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Short-Term Forest Management Effects on a Long-Lived
Ectotherm
Andrea F. Currylow*, Brian J. MacGowan, Rod N. Williams

Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America

Abstract

Timber harvesting has been shown to have both positive and negative effects on forest dwelling species. We examined the
immediate effects of timber harvests (clearcuts and group selection openings) on ectotherm behavior, using the eastern
box turtle as a model. We monitored the movement and thermal ecology of 50 adult box turtles using radiotelemetry from
May–October for two years prior to, and two years following scheduled timber harvests in the Central Hardwoods Region of
the U.S. Annual home ranges (7.45 ha, 100% MCP) did not differ in any year or in response to timber harvests, but were 33%
larger than previous estimates (range 0.47–187.67 ha). Distance of daily movements decreased post-harvest (from
22 m61.2 m to 15 m60.9 m) whereas thermal optima increased (from 2361uC to 2561uC). Microclimatic conditions varied
by habitat type, but monthly average temperatures were warmer in harvested areas by as much as 13uC. Animals that used
harvest openings were exposed to extreme monthly average temperatures (,40uC). As a result, the animals made shorter
and more frequent movements in and out of the harvest areas while maintaining 9% higher body temperatures. This
experimental design coupled with radiotelemetry and behavioral observation of a wild ectotherm population prior to and in
response to anthropogenic habitat alteration is the first of its kind. Our results indicate that even in a relatively contiguous
forested landscape with small-scale timber harvests, there are local effects on the thermal ecology of ectotherms. Ultimately,
the results of this research can benefit the conservation and management of temperature-dependent species by informing
effects of timber management across landscapes amid changing climates.
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Introduction

Study of habitat alteration through direct and indirect

anthropogenic episodes such as reduction of forest habitats and

changing climate is becoming increasingly frequent. The under-

standing of how these changes affect the physiology and behavior

of native fauna is vital to the preservation of diversity. Timber

harvesting is likely one of the most prominent land uses affecting

forest wildlife [1–5]. Forest management practices change the

vegetative structure and local temperature, which may affect

community structure and function [6]. Environmental flux also

has a greater effect on movements and behavior of poikilotherms

than for homeothermic species [7,8]. In response, timber harvests

have been implicated as a possible cause for worldwide

herpetofaunal declines [9–11]. As a result, management of our

eastern hardwood forests has become a balancing act between

timber production and ecological conservation.

While some data suggest that heavily logged areas are associated

with moderate increases in bird and reptile diversity [3], it is not

clear whether this can be considered a general trend for all taxa.

Timber harvesting has the potential to affect multiple facets of how

ectotherms utilize available habitat both directly and indirectly.

Canopy openings may create basking sites or allow herbaceous

mass to flourish and provide basilar food sources [12]. Edge effects

of openings and access roads have been shown to influence habitat

resources into the forest interior at varying distances [13–15].

Because variation in resources such as vegetation and invertebrate

prey occur, daily movements and annual home range sizes may

readily expand, contract, or shift in response to this variation.

Moreover, the behavior, physiology, and even fitness of ecto-

therms are strongly affected by temperature fluctuations [16,17].

Temperature dictates ectothermic habitat use based on the

animals thermal optima (i.e., the temperature at which movement

activity is maximal; [17] which in turn alters behavior [18,19].

Recent attempts to assess the effects of timber harvests on many

ectothermic species often suffer from the lack of replication or

comparable pre-harvest data (e.g., [20,21]). Furthermore, the

majority of these herpetofaunal studies have focused on the harvest

effects on amphibian populations (e.g., [5,22–25]), while relatively

little is known about the impacts on reptile populations. However,

the existing data suggest reptiles are not only sensitive to habitat

perturbations, but that the impacts are more pervasive and severe

than for amphibians [11]. Negative impacts to reproductive adult

reptiles, such as long-lived, K-selected turtles, can devastate entire

populations [26,27]. Box turtles, which are among the longest

lived of all reptiles, are geographically widespread throughout the

eastern forests, yet they are sensitive to environmental disturbances

that affect local habitat features [28–30]. Widespread population

declines have sparked interest in the conservation of this species.

While basic data exist on the habitat requirements of certain
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ectothermic species, many studies were conducted at a single

location and did not empirically assess responses to changing

habitat or microenvironmental conditions.

The investigation of ecological mechanisms underlying species

declines has become paramount in conservation literature. Simply

reporting the extirpation of populations without testing mecha-

nistic causes does little to promote conservation management.

