condition
is met), the chromosome associated with the best fitness value
holds the desired important input variables for the heat demand
prediction. This chromosome is, therefore, selected and decoded
to form the desired variable subset as illustrated in Fig. 5.

Fig. 4. Flowchart of BGA-GPR-based FS for short-term heat demand
forecasting.

Fig. 5. Final feature subset decoding.

The selected (final) feature subset is used as the training input
for the proposed ML-based forecasting model, which will be
discussed in the following section.

V. PROPOSED FORECASTING MODEL

As discussed in the above section sections, the proposed heat
demand forecasting model is developed by combining the EMD,
ICA, and SVM. The article major contributions in this regard can
be considered as 1) modeling (formulation), parameterization
and implementation of the EMD, ICA, and SVM algorithms
to suit the heat demand forecasting problem in question, and 2)
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establishing seamless integration of the three algorithms to work
in unison for solving the forecasting problem. The operating
mechanism, mathematical formulation, and implementation of
each of these algorithms (or models) in the integrated EMD-
ICA-SVM forecasting model will be discussed in the following
sections.

A. Empirical Mode Decomposition

The magnitudes of the heat demand curves of the buildings
vary in each time instant. Observation of the nonstationary and
nonlinear behavior of the heat demand curves of the buildings
calls for the decomposition of the heat demand raw data (time
series) into various subseries elements, to extract the most
useful characteristic-feature of the data. In this article, this is
performed by the EMD technique. The EMD decomposes the
heat demand time series data into a set of subseries that contain
more important information than the original raw data. Thus,
the decomposed data can be used to forecast the heat energy
consumption more accurately. The rational for the effectiveness
of the decomposed data in the prediction process is due to the
enhanced data decomposition capability of the EMD technique.

By making use of the EMD, the analogical time representation
of the frequency presence in the initial district heat demand data
is performed to obtain the real-time frequency of the data.

The real-time frequency is obtained by using the Hilbert
transform (HT) [23]. The HT for a mono-component signal g(t)
is described below

h (t) =
1
π

∫ ∞

−∞

g (τ)

t− τ
dτ . (9)

In (9), g(t) and h(t) designate the conjugate pair that describes
time series f(t) given below

f (t) = g (t) + jh (t) . (10)

The polar coordinate representation of (10) is expressed below

f (t) = c (t) ej∅(t) (11)

where

c (t) =

√
g(t)2 + h(t)2

∅ (t) = arc tan

(
h (t)

g (t)

)
(12)

where c(t) and ϕ(t) designate the real-time amplitude and phase
of f(t). c(t) and ϕ(t) represent the suboptimal (neighborhood)
representation of an amplitude- and phase-angle-oscillating
trigonometrical fit to g(t). The real-time frequency ω(t) is ob-
tained from the real-time phase expressed below

ω (t) =
d∅ (t)
dt

=
ḣ (t) g (t)− h (t) ġ (t)

g2 (t) + h2 (t)
. (13)

ω(t) is essentially feasible if ϕ(t) is a mono-component signal.
Since ϕ(t) is derived from g(t), g(t) must be a mono-component
signal as well. However, almost all real-world signals, espe-
cially weather variables and building heat demand, are not
mono-component. The work by Huang et al. [23] described
the EMD technique for decomposing multicomponent signals

into mono-component subsignals. By using the EMD, the heat
demand data series is expressed by an aggregation subseries data
called intrinsic mode functions (IMFs). Each generated IMF is
mono-component quantity that must satisfy the requirements
below.

1) The quantity of zero touches and the quantity of extreme
points should be same or vary, at extreme, by one.

2) The mean of the wraps found by local maximum points
and minimum points must be zero at every instant.

