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A Details of the Gibbs sampler

We describe in more details the six blocks that compose our Gibbs sampler procedure. The

sampler is based on the algorithm by Del Negro and Otrok (2008) modified to account for

missing data and mixed frequencies.

A.1 Block 1: drawing the factor loadings βq, βh, βs

In the first block of the Gibbs sampler we draw the factor loadings. Start from the measurement

equation of the hard indicator:

yh,t = βhft + uh,t (1)

where the law of motion of the idiosyncratic shock is uh,t = φh,1uh,t−1+φh,2uh,t−2+εh,te
λh,t/2 and

εh,t ∼ N(0, σh). Since we are conditioning on all the parameters, on the factor ft and on the

stochastic volatilities λh,t we treat this as a regression with autocorrelated and heteroscedastic

residuals. Now we quasi-difference the equation by filtering both sides with the filter 1−φh,1L−
φh,1L

2 and divide each observation by eλh,t/2:

y?h,t = βhx
?
t + εh,t (2)

where x?t = (1−φh,1L−φh,1L2)ft/e
λh,t/2. We posit a Normal prior so thath the posterior is also

Normal, see Kim and Nelson (1999) for a textbook treatment. The case of survey variables

can be treated in the same way after noticing that x?t = (1− φh,1L− φh,1L2)
∑11

j=0 ft−j/e
λs,t/2.

In the case of quarterly variables two adjustments are needed. First, since the variable is

observed only every three months only these observations can be used for estimating the factor

loading. Second, in the measurement equation an MA(4) regression error appears:

yq,t = βqw(L)ft + w(L)uq,t (3)

where w(L) = 1
3

+ 2
3
L + L2 + 2

3
L3 + 1

3
L4. Furthermore the error term ut is an AR(2) process

uq,t = φq,1uq,t−1+φq,2uq,t−2+εq,te
λq,t/2. We work out the variance covariance matrix of the error

terms of equation (3), Φ(φq,1, φq,2, σ
2
q ), which, at this step of the sampler, can be treated as

known. Then we divide each observation by eλq,t/2 and pre-multiply both sides of the equation

by Φ−
1
2 to obtain a standard regression with uncorrelated residuals. Assuming a normal prior,

draws of βq are obtained from a normal posterior.
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A.2 Block 2: drawing φf,1, φf,2, φq,1, φq,2, φh,1, φh,2, φs,1, φs,2

To draw the AR parameters of the idiosyncratic shocks notice that, conditioning on the state

vector µt, we can treat the common factor ft and the residuals uq,t, uh,t, us,t as known. The

transition equations become standard regression problems which can be analyzed using the

same steps used for drawing the factor loadings. We employ normal priors and rule out explosive

roots by discarding draws if the roots of φj(L) = 0 lie outside the unit circle.

A.3 Block 3: drawing the innovation variances σ2
f , σ

2
q , σ

2
h, σ

2
s

We again proceed by treating the transition equations one at the time. Consider a generic

element of the state vector µi,t. Its law of motion is:

µi,t = φi,1µi,t−1 + φi,2µi,t−2 + ηi,t ηi,t ∼ N(0, σ2
i e
λi,t) (4)

For the innovation variance σ2
i we posit an inverse-Gamma prior p(σ2

i ) = IG(ni, s
2
i ). Given

our assumption that the idiosyncratic disturbances are normal the posterior is also an inverse-

Gamma, IG(T + ni,
nis

2
i+Td

2
i

T+ni
) where:

d2i =
1

ni

ni∑
t=1

(µt,i − φi,1µt−1,i − φi,2µt−2,i)2 (5)

A.4 Block 4: drawing the state vector µt

Since the model can be cast in state space draws of the state vector can obtained via a state

vector simulation smoother as in Kevin and Kohn (1994) or with the disturbance smoother

proposed by Koopman and Durbin (2003). We resort to the latter, which turns out to be

slightly more efficient from a computational point of view.

A.5 Block 5: drawing λi,t

To sample the stochastic volatilities λi,t notice that conditional on all parameters and on the

states µt the orthogonal innovations ηi,t/σh,i are observable. The λi,t can then be sampled

adopting the date-by-date blocking scheme developed by Jacquier et al. (1994).1.
1Details on the algorithm, which involves a Metropolis Hastings step within the Gibbs sampler, can be found

in Cogley and Sargent (2005), Appendix B.2.5
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A.6 Block 6: drawing σ2
h,i

The final block of the sampler involves drawing the variances of the log-volatilities. Condition-

ing on the log-volatilities and postulating an inverse-Gamma prior distribution, the σ2
h,i can

also be drawn from an inverse Gamma posterior.