Herein, we investigated temporal thermal habitat availability,

habitat use, thermal behavior, and intersexual differences among

eastern box turtles (Terrapene carolina carolina) within the framework

of a managed forest setting. The overarching goals of this study

were to examine ectothermic response to timber harvesting at both

the landscape- and local-scale. At the landscape scale, our specific

goals were to assess effects of various timber harvest regimes on

habitat use, thermal environments, and thermal ecology. At the

local level, our specific goals were to investigate edge effects of

timber harvests on thermoregulatory behavior, movement param-

eters (frequency of movement and steplength), and observed

behavior.

Methods

Study area
The research was conducted within approximately 35,000

hectares of Morgan-Monroe State Forest (MMSF) and Yellow-

wood State Forest (YSF) in Morgan, Monroe, and Brown

Counties, Indiana (Figure 1a). From the years 1860 through

1910, routine burning and cutting for cattle grazing characterized

the forestland. At the turn of the 20th century, the state of Indiana

began purchasing the land and establishing these State Forests.

Now, MMSF and YSF boundaries are shared, forming a relatively

contiguous forested habitat characterized by hills and ravines of

hardwood, deciduous forests with scattered gravel access roads.

This is an oak-hickory dominated forest, with the majority of

canopy species being Quercus spp., such as Q. montnana (chestnut

oak), and Carya cordiformis and C. ovata (butternut and shagbark

hickory; [31]). These State Forests are managed for multiple-uses,

including recreation, education, research, and timber harvesting.

Research activities on public lands were conducted under the

scientific use permits 09-0080 & 10-0083 issued by the Indiana

Department of Natural Resources.

Forest management design and sampling
Our research is part of a long-term (100-yr), landscape-scale

(spanning 31 linear kilometers and 3,601 hectares) timber and

wildlife research collaborative designed for the study of ecological

and social impacts of various silvicultural methods typically

employed in the Midwest (Hardwood Ecosystem Experiment

[32]. In 2007, we identified nine study sites of approximately 400-

ha, each assigned to one of three forest management classes in a

randomized complete block design (Figure 1b). The management

classes included two 2.72–4.43-ha clearcuts, eight 0.15–2.55-ha

group selection openings, and forested controls. The timber

harvests were implemented on equal numbers of southwest- and

northeast-facing slopes over the winter of 2008–09 within the

center 90-ha of each study site. The remaining 300+ hectares at

each site remained intact to serve as refugia and maintain species

diversity.

To determine the effects of timber harvests on T. c. carolina, we

collected GPS location and habitat use data before timber harvests

(pre-harvest; 2007–08) and after harvests (post-harvest; 2009–10).

We initially located adult animals by meandering-transect visual

encounter surveys. Upon capture, we assigned a unique ID

number and marked each animal using a triangle file along the

marginal scutes following a modified Cagle scheme [33–35],

recorded morphometrics, and affixed a transmitter (model RI-2B

Holohil Systems, Ltd., Ontario, Canada) to the carapace. Where

possible, we equally divided sex ratios and numbers of the animals

Figure 1. Study Area Maps. Regional and local map of the study area
in south-central Indiana. a) The location of the study area in Indiana
relative to the continental US. b) The nine study sites spanning Morgan,
Monroe, and Brown Counties in IN. Polygon colors represent
management classes (controls = light grey, clearcuts = medium grey,
group selections = dark grey).
doi:10.1371/journal.pone.0040473.g001
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among sites and management classes. We subsequently radio-

tracked (homing) the animals 2–3 times per week during the active

seasons (May through October). For each tracked location, we

recorded GPS coordinates, date, ground temperature, elevation,

and during the post-harvest years we also recorded observed

activity classifications (resting, eating, mating, basking, walking,

etc.).

To monitor the thermoregulatory behavior of the animals post-

harvest, we affixed iButton temperature dataloggers (model

DS1921G-F5#, Maxim Integrated Products, Inc., Sunnyvale,

CA) to the carapace of each of the tracked turtles in May 2009.

Since carapacial temperature measurements have been shown to

correlate well with deep body temperatures [36–39], we used the

dataloggers to represent each animal’s body temperature (Tb).

Temperature datalogger and transmitter weight combined was

usually no more than 5% (max 20 g) of the animal’s total body

weight. Dataloggers recorded temperatures every 45 minutes

during the active season (May–October). All animals were handled

according to the Purdue Animal Care and Use Protocol 07-037.