The IMFs are derived from the initial data by employing
a sifting technique. In the sifting technique, bottom and top
wraps are formed by introducing an interpolating curve via
the neighborhood minimum and maximum points. The wraps
average q1 is deducted from g(t) to find the initial element d1.
To create the IMFs, the sifting process is successively carried
out j times to di, till the IMFs are found

d1k = d1(j−1)
− q1j . (14)

The sifting procedure ends if the standard-deviation of two
serial outcomes is less than a specified threshold value. The
initial IMF contains information about the peak frequency is
expressed as

a1 = d1j . (15)

Then, a1 is deducted from the first signal, and the residue p1,
which holds information about the lesser frequency elements, is
expressed as

p1 = g (t)− a1. (16)

In the process of the EMD decomposition, p1 is considered
like the beginning signal. The procedure iterates, a2, is calcu-
lated, etc., till either of the requirements below are satisfied

1) pn or an has lower energy;
2) pn is monotonic.

Utilizing the aforementioned process, the decomposition of
the initial multicomponent signal g(t) is expressed as follows:

g (t) =
n∑

i=1

ai + pn. (17)

Each IMF (ai) is constrained to HT by (13) to determine the
real-time frequencies. Since g(t) is a multicomponent signal, it
contains greater than one frequencies. Therefore, the HT-based
decomposition of g(t) is given by following expression [23]:

g (t) = Re

{
n∑

i=1

ci (t) exp (j ∫ ωi (t) dt)

}
. (18)

Here, ci(t) and ωi(t) are real-time quantities whose values
change instantaneously. The HT assisted Huang EMD prepro-
cessor, expressed by (18), is called the Hilbert–Huang transform
(HHT).

The EMD provides a comprehensive, adaptively flexible, and
almost orthogonal designation of the initial function compared
to Fourier and Wavelet transforms [24]. Therefore, in this article,
the EMD is selected for the devised day-ahead district heat
demand forecasting model development because of its better
performance for extracting important detail behaviors of the
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TABLE II
PSEUDO-CODE OF THE EMD DECOMPOSITION PROCESS

target variable. That is, the amplitudes of the IMFs generated
from the EMD decomposition (of the heat demand) are used as
target variables for the proposed ICA-SVM-based heat demand
forecasting model.

Table II presents the pseudo-code of the EMD decomposition
process [25], [26].

B. Imperialist Competitive Algorithm

The ICA optimization technique is employed in order to
optimally adjust the SVM model parameters for the sake of
achieving a higher forecasting accuracy. The ICA is a newly
emerging optimization method in the class of evolutionary
algorithms. It was inspired by the imperialistic competition in the
socio-political evolution of humans for developing a powerful
imperialistic authority [27].

The ICA optimal solution search begins with an initial popula-
tion of Ncountry, which are classified into two distinct categories
called imperialists and colonies based on the functional values
of the solution that are indicated with (Nimp) and (Ncol), respec-
tively. In the ICA terminology, the combination of imperialists
and colonies is said to be empires. Each colony in the first pop-
ulation is proportionally distributed to the empires according to
the powers of the imperialists. The power of empires is inversely
proportional to their cost (functional value). The normalized cost
of imperialists is given below

Cn = cn −maxi (ci) (19)

where cn is the nth imperialist cost and Cn is the associated
normalized cost of the imperialist. Assuming this normalized
cost is computable for all the imperialists, the normalized power

Fig. 6. Movement of colonies toward their pertinent imperialist.

of each imperialist is given by

Pn =

∣∣∣∣∣ Cn∑Nimp

i=1 Ci

∣∣∣∣∣ . (20)

At the assimilation stage, every empire’s colonies start mov-
ing toward their target imperialist, right away the establishment
of the initial empires. Fig. 6 shows the movement of the colonies
toward their relevant imperialist by x units and θ deviations (θ
is also called assimilation angle coefficient), where x and θ are
random parameters that enjoy uniform distributions

x ∈ U (0, β × d)

θ ∈ U (−γ, γ) (21)

where β is called assimilation coefficient, and it is a number
defined to be slightly bigger than 1; d is the straight distance
from the imperialist to the colony; and γ, called revolution rate,
is a parameter that controls the angular rotation from the initial
position.

The total cost of each empire is composed of the authority of
the imperialist and the colonies, and defined by

T.C.n = Cost (imperialistn)

+ ξ.mean {Cost (colonies of empiren)} (22)

where T.C.n is the nth empire absolute cost; and ξ, called power
coefficient, is positive number slightly less than 1.