B The selection of the monthly indicators

Small scale models have their own “curse of dimensionality": since they rely on a small set

of indicators, they are prone to the criticism of potentially leaving out relevant information

compared to factor models that use hundreds of time series. Part of the literature has, however,

advocated the use of a models of small dimensions. Bai and Ng (2008) and Boivin and Ng

(2006), for example, question the usefulness of ’too much information’ for forecasting purposes,

showing that a number of variable selection techniques (already widely used in biomedical

statistics where the number of covariates is typically very large) give encouraging results when

applied to economic time series. To make the choice of the indicators to be included in our

model as objective as possible we proceed as follows. We start by considering a dataset of

more than a hundred variables for the period 1987-20112, and select a subset of 39 indicators

similar to those employed in Angelini et al. (2011) and in Camacho and Perez-Quiros (2010).

We then set a priori four core variables that we decide to include in the model, which are

Industrial Production for the euro area (IP), the composite Purchasing Manager Index (PMI),

the European Commission Economic Sentiment Indicator (ESI) and the Germany IFO Business

Climate Index. To select the remaining variables, we calculate as a benchmark the percentage of

GDP variance explained by the factor computed from the core variables only, as in Camacho and

Perez-Quiros (2010), and design an algorithm for the selection of a set of additional indicators

which maximize this statistic.

1. We evaluate datasets with all core variables and one other variable at a time in order to

calculate the explained variance, and the probability that it is higher than in the dataset

with core variables only. In this way we obtain a ranking of the other series.

2. We add a variable at a time, starting with the ones with an higher probability to increase

the explained variance with respect to the benchmark; we keep the variable only if this

probability increases. We end up with the small set of 8 variables described in the main

text.
2The series are those used to compile ¤-Coin (see Altissimo et al. (2010)). For a description of the dataset

see http://eurocoin.bancaditalia.it/

4

http://eurocoin.bancaditalia.it/


C The state space specification in the empirical application

The specification we adopt follows Camacho and Perez-Quiros (2010) where surveys are mod-

eled as a 12 terms moving average of the unobserved factor, while hard variables load the factor

contemporaneously. This amounts to imposing that surveys are in phase with the year on year

growth rate of Industrial Production (and of the other hard indicators). To get an idea of the

state representation of the model while keeping notation to a minimum we present the case of

a toy model with one quarterly variable, one hard indicator and one soft indicator in which all

the idiosyncratic shocks follow an AR(2) process. The more general case can be easily derived

from this example. The loading matrix F in the measurement equation (??) can be written as:

F =


βq

1
3

βq
2
3

βq βq
2
3

βq
1
3

0 0 0 0 0 0 0 1
3

2
3

1 2
3

1
3

0 0 0 0

βh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

βs βs βs βs βs βs βs βs βs βs βs βs 0 0 0 0 0 0 0 1 0

 (6)

where βq, βh and βs are the loadings of, respectively, the quarterly variable, the hard and the

soft indicators. The state vector is:

µt =
(
ft ft−1 . . . ft−11 uq,t . . . uq,t−4 uh,t uh,t−1 us,t us,t−1

)′
(7)

The transition matrix is:

H =



φf,1 φf,2 0 0 0 . . . 0 0 0 0 0 0 0 0 0

1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . φq,1 φq,2 0 0 0 0 0 0 0

0 0 0 0 0 . . . 1 0 0 0 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 0 0 φh,1 φh,2 0 0

0 0 0 0 0 . . . 0 0 0 0 0 1 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 φs,1 φs,2

0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 0



(8)
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Since the idiosyncratic shocks are collected in the state vector the matrix Rt is a (k+2)

dimension zero matrix while the matrix Qt is a diagonal matrix which collects all the variances:

Qt = diag

 1 0 0 0 . . . σ2
qe
λq,t 0 0 0 0 σ2

he
λh,t 0 σ2

se
λs,t 0

 (9)

C.1 The model with two factors

As a robustness check we have extend the baseline model to include a second factor, which

we model as a (restricted) ARMA(2,2) process as in Frale et al. (2011). The two monthly

unobserved factors have the following reduced form representations:

(1− ϕ11L− ϕ12L
2)f1,t = ε1t

(1− ϕ21L− ϕ22L
2)f2,t = (1− θL)2ε2t

where ε1t ∼ N(0, σ1ε) and ε2t ∼ N(0, σ2ε). Frale et al. (2009) set θ = 0.5, motivating such

restriction as a way to enhance the fit at low frequencies, see also Morton and Tunncliffe-Wilson

(2004). We sketch the State Space representation of the modified model in a simple setup with

three indicators (GDP, a hard monthly variable and a soft monthly variable). Since the presence

of these extra MA terms produces a smoother factor we drop the 12 terms moving average

representation of the loadings of the surveys in favour of a more standard contemporaneous

relationship, so that the measurement matrix F is composed of the three following blocks:

F1 =


βq,1

1
3

βq,1
2
3

βq,1 βq,1
2
3

βq,1
1
3

βh,1 0 0 0 0

βs,1 0 0 0 0



F2 =


βq,2

1
3

βq,2
2
3

βq,2 βq,2
2
3

βq,2
1
3

0 0

βh,2 0 0 0 0 0 0

βs,2 0 0 0 0 0 0



F3 =


1
3

2
3

1 2
3

1
3

0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0


where F1, and F2 collect the loadings on the first and second factor and F3 the loadings on

the idiosyncratic disturbances, which are also modelled as AR(2) processes. Notice that F2

has two extra column vectors of zeros, necessary to accommodate the MA terms in the second
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factor.

F = [F1, F2, F3]

We adopt the max(p, q + 1) representation, see Durbin and Koopman (2006), which requires

the slightly more general specification of the transition equations:

µt = Tµt−1 +Rηt

where ηt ∼ (0, Qt), Qt is a 5 dimensional diagonal matrix (collecting the variances of the 5

idiosyncratic terms, 3 for the observable indicators, 2 for the unobserved factors) and R is a

21× 5 selection matrix. The matrix T is block diagonal with the following blocks:

T1 =



ϕ11 ϕ12 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


, T2 =



ϕ21 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

ϕ22 0 0 0 0 0 1

0 0 0 0 0 0 0


,

T3 =



ϕq,1 ϕq,2 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


, T4 =

 ϕh,1 ϕh,2

1 0

 , T5 =

 ϕs,1 ϕs,2

1 0



the state vector is 21 dimensional:

µt = [f1t, f1t−1, ..., f1t−4, f2t, f2t−1, ...f2t−4, z1,t,z2,t,uqt, uqt−1, ..., uqt−4,uht,uht−1, ust,ust−1]
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and the selection matrix R is

R =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −2θ 0 0 0

0 θ2 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


It can be seen that the two additional state variables z1t and z2t are:

z1,t = ϕ22f2,t−1 + z2,t−1 − 2θεt

z2,t = θ2εt

Finally, Qt = (1, σ2
f2
eλf2,t , σ2

qe
λq,t , σ2

he
λh,t , σ2

se
λs,t).

In our empirical application, however, this second factor is not well identified. In fact, as

shown in Table 1, the loadings of the indicators on the second factor collapse to zero, with the

first factor accounting for the co-movement in the data.

D News and forecast revisions

In their paper Banbura and Modugno (2014) derive a way to decompose a forecast revision as
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a linear function of news.

They denote as Ωv a vintage of data corresponding to a statistical data release v, which as

an example can be mid-month for industrial production and end of month for surveys, in order

to define news as:

Iv+1,j = yij ,tj − E[yij ,tj |Ωv] (10)

the surprise incorporated in a new data with respect to what was expected given information

Ωv. A forecast revision is defined as:

E[yk,tk |Iv+1] = E[yk,tk |Ωv+1]− E[yk,tk |Ωv] (11)

and can be expressed as weighted average of news:

E[yk,tk |Iv+1] = Bv+1Iv+1 = E[yk,tkI
′
v+1]E[Iv+1I

′
v+1]

−1Iv+1 (12)

where:

E[yk,tkIv+1,j] = HkE[(µtk − E(µtk |Ωv))(µtj − E(µtj |Ωv)
′)]H ′ij (13)

E[Iv+1,jIv+1,l] = HijE[(µtj − E(µtj |Ωv))(µtl − E(µtl |Ωv)
′)]H ′il (14)

where E[(µtj − E(µtj |Ωv))(µtl − E(µtl |Ωv)
′)] is the state vector covariance matrix obtained as

a by-product of the Kalman Smoother.
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Table 1: Factor loadings, two factor model
Percentiles First factor Second factor

75th 50th 25th 75th 50th 25th
GDP 0.44 0.27 0.08 0.00 0.00 0.00
Industrial Production 0.67 0.55 0.41 0.00 0.00 0.00
Industrial Production - Pulp/paper 0.34 0.28 0.21 0.00 0.00 0.00
Business Climate - IFO 0.04 0.02 0.00 0.00 0.00 0.00
Economic Sentiment Indicator 0.03 0.01 -0.01 0.00 0.00 0.00
PMI composite 0.02 0.01 -0.01 0.00 0.00 0.00
dollar-euro 0.01 -0.01 -0.04 0.00 0.00 0.00
10y-3m spread 0.03 0.01 0.00 0.00 0.00 0.00
Michigan Consumer Sentiment 0.09 0.05 0.02 0.00 0.00 0.00
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