To assess the available thermal habitats in harvest areas versus

uncut forests, we measured ambient temperature using tempera-

ture dataloggers affixed to stakes, 10 cm from soil surface (at

approximately T. c. carolina carapace height). We randomly placed

these ‘environmental dataloggers’ at four sample locations within

each of the nine study sites for a total of 36 individual thermal

locations. In each clearcut management site, two environmental

dataloggers were randomly deployed inside clearcuts and two in

the adjacent forests (between 100 m and 500 m from the nearest

harvest edge; harvest-adjacent forest). In each group selection

management site, four dataloggers were randomly deployed inside

harvest openings. In each control site, we randomly deployed four

dataloggers within the forested habitats. This blocked design

resulted in equal numbers of environmental dataloggers inside

harvest openings (n = 18) and in forested areas (n = 18) represent-

ing the four habitat types (clearcut opening, group selection

opening, harvest-adjacent forest, and forested control). To

eliminate the effect of slope aspect on temperature logged, we

used equal numbers of southwest- and northeast -facing slopes. We

deployed all temperature loggers from May 2009 to October 2010

for a total of 75 weeks. We programmed dataloggers to record

temperatures every 45 minutes to match the carapacial datalog-

gers described above.

Landscape-scale analyses
Home Range Estimation. We used multiple analyses to examine

how various timber-harvesting regimes affect behavior at land-

scape- and local-scales. To describe landscape-scale effects of

timber harvests, we used all animal location data across all nine

study sites throughout the forested landscape. To characterize

spatial land use in our population of box turtles, we created a point

layer in ArcGIS 9 (version 9.3.1; [40]) using the GPS location data

and calculated 100% Minimum Convex Polygons (MCP) with the

Hawth’s Analysis Tools extension [41] for each turtle in each year,

thus creating annual MCP home ranges. We standardized all

annual MCP home ranges by the number of GPS locations and

log-transformed them for normality.

We used a generalized linear mixed model to test annual MCP

home ranges for differences among sites using a crossover design

and the PROC GLMMIX command in SAS [42] with a first-

order autoregressive covariance structure. We compared all the

pre-harvest data then ‘‘crossed over’’ to the post-harvest control

comparisons. In our initial model, site, year, and the interaction of

site and year were fixed effects and animal ID nested in site was a

random effect. By analyzing data in this crossover fashion, we

could verify that control sites were representative of pre-harvest

conditions (i.e., site explained very little variation). We grouped

sites by management class (clearcut, group selection, and control)

for all subsequent analyses and evaluated their effects in the pre-

and post-harvest data using a full factorial generalized linear

mixed model (GLMM) with unbounded variance components in

JMP [43]. We used year, sex, management class, and their

interactions as fixed effects and animal ID nested in year as a

random effect (to account for repeated measures of individual

animals) to find any differences in annual MCP home ranges with

relation to harvests. To detect significant differences across effect

levels, we used post-hoc Least Squares Means (LSMeans) Tukey-

Kramer pairwise comparisons, which adjust significance for

multiple comparisons.

Year-to-year variation in movements and habitat use is

common (often due to variation in resources such as vegetation

and invertebrate prey; [28,44,45], therefore we used biennial (two-

year) intervals as indices of longer-term home range sizes and core

use areas. These biennial intervals corresponded to the two pre-

harvest years and two post-harvest years (hereafter ‘‘harvest

periods’’). To assess differential habitat utilization due to timber

harvests, we used biennial MCPs and kernel estimates (ArcGIS

Home Range Tools [HRT] extension; [46]) for each animal

between harvest periods. We chose to use kernel estimates for

further comparisons to other habitat use studies [47] but also

continued to calculate MCPs because it has been argued that they

better represent herpetofaunal habitat use [48]. We calculated

50%, 90%, and 95% kernel isopleths (percent volume contour) of

utilization distributions using the fixed kernel method with least

squares cross validation (LSCV) for pre- and post-harvest. For

both biennial MCP and kernels, we used a GLMM to test for

differences in pre- and post-harvest area measurements (log-

transformed) caused by the fixed effect of harvest period (with

animal ID nested as a random effect to control for re-sampling

error).

Movement and thermal ecology
Animals may not only adjust their annual home ranges in

response to harvests, but also vary their movement activity (i.e.

move farther distances within their home range or move more

frequently). For this analysis, we calculated the Euclidian distance

between GPS locations for each animal in ArcGIS using the HRT

extension then calculated steplength (average estimated distances

by day). To test whether harvest period had an effect on

steplength, we log-transformed these data and fitted a full factorial

unbounded GLMM with harvest period, sex, management class,

and their interactions as fixed effects and animal ID nested in

harvest period as a random effect. Then to examine the thermal

ecology of T. c. carolina in relation to the timber harvests, we tested

for correlation between the log-transformed steplength data and

ground temperature (Tg; recorded when animals were radio-

located). We also used these data to determine the thermal optima

(the temperature at which movement activity is maximal) across

harvest periods.