According to the philosophy of imperialism, in the process
of social and political struggles of human beings, imperialists
achieve to arrive at a wider territory than earlier by improv-
ing their power to catch additional colonies. Consequently,
the power of the stronger imperialist will get an increase in
the course of the struggle, while the weaker imperialists will
get lower power rank. The weaker empires gradually collapse
when they drop their possessions (colonies). This procedure will
go on until, at the end, the strongest imperialist rules and all
the countries are controlled by that imperialist and become its
colonies.

Similarly, in the ICA optimization process, all the empires
but the strongest one will finally downfall. This sole empire will
control all the colonies. Mathematically speaking, this sole em-
pire is the desired optimal solution of the optimization problem
in question.
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Fig. 7. Structure of SVM.

C. Support Vector Machine

SVM is a type of nonparametric model that fundamentally
operates based on kernels. Vapnik [28] created the fundamentals
of SVMs in 1995. SVMs are getting substantial credits nowadays
because of plenty of evident features and practical advantages.
SVMs have been widely applied to forecasting, classification,
and clustering tasks. They are formulated based on the structural-
risk-minimization theory that has been demonstrated to have bet-
ter performance than the standard empirical-risk-minimization
theory, which is employed for ANN formulation [29]. The SVM
basic operational principle is mapping datasets to higher dimen-
sion representative hyperplanes using nonlinear mappings. Lin-
ear regression in hyperplanes is related to nonlinear regression
in reduced-dimension planes. This is formulated as follows [30]:

y (x) = w.Φ(x) + b ; Φ : Rn → RN (23)

where y � RN is the learning target; x � Rn is the input (selected
feature subset); b is bias parameter; w � RN is weight parameter;
Φ(x) is the nonlinear mapping function; and Φ: Rn → RN is
the mapping that transforms the original learning space (input
variables x) to the hyperplane.

Fig. 7 depicts the structure of SVM, where the inputs xi is
converted to output y by the mapping function Φ(·). The SVM
output y is the sum of the weighted Φ(xi) and the bias.

A specific SVM model called linear-epsilon-insensitive SVM
(ε-SVM) is employed in this article. The ε-SVM objective
function is formulated using the ε-insensitive loss function. The
SVM parameters w and b are optimally found by solving the
objective function described below

min

{
1
2
wTw + γ

N∑
i=1

(ξi + ξ∗i )

}

subject to : yi − w.Φ(xi)− b ≤ ε+ ξi

w.Φ(xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 (24)

where ξi and ξ∗i are supplementary parameters; γ is the normal-
ization parameter; N is length of the learning dataset; and ε is
the loss parameter.

The objective function given in (24) is a constrained quadratic
program and is conveniently solved by solving its corresponding
dual problem expressed as

min

{
1
2

∑N
i=1

∑N
j=1 (αi − α∗

i ) .Φ(xi, xj) .
(
αj − α∗

j

)
−∑N

i=1 (αi + α∗
i ) .ε+

∑N
i=1 (αi − α∗

i ) .yi

}

subject to :
N∑
i=1

(αi − α∗
i ) = 0 ; αi, α

∗
i ≥ 0. (25)

Solving for the positive Lagrange multipliers (αi–αi∗), the
simplified expression of the SVM regression output y is given
as

ŷ (x) =

N∑
i=1

(αi − α∗
i ) .K (x, xi) + b (26)

where K(xi, xj) = Φ(xi).Φ(xj) is called the SVM kernel. The
RBF kernel expressed in (27) is used in this article

K (xi, xj) = exp

(
−‖xi − xj‖2

σ2

)
(27)

where σ is a Gauss parameter (width of the kernel) and it
describes the influence zone of the support vectors in the search
space (learning domain).

As discussed in the above sections, this article proposes the
ICA optimization technique (training algorithm) to globally
search the ε-SVM model parameters for improved prediction
accuracy. The SVM model parameters are formulated as pa-
rameters of the ICA optimization process. The fitness function
formulated by (24) is employed as the cost function in the ICA
optimization process. The target of the devised hybrid forecast-
ing model is to achieve a lowest value for the cost function that
corresponds to a lowest forecasting error. The ICA successively
iterates by solving the cost function until it reaches the optimal
SVM parameters that give the desired (lowest) forecasting error.
The ICA has the benefit of computational simplicity and few
design parameters.

VI. FORECASTING ACCURACY EVALUATION

To evaluate the accuracy of the devised integrated EMD-ICA-
SVM district heat demand forecasting model, the mean absolute
percentage error (MAPE), root MSE (RMSE), normalized mean
absolute error (NMAE), and forecast skill (FCS) metrics are
employed. These evaluation metrics are calculated in terms of
the actual heat demand data, and their formulations are given
next.

The MAPE is given as

MAPE =
100
N

N∑
h=1

∣∣∣∣∣H
a
h −Hf

h

Ha
h

∣∣∣∣∣ (28)

whereHa
h andHf

h are the actual and forecasted values of the heat
demand at hour h, respectively, and N is the prediction horizon
and its value is 24 for day-ahead (24h-ahead) forecast.
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TABLE III
FS RESULTS

The RMSE is defined as

RMSE =

√
1
N

∑N

h=1

(
Ha

h −Hf
h

)2

. (29)

The NMAE is expressed as

NMAE =
1
N

N∑
h=1

∣∣∣Ha
h −Hf

h

∣∣∣
Hpeak

(30)

where Hpeak is the peak aggregate heat demand. Annual peak
heat demand in the test year is used for Hpeak, in this article.

The FCS evaluates the performance of forecasting models
by referring the prediction accuracy (or error) obtained by the
models to the accuracy (or error) obtained by the persistence
model (reference model). For day-ahead hourly forecast, the
Persistence forecast is given by

Hf
h (t) = Ha

h (t− 24) . (31)

The FCS is, then, calculated by relating the RMSE of the de-
sired model forecast with the persistence forecast, as formulated
below [25], [31]

FCS = 1 − RMSEModel

RMSEPersistence
. (32)

A FCS value of 1 indicates a perfect model, and 0 indicates
the model’s RMSE is the same as the reference’s RMSE (no
improvement from Persistence). A negative FCS tells lower
effectiveness of the model than the reference.

VII. CASE STUDY AND EXPERIMENTAL RESULTS

District heat demand data of four building types in the
Otaniemi area of Espoo, Finland have been used to train, vali-
date, and test the proposed forecasting model. The FS and fore-
casting model is implemented for each building. The buildings
are Building A (residential building), Building B (educational
building, which contains classrooms and laboratories), Building
C (office building), and Building D (mixed-use building, which
contains computer laboratories, classrooms, offices, and health
center). The buildings have a peak (in the three-year period:
2015–2017) aggregate district heat demand of 720, 2390, 60,
and 280 kW, respectively. A two-year (2015–2016) hourly data
are used for the FS, forecast model training, and validation
tasks. While a one-year (2017) hourly data are employed for
the forecast model testing.

The BGA-GPR-based FS is executed for each of the four
buildings. The obtained FS results are given in Table III.

As shown in Table III, the number of features selected by the
devised FS method is noticeably smaller than the size of the
predictor space (number of candidate variables in Table I). That
means there have been insignificant and repeated information
by most of the features in the original predictor space. The
BGA finally chooses the predictor subset, which holds the most
significant and nonrepetitive features for each building as given
in Table III. In addition, the FS results show that the values of
the fitness measure (MSE) with the FS are considerably better
(lower) than without FS. This confirms the importance of FS
before fitting (training) forecasting models.

The fact that the FS results do not look much different across
the buildings is due to the proximity of the buildings (the building
are located in the same district of a city) where most of the
external variables are the same and have similar impact on each
building.

For the sake of consistency, the predictors chosen at least for
one of the buildings are selected to constitute the input dataset
for the 24h-ahead prediction of the heat demand of the buildings.
Thus, the final chosen feature subset contains 15 variables: f1,
f2, f3, f4, f5, f6, f7, f8, f9, f12, f14, f16, f18, f19, and f20, which
respectively represent the hour of the day, day of the week,
month of the year, season of the year, holiday/weekend indicator,
period of the day, air temperature, dew-point, relative humidity,
air pressure, wind speed, solar radiation, previous 24 h average
heat load, 24 h lagged heat load, and 168 h lagged heat load.