Thermal habitats
To test for changes in available thermal habitat, we used

differences in ambient temperature among habitat types within

sites. We summarized the temperature time series data from each

of the 36 environmental dataloggers into three variables; monthly

temperature maxima (Tmax), monthly temperature minima (Tmin),

and monthly temperature mean (Tmean) using R [49]. We used

unbounded GLMM in JMP to test for significant Tmin, Tmax, and

Tmean differences caused by habitat type, month, and their

Short-Term Forest Effects on Long-Lived Ectotherm
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interaction as fixed effects and individual datalogger ID nested in

month as the random effect. We used LSMeans Tukey-Kramer

post-hoc comparisons to detect significant differences in Tmin,

Tmax, and Tmean between months.

Local-scale analyses
To determine the thermal effects of harvests on ectotherm

behavior, we first characterized the thermoregulatory behavior of

our entire turtle population. We examined the max, mean, and

min Tb to find the range of selected temperatures for each month.

We correlated observed behavior at the time of each GPS location

in relation to Tb. We used a GLMM to investigate animal body

temperature (Tb) differences explained by the fixed effect of

observed behavior category with the random effect of animal ID

nested in behavior. Behavior categories included basking, eating,

mating, resting, inverted (found upside-down), walking, and

buried.

To investigate local-scale harvest edge use and activity, we

examined the actual harvest openings and their associated edges in

combination with GPS location data. We then created 10- and 50-

meter polygon buffers around the harvest boundaries using

ArcGIS Analysis Tools. We tested for differences in the percent

of animal locations within these three harvest-polygons (inside

harvest, 10 m buffer, and within the 50 m buffer) across harvest

periods, again controlling for individual effects using an unbound-

ed GLMM as described above. We conducted a similar analysis

using the Euclidian distances animals moved within these harvest-

polygons to test for differences in activity (frequency of movement

or daily distance moved).

To determine the edge effects on thermoregulation, we

compared Tb of the animals using the harvests and their edges

to the Tb of those same animals when they were located in the

forests. To investigate edge effects on movement activity, we used

Tb to describe the available thermal habitats in various harvest-

polygons. We analyzed harvest edge effects by categorizing harvest

proximity polygons (as above) by inside the harvest, 10 m buffer,

and 50 m buffer from the nearest harvest opening. We also

explored Tb within harvest-polygons by using Tb as the response

variable and distance to harvest and month as the fixed effects. We

used unbounded GLMMs and controlled for repeated measures

using animal ID nested in harvest-polygons as a random effect in

each model. We performed post-hoc LSMeans Tukey-Kramer

pairwise comparisons to detect significant differences.

Results

Landscape-scale effects
We radio-tracked 23–44 T. c. carolina each year (average = 33.5/

year), carrying over all that survived each year and were not lost or

censored. Losses due to transmitter failure were rare (n = 1). Two

animals were separated from their transmitters and censored. Five

animals died of various causes including predation (n = 1), severe

emaciation (n = 1), suspected disease (n = 2), or failure to emerge

from hibernacula (n = 1). Home range MCPs for the remaining

animals (n = 50; 23=, 27R) with .20 locations per year

(avg. = 57.34, SD = 19.10, range = 14–79) were calculated for

each year (see supporting information for Table S1).

We found no difference (p-value = 0.418) in the overall size of T.

c. carolina annual MCP home ranges between all pre-harvest sites

and control post-harvest sites, verifying our experiment used true

controls. Annual MCP home ranges (4.10 ha to 11.43 ha) did not

differ among sex, year (2007–10), management class, or any

combination of these factors (all p-values.0.07). The minimum

and maximum annual home range sizes were 0.47 ha and

187.67 ha, respectively. The average MCP for all four years was

9.14 ha for males and 5.55 ha for females.

Average pre-harvest biennial MCP home ranges (18.93 ha,

SE = 7.51) were generally larger than post-harvest (9.09 ha

SE = 5.75; Table 1), however, this difference was not significant

(F1, 2.435 = 0.018, p = 0.90). There was much variation in kernel

areas by sex and harvest period (Table 1) For all three kernel

isopleths (50%, 90%, and 95%), the home range areas increased

from pre-harvest to post-harvest (all p-values,0.05). No variation

in biennial home range area was attributed to harvest type

(clearcut or group selection) or sex (all p-values.0.29).