The forecasting model training, validation, and testing is done
based on the hourly dataset of the selected feature subset.

In order to illustrate the forecast (test) results in this section,
randomly chosen four weekdays and four weekends/holidays
designating the weekdays and weekends in the four seasons of
the test year (2017) are used. These days are summer weekday
(Wednesday-July 26, 2017), summer weekend (Sunday-July 16,
2017), fall weekday (Thursday-Oct 12, 2017), fall weekend
(Saturday-Oct 28, 2017), winter weekday (Monday-January 9,
2017), winter holiday (Sunday-January 1, 2017), spring week-
day (Tuesday-April 18, 2017), and spring weekend (Saturday-
April 8, 2017). Hence, specific days with better heat demand
curves are not purposely taken. This will help to obtain an uneven
forecasting accuracy over the test year that demonstrates the real
heat demand profile in the buildings.

The prediction results are illustrated for the randomly selected
test days with 1-h time resolution. The heat demand predictions
by the devised integrated EMD-ICA-SVM model are shown
in Figs. 8 to 9, for the weekdays and weekends/holidays, re-
spectively. The forecast plots are shown for some of the pilot
buildings, due to limitation of space. As shown in Figs. 8 and 9,
the forecasts by the devised hybrid EMD-ICA-SVM model track
the actual heat consumption trends with small gaps (errors).

Table IV provides the values of the evaluation criteria that are
employed to calculate the error (or accuracy) of the proposed
integrated EMD-ICA-SVM model for 24h-ahead forecasting of
building district heat demand. The values are given for one of
the pilot buildings.

As given in Table IV, the proposed forecasting model has
achieved very accurate values (MAPE < 10% and FCS > 50%).
It has given accurate accuracy values for the other pilot buildings
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Fig. 8. Real versus forecasted district heat demand in weekends for
Building A—residential building.

Fig. 9. Real versus forecasted district heat demand in weekdays for
Building C—office building.

TABLE IV
FORECASTING ERROR ANALYSIS FOR BUILDING A—RESIDENTIAL BUILDING

as well. Specifically, the model has achieved an excellent perfor-
mance (MAPE of 4.65%) for the residential building type and
relatively lowest accuracy (MAPE of 5.88%) for the educational
building type. The MAPEs obtained for the office and mixed-use
buildings are 5.42% and 4.81%, respectively.

Figs. 10–13 present comprehensive performance compar-
isons between the proposed hybrid EMD-ICA-SVM-based fore-
casting model and the other nine models (Persistence, ANN,

Fig. 10. Comparison of forecasting models w.r.t MAPE, based on the
full one-year (2017) testing dataset for Building A—residential building.

Fig. 11. Comparison of forecasting models w.r.t MAPE, based on the
full one-year (2017) testing dataset for Building B—educational building.

Fig. 12. Comparison of forecasting models w.r.t MAPE, based on the
full one-year (2017) testing dataset for Building C—office building.

GA-ANN, ICA-ANN, SVM, GA-SVM, ICA-SVM, EMD-GA-
ANN, and EMD-ICA-ANN), with respect to the MAPE metric.
All the evaluated forecasting models have used the same input
variables that are selected by the proposed BGA-GPR FS algo-
rithm. That means, all the models are with FS. The comparisons
are based on hourly values of the actual and forecasted heat
demands for the complete testing year (2017). The monthly
mean MAPE values are shown by the bar plots for the purpose
of saving the plotting space.

As seen in Figs. 10–13, the proposed model provides the low-
est forecast error (MAPE). It outperforms all the other evaluated
models. Quantitatively, the proposed model MAPE improve-
ment over the other nine models is respectively 64.18%, 33.57%,
24.95%, 21.42%, 19.93%, 17.63%, 15.12%, 13.23%, and
11.25% for the residential building, 55.51%, 33.03%, 27.78%,
23.09%, 20.79%, 16.17%, 14.02%, 12.61%, and 11.10% for the
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Fig. 13. Comparison of forecasting models w.r.t MAPE, based on the
full one-year (2017) testing dataset for Building D—mixed-use building.

educational building, 63.59%, 42.13%, 27.31%, 12.06%, 6.35%,
5.14%, 4.32%, 3.24%, and 2.07% for the office building, and
74.33%, 56.08%, 43.37%, 22.89%, 18.64%, 17.23%, 14.41%,
11.56%, and 7.75% for the mixed-use building. The same learn-
ing data were employed for all models and each model was
applied with its best values of parameters and configuration.

Moreover, the annual MAPEs obtained are almost the same
as the MAPEs achieved for the randomly chosen individual
testing days (shown in Table IV for Building A) in the respective
seasons. This verifies the consistency of the proposed model per-
formance throughout the year. In addition, the devised integrated
EMD-ICA-SVM model still outperforms all the other evaluated
models.

To summarize the discussion on the experimental results
obtained in this article, the devised integrated EMD-ICA-SVM
model achieves very accurate forecasts tested over one-year data
of different building types. It has given very low forecast error
and higher FCS, outperforming other nine evaluated models.
Besides, the average computation time to generate the day-ahead
hourly forecasts (excluding FS and training times) is about 5 s
using MATLAB R2019a on a stand-alone research workstation
with Intel Xeon W-2133 CPU @ 3.60GHz 3.60 GHz Processor
and 32 GB RAM. Even the training time of the proposed forecast
model is in the order of few minutes (less than 10). Thus, this may
be interesting to run it on smaller building energy management
hardware without the need to go for high performance computing
or cloud platforms. Therefore, the devised model is both novel
and considerably effective for a short-term (24h-ahead) building
heat energy demand forecasting.

VIII. CONCLUSION

In this article, a novel and effective ML model (integrated
EMD-ICA-SVM) was proposed and implemented for 24h-ahead
forecasting of district heat demand of buildings using a predictor
subset selected by a BGA-GPR-based FS methodology. The
FS process selected a feature subset containing 15 variables
to constitute the training input of the forecasting model. A
two-year (2015–2016) hourly data were used for the FS, forecast
model training, and validation processes. The performance of the
proposed model was tested with a one-year (2017) hourly data.
The model was implemented and tested for four building types.
It had the ability to learn any time when new training dataset is
available. The application of the proposed model for 24h-ahead

building heat demand forecasting was novel and effectively
successful. It achieved very accurate values (MAPE<10% and
FCS >50%). It gave improved forecasting accuracy values for
all pilot buildings. Specifically, it achieved an excellent perfor-
mance (MAPE of 4.65%) for the residential building type and
relatively lowest accuracy (MAPE of 5.88%) for the educational
building type. In addition, the MAPEs obtained for the office
and mixed-use buildings are 5.42% and 4.81%, respectively.
The performance of the devised model has also been compared
with the persistence model and other eight ML models (ANN,
GA-ANN, ICA-ANN, SVM, GA-SVM, ICA-SVM, EMD-GA-
ANN, and EMD-ICA-ANN). The devised model outperforms
all the evaluated models. The MAPE improvement by proposed
model over the other nine models (persistence, ANN, GA-ANN,
ICA-ANN, SVM, GA-SVM, ICA-SVM, EMD-GA-ANN, and
EMD-ICA-ANN) is, respectively, 64.18%, 33.57%, 24.95%,
21.42%, 19.93%, 17.63%, 15.12%, 13.23%, and 11.25% for
the residential building, 55.51%, 33.03%, 27.78%, 23.09%,
20.79%, 16.17%, 14.02%, 12.61%, and 11.10% for the edu-
cational building, 63.59%, 42.13%, 27.31%, 12.06%, 6.35%,
5.14%, 4.32%, 3.24%, and 2.07% for the office building, and
74.33%, 56.08%, 43.37%, 22.89%, 18.64%, 17.23%, 14.41%,
11.56%, and 7.75% for the mixed-use building. Therefore, the
presented illustrative experimental findings, numerical results,
and performance comparisons verify the capability and suitabil-
ity of the proposed integrated ML model for the short-term
(24h-ahead) heat demand forecasting. The obtained forecast
results can be used as input information for smart (adaptive),
efficient, and optimal decisions in the energy management,
market participation, and flexibility management of smart grids.
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