Movements and thermal ecology
Steplength decreased from pre-harvest to post-harvest (F1,

66.2 = 33.96, p,0.001) but there were no differences (all p-

values.0.13) by sex, management class, or any combination of

the three. The percent of steplengths that equaled zero (the

percent of time the animals did not change position between GPS

locations) was 1.83% pre-harvest and 0.86% post-harvest,

meaning the animals moved more often post-harvest. Steplength

was positively and significantly correlated with ground tempera-

ture (R2 = 0.16, p,0.001; Figure 2a & b). Thermal optimum was

found at 22–24uC pre-harvest (Figure 2c) and 24–26uC post-

harvest (Figure 2d) despite the fact that ground temperatures were

higher pre-harvest (mean = 24.5uC) than post-harvest

(mean = 22.7uC; F1, 7315 = 140.8, p,0.001). Average steplength

during the pre-harvest period was 22.08 meters (SE = 1.21) and

15.40 meters (SE = 0.88) during the post-harvest period, with the

height of activity varying by month (Figure 3).

Thermal habitats
We processed 388,974 environmental temperatures from 36

locations in four habitat types (clearcut opening, group selection

opening, harvest-adjacent forest, and forested control) between

May 2009 and October 2010. Available temperatures differed at

each level (Tmax, Tmean, and Tmin) for each habitat type, month,

and habitat by month interaction. The interaction term for Tmin

was the only non-significant effect (F33, 376.6 = 0.959, p = 0.54) in

the model. The strength of the effects varied by month, with the

harvest habitat types (clearcut and group selection openings) more

similar to one another and forested habitat types (harvest-adjacent

forest and forested controls) more similar (Table 2). Habitat type

affected Tmax more strongly than others. Explicitly, the range of

temperatures for Tmax was broader between habitats than for Tmin

or Tmean especially during the active period (Figure 4a). Between

March and October, Tmax in both harvest habitat types were

significantly warmer (.10uC) than forested habitats (forests

Tmax = 24.57uC, SE = 0.73; harvest Tmax = 34.43uC, SE = 0.80;

F1, 40.25 = 83.56, p,0.001). This difference was most extreme in

August when the Tmax in harvest areas averaged 39.98uC
(SE = 0.99) while it was nearly 13uC cooler in forested areas at

27.49uC (SE = 0.88). In contrast, Tmin and Tmean differences

remained within 3uC between habitat types, but usually less than

2uC for these months.

Local-scale effects
We recorded and processed 494,548 body temperatures among

50 turtles between May 2009 and October 2010. The maximum,

mean, and minimum Tb varied by month (Figure 4b). Tb was

highly correlated with Tg (R2 = 0.71, p,0.001). Behavioral

categories were correlated with Tb over the post-harvest period,

but explained very little of the variation (R2 = 0.08, p,0.001). Post-

hoc analysis revealed significant Tb differences in basking, walking,

resting, and being underground behaviors. Behaviors associated

Short-Term Forest Effects on Long-Lived Ectotherm
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with higher Tb (24–27uC) included basking and mating. Behaviors

generally associated with lower Tb (22–23Cu) included resting,

inverted, walking, and eating, but post-hoc analysis revealed that

these were not significantly different than mating. When Tb

decreased to an average of 13.8uC, the animals were generally

buried underground (near the hibernation season).

We found no significant difference in number of animal

locations between the harvest periods within harvest-polygons.

While the pre-harvest Euclidian distances within the designated

harvest boundaries and their edges did not differ from 2007 to

2008, the averages were significantly different from post-harvest

Euclidian distances in each polygon (F1, 516.5 = 32.45, p,0.001).

Inside the harvest boundaries, post-harvest Euclidian distances

were shorter (11.26 m, SE = 1.66) compared to pre-harvest

Euclidian distances of 22.91 m (SE = 2.83). A similar trend was

found within edge polygons where post-harvest Euclidian distances

(14.45 m, SE = 1.27) were smaller than pre-harvest (23.60 m,

SE = 2.10).

Body temperatures did not vary among management classes (F2,

40.72 = 1.624, p = 0.21) but were different among months (F6,

294.7 = 1087.334, p,0.001; Figure 5). However, animals found

within the harvest openings maintained 9% higher Tb overall than

those found in the forest/harvest edge or forest interior (F2,

73.24 = 8.135, p,0.001). Body temperatures within 50 meters of

the harvest edges were lower (21.72uC, SE = 0.35) than farther

inside the forest (22.22uC, SE = 0.21) and harvests (23.91uC,

SE = 0.44).

Discussion

Recent literature has shown that timber harvesting can have

both positive and negative effects on forest dwelling species. Here

we investigated the effect of various harvest openings on an

ectotherm, the eastern box turtle. Using an experimental design

and a variety of approaches, we demonstrate that in a relatively

contiguous forested landscape, timber harvests have little effect on

the short-term annual behavior of box turtles. However, we did

detect a behavioral effect at the local scale where available

microenvironmental temperatures were altered. We also offer

further evidence that there is much variation in the annual

behavior and home ranges of T. c. carolina that should be

considered when establishing management strategies for forests

and this species.

Landscape-scale effects – home ranges and thermal
ecology

Ectotherms, such as box turtles, will preferentially use certain

types of available habitats for thermoregulation, nesting, and

aestivation [50,51]. Home range size likely depends on the quality

of available food and other resources within the habitat [28].

Annual MCP home ranges for our adult T. c. carolina ranged from

0.47 and 187.67 hectares, the upper extreme being much larger

than reports from any other study on this species. Indeed, our

average annual home range estimate of 7.45 ha is more than 33%

larger than any other published estimates to date (Table 3;

[7,45,52–58]). It should be noted that there is a large variance in

home range estimates across studies, which is likely associated with

study duration, size, and monitoring method. The most likely

Table 1. Pre-harvest (Pre-harv.; 2007–2008) and post-harvest (Post-harv.; 2009–2010) home ranges of female and male eastern box
turtles.

Period Sex Mngmnt Class* n Biennial MCP{ Biennial 95% Kernel{

Median Mean SE Median Mean SE

Pre-harv. F Clearcut 5 6.80 15.42 10.20 3.57 32.32 28.97

Control 4 3.52 4.54 1.86 3.32 3.37 0.73

GroupSelect 2 10.21 10.21 6.74 4.31 4.31 0.38

M Clearcut 5 2.02 4.63 1.75 2.71 4.34 1.07

Control 4 5.52 83.08 78.41 5.39 14.99 10.63

GroupSelect 7 3.53 5.70 2.81 3.85 4.35 1.11

Summary F All 11 5.27 10.52 4.74 3.94 16.70 13.15

M All 16 3.57 24.71 19.62 4.12 7.01 2.72

Totals 27 3.61 18.93 11.70 3.94 10.96 5.52

Post-harv. F Clearcut 7 2.57 10.56 5.80 1.45 1.85 0.51

Control 8 7.96 9.87 2.81 2.28 5.02 2.91

GroupSelect 9 2.69 5.48 1.89 1.30 1.36 0.23

M Clearcut 7 5.98 11.11 6.30 2.22 49.22 46.96

Control 7 3.65 16.72 13.10 1.59 18.66 17.29

GroupSelect 8 2.32 2.64 0.51 1.66 1.64 0.21

Summary F All 24 4.19 8.42 2.02 1.49 2.72 1.00

M All 22 3.02 9.82 4.57 1.75 22.19 15.69

Totals 46 3.02 9.09 2.40 1.57 12.03 7.57

*The associated management class (Mngmnt Class).
{biennial Minimum Convex Polygons (MCP) home ranges.
{Only the 95% kernel isopleths areas are listed here, as they are the only relevant comparisons to 100% MCP.
doi:10.1371/journal.pone.0040473.t001
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explanation for the large home range size reported here is that our

study was conducted within an expansive, relatively contiguous,

and undisturbed habitat. Iglay et al. [59] found that turtles in

fragmented habitats moved less often than those in contiguous

habitats. To this end, many previous studies were conducted

within relatively small and fragmented habitats that likely

physically limited home ranges (Table 3).

In this study, we found no differences in either annual or

biennial home ranges across the landscape in association with any

of the three management classes (clearcut opening, group selection

opening, or control). This lack of variation was likely due to the

fact that the actual timber harvest openings were relatively small

(0.15–4.43 ha) in relation to T. c. carolina home range size and the

surrounding contiguous forested habitat. Forest species often

develop different strategies to cope with habitat perturbations.

Some species expand their home ranges in response to forest

fragmentation [60] while others inhabit territories that contain

only small percentages of preferred habitat [61]. Still other species

may gravitate toward mixed-composition habitat [62]. In the

current study, the percent of animal locations within harvest edges

did not change from pre- to post-harvest, suggesting that no such

gravitation occurred. However, the movement parameters we

investigated suggested that animals did alter their behavior while

in proximity to harvest boundaries.

In pre-harvest years, animals tended to move longer distances

(i.e., longer steplengths) than post-harvest years. However, the

Figure 2. Thermal Optima. Scatter plot of daily distances traveled by eastern box turtles (steplengths; y-axes) by ground temperature (Tg in uC; x-
axes). All 2007–10 steplengths (in meters per day) by ground temperature (a.) and the log-transformed steplength by ground temperature (b.). Pre-
harvest (2007–08) steplength in meters per day by ground temperature (c.) and post-harvest (2009–10; d.). Plots show 95% (black ellipse) and 50%
(grey ellipse) density ellipses around points and histogram densities along plot boarders. Darkened areas represent the peak of activity temperatures
(22–26uC; thermal optimum) in these data.
doi:10.1371/journal.pone.0040473.g002
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percent of steplengths that were zero were higher pre-harvest

(1.83% vs. 0.86%). This suggests that although the animals moved

shorter distances and maintained generally smaller home ranges

after the harvests were implemented, they moved more often.

These increased short-range movements may be the result of

changes in resources. In this altered habitat, animals may need to

move frequently for new foraging opportunities as seen with many

small mammal and bird species [60,63]. Shorter movements may

be a result of downed slash acting as physical barriers or severe

climatic conditions (i.e., drought). While it was evident that the

animals did reduce movements during drought years, the

cumulative effect on our results is minimal because the animals

experienced drought years during pre-harvest 2007 and post-

harvest 2010. Alternatively, behavioral thermoregulation may

explain why the animals regularly moved but remained nearer to

the same locations post-harvest.

Studies of fine-scale temperatures over broad spatial expanses

are rare, despite the fact that temperature is an important factor in

the location and activity of species [16]. A primary effect of the

alteration of landscapes is the change in the microclimate of

available habitats [64]. We measured these changes temporally

across the landscape using temperature dataloggers. Although

there was annual variation in ambient temperatures, the

microclimatic conditions varied significantly between harvest and

forested habitats. The most pronounced period occurred between

May and September for Tmax when differences were often greater

than 10uC. These extreme summer temperatures found within

harvest areas potentially exclude many plant and animal species.

For example, variation in microclimates has been shown to affect

the germination of emergent herbaceous and woody species [65].

During periods of highest temperatures, Tmax within harvest areas

was often observed to be near the maximum thermal tolerance for

most ectotherms (43uC) effectively reducing the suitability of these

areas for T. carolina (34.2uC; [66]) and other herpetofauna [67–70].

Although the current study examines a subset of factors affected by

timber harvests, the advantage of this approach is the resulting

detailed data of mechanisms underlying landscape effects [63].

Our results suggest that population-level responses to small-scale

timber harvests (which are typical for the Midwestern U.S.) are

minimal.

Local-scale effects – movement and edge effects
Ecotones (either natural or man-made) will influence animal

activity differently as surface temperature, air temperature, and

canopy cover varies across the landscape [55,71]. Ecotones at the

harvest edges may provide cover by fallen logs and downed

treetops, increased concentration and variety of forage (soft mast

plants and invertebrates), and may facilitate behavioral thermo-

regulation by providing basking sites. Although we found no

significant difference in the relative number of animal locations

within the boundary or edges of the harvest areas, we did find

differences in the movement parameters that suggest the animals

use these areas differently. Prior to the harvests, the animals made

longer, scattered movements across would-be harvest areas. Once

the harvests were implemented, the movements (Euclidian

distances) across the harvests shortened and were concentrated

along the edges of the harvests (within edge polygons). Directed

movements, although varied, often would alternate from the forest

to the harvest edge, and frequently would cross project logging

roads to do so. Studies on various turtle species have determined

that roads bisecting animal routes were positively correlated with

male biased sex ratios [27,72–75], population declines [76], and

expanded home range sizes [77]. In this study, two of the sites

were bordered by public roads and all sites were adjacent to

logging roads, however we did not analyze correlations of the

roads to movements or home ranges.

Anthropogenic effects extend beyond the physical boundary of

disturbance. In a broader definition of habitat, thermal microcli-

mates limit the use of certain areas both seasonally and spatially.

Analyses of the variables that affect ambient temperatures on a

microclimate scale will aide in the understanding of habitat

requirements of ectotherms [16]. In this study, the animals found

inside the harvest areas maintained higher active season body

temperatures than those outside the harvests by 10.13%. As

expected, basking behavior correlated with higher temperatures.

Forested sites located near roads or open areas such as timber

harvests, are found to be generally warmer than those further

away [16]. However, Tb at timber harvest edges were the lowest

during the active period, even lower than in the adjacent forested

habitat suggesting that the animals were moving between

microhabitats for thermoregulation as seen in other taxa [78,79].

Figure 3. Pre vs. Post Movements. Average steplength (m/day) moved by eastern box turtles each month for both harvest periods (pre-harvest
[2007–08] and post-harvest [2009–10]; bars). The average ground temperatures (Tg; uC) recorded at turtle location each harvest period are also
plotted (lines).
doi:10.1371/journal.pone.0040473.g003
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Figure 4. Habitat and Animal Temperature Ranges. Mean monthly temperature maxima (Tmax), mean (Tmean), and minima (Tmin) over two
years (2009–2010) by habitat type (clearcut openings, group selection openings, harvest-adjacent forest (Harv. Adjacent), and forested control) (a).
Maxima, means, and minima monthly eastern box turtle body temperatures (Tb) for the same period (b).
doi:10.1371/journal.pone.0040473.g004
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The animals within our experimental openings were exposed to a

wide range of temperatures. In a laboratory study, the specificity of

Tb was investigated between T. c. carolina and T. ornata with the

finding that T. c. carolina has less thermal specificity [39]. We

routinely found the animals walking while inside the harvests and

document that they do have the ability to behaviorally adjust to

varying temperatures at a fine scale. These adjustments may play

key roles in the physiological requirements of ectotherms

throughout ontogeny and in various physical conditions (e.g., in

reptiles, gravid females actively adjust to maintain higher body

temperatures than males; [80].

Open spaces, such as clearcuts, may have less of an effect on

larger-bodied species or those adapted to hot and dry conditions.

Canopy cover directly influences light intensity, which is known to

be a critical factor for many reptiles during activity periods [81–

83]. On the other hand, many reptilian species such as small-

bodied snakes are adapted to utilize leaf litter and are likely to be

adversely affected by its removal with associated timber harvests

[83]. During the active season, T. c. carolina use leaf litter to create

‘forms’ as cover [84]. T. c. carolina will use these forms throughout

the active period as refuge from the heat, cold, rain, or disturbance

[28]. In addition to cover, leaf litter serves as habitat for prey (such

as snails, worms, and mushrooms) of box turtles. Immediately

following implementation of harvests, leaf litter is degraded, blown

from these areas, and often leaves large patches of unsuitable bare

ground [85]. Studies have found that the increased soil temper-

atures and reduced leaf-litter cover (which can take decades to

return pre-harvest conditions) in previously cut areas exclude

many amphibian species [86,87]. We found that short term effects

such as the loss of leaf litter did not cause the animals to abandon

the area, but rather continue to use it in a different way (such as for

thermoregulation).

Merely reporting species declines without determining their

mechanistic causes leaves conservation planners with little

recourse. To date, no studies have monitored the response of an

ectotherm’s movement parameters prior to and after discrete

anthropogenic disturbance such as timber harvests. The present

study has yielded detailed data on habitat use and spatial ecology

of an ectotherm in a managed forest, but has much broader

implications on multiple forest-dwelling species in a changing

climate. In our study, the timber harvest openings were generally

small (,5 ha) and were contained in a relatively contiguous and

much larger forest matrix. Our results indicate that in a relatively

contiguous forested landscape, small-scale timber harvests have

minimal effects on the short-term behavior of these ectotherms.

However, temperature fluctuations as seen in the current study

Table 2. Least Squares Means (LS Mean) Tukey-Kramer post-
hoc pairwise comparisons connecting letters report of
monthly environmental temperatures (Tmin, Tmax, Tmean)
during 2009–2010 within four habitat types (clearcut
openings, group selection openings, harvest-adjacent forest,
and forested control).

Level Habitat Type* LS Mean

Tmean GroupSelection A 12.4068993

Clearcut A 12.3435027

Control B 11.4761091

Harv.Adjacent B 11.1620106

Tmax GroupSelection A 25.3953822

Clearcut A 24.6201529

Control B 17.7994578

Harv.Adjacent B 17.2141375

Tmin Control A 7.302016

Harv.Adjacent A 7.05775033

Clearcut B 5.99306883

GroupSelection B 5.84889568

*Habitat types at each level not connected by the same letter are significantly
different.
doi:10.1371/journal.pone.0040473.t002

Figure 5. Harvest Proximity Temperatures. Mean eastern box turtle body temperatures (Tb) in degrees Celsius (C) with relation to timber
harvest proximity over the active season months for post-harvest years (2009–10 combined). Starred bars represent significantly different mean
temperatures during that month.
doi:10.1371/journal.pone.0040473.g005
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affect seasonal available habitat for forest-dwelling animals,

especially for those with limited dispersal and thermoregulatory

capabilities. Microclimates within harvested areas can exclude

animals, but they also may create some desired ecotonal habitat.

Considerations of habitat requirements and contiguity of sur-

rounding refugia habitat and species ability to recover should be

thoroughly considered before timber harvest sizes are determined.

These factors are of particular interest when dealing with long-

lived species of conservation concern amid a changing climate.

Supporting Information

Table S1 Four-year home range summary. Summary of

turtle annual home ranges at all nine study sites from 2007–2010.

(PDF). Legend: Summary of the eastern box turtle annual home

ranges at nine study sites in south-central Indiana from 2007–10.

Year, sex, management class (Mngmt Class), number in group (n),

and median, mean, and standard errors of annual home range

(100% Minimum Convex Polygon; MCP) in hectares (ha). For

2007–08, the management class represents the assigned harvest

type prior to harvest implementation.

(PDF)
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