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This paper discusses using real options to value power plants with unit commitment constraints over a short-term period. We formulate the
problem as a multistage stochastic problem and propose a solution procedure that integrates forward-moving Monte Carlo simulation with
backward-moving dynamic programming. We assume that the power plant operator maximizes expected profit by deciding in each hour
whether or not to run the unit, that a certain lead time for commitment and decommitment decisions is necessary to start up and shut down
a unit, and that these commitment decisions, once made, are subject to physical constraints such as minimum uptime and downtime. We
also account for the costs associated with starting up and shutting down a unit. Last, we assume that there are hourly markets for both
electricity and the fuel used by the generator and that their prices follow Ito processes. Using numerical simulation, we show that failure to
consider physical constraints may significantly overvalue a power plant.

With deregulation of the electricity industry a global
trend, utilities and power generators must adjust

to the new risks of volatile spot prices in the competi-
tive marketplace. Because they are no longer able to rely
on embedded cost recovery regulation, these organizations
must fundamentally change the way they view power plant
operation. For example, the deterministic and cost-based
unit commitment problem (e.g., Sheble and Fahd 1994,
Tseng 1996) that schedules power plants to satisfy demand
should be replaced by an optimization problem which is, at
least, price-based and takes into account price stochastics.
Solving such an optimization problem not only yields the
optimal commitment decision, but also reveals the power
plant’s value over the operating period.

Unfortunately, recent work that has tackled this power
plant valuation problem using financial options theory has
overlooked the plant’s unit-commitment constraints. Specif-
ically, these financial options approaches implicitly assume
(i) a zero startup time, i.e., a unit can be started up immedi-
ately when favorable prices are observed; and (ii) no min-
imum up/downtime constraints, e.g., an online unit can be
turned down whenever the prices become unfavorable. Con-
sequently, these approaches always result in a nonnegative
payoff for operating a power plant and suggest the opera-
tor faces no risk of loss. However, as this paper shows, this
is not the case; the error made by failing to consider such
physical constraints is often significant.

To incorporate these unit constraints, we formulate the
power plant valuation problem as a multistage stochastic
problem with the prices for electricity and the fuel con-
sumed characterized as uncertainties. Specifically, as in

the financial options approaches, we assume that there are
hourly markets for both electricity and fuel and that their
prices follow Ito processes. Over a short-term period, the
operator must decide when to run the generator so as to
maximize expected profit. In our approach, however, the
commitment decision must be made before the uncertain
prices are revealed, and, once the power plant is in oper-
ation, it is subject to physical limitations such as mini-
mum uptime and downtime constraints. For example, an
online unit cannot be turned back down even if market
prices become unfavorable before the minimum uptime
constraint is fulfilled. Similarly, an offline unit cannot be
turned back on before the minimum downtime constraint
is fulfilled. Additionally, in our approach, we include the
startup/shutdown cost associated with turning on/off a unit.

To solve this multistage stochastic problem, we use
Monte Carlo simulation in conjunction with backward
dynamic programming. Specifically, we use simulation to
determine the optimal decision strategy for plant operation
in the last period and then repeat the process moving back-
ward, having obtained all optimal decision strategies for
the subsequent time periods. Thus, the complete procedure
involves repeated backward-moving dynamic-programming
recursion and forward-moving simulation.

Because the valuation method presented in this paper
takes price processes as inputs, it can be applied to gen-
eral Ito price processes. In a later section, however, we
also suggest specific processes for both electricity and fuel
prices based on observed characteristics from existing mar-
kets such as mean reversion, seasonality, and lognormal
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distributions. In addition, using such processes enables us
to numerically evaluate our proposed methodology.

This paper is organized as follows. In §2, we provide a
background review of the financial options approaches and
illustrate the need for incorporating the physical constraints
of power plant operation into the valuation methodology.
In §3, we describe these physical constraints, along with a
simplified deterministic model that contains no price uncer-
tainties, and we provide the corresponding solution proce-
dure. In §4, we generalize the model and its solution to the
multistage stochastic case. We present numerical results in
§5 and conclude the paper in §6.

1. BACKGROUND

The recent application of financial concepts in electric
power markets—for example in demand-side management
(Gedra and Vayaiya 1993, Gedra 1994), transmission pric-
ing (e.g., Oren et al. 1995), and the growing importance
of real options and risk management in power plant oper-
ations (Kaminski 1997)—suggests such concepts may also
be of use in project valuation. Indeed, capitalizing on the
physical optionality of power plant operation, Hsu (1998a,
1998b) and Deng et al. (1998) use financial options tech-
niques to tackle the problem of power plant valuation.

The fundamental idea of these approaches is as follows:
A power plant, with its associated heat rate, converts a par-
ticular fuel into electricity. Because this conversion involves
two commodities with different market prices, owning a
power plant can be regarded as holding call options of
spark spreads, defined as the electricity price less the prod-
uct of the heat rate associated with the generator and the
fuel price. When the electricity price is high but the fuel
price is low (so that their ratio is greater than the unit’s heat
rate), the power plant should run to capitalize on the prof-
itable price spread. When the spark spread is negative, the
power plant should not run. Because the power plant prof-
its increase as the spread increases, and because its losses
are bounded, the power plant resembles a call option on
the price spread. Similar price spread concepts have also
been applied to other industries such as oil refining (e.g.,
Shimko 1994).

More specifically, the heat rate of a power plant, H , is
defined as the conversion ratio between the electricity and
fuel (or heat content). The units of H are MMBtu/MWh so
that a higher heat rate implies a lower operating efficiency.
For example, a generator with a heat rate H , generating
1 MWh electricity, requires H MMBtu of fuel heat content.
Because this conversion involves two marketed commodi-
ties, the payoff of a generator can be modeled as a linear
system of their market prices. Assuming H is known, for
every 1 MWh electricity generation:

Payoff = pE −H ·pF � (1)

where pE ($/MWh) and pF ($/MMBtu) stand for electricity
and fuel prices, respectively. Given this situation, a rational
plant operator will decide to run a unit only if pE �H ·pF ,

because in this case the operator will profit by purchasing
fuel, using the generator to convert the fuel to electricity,
and then selling the electricity in the market.

In the works of Hsu (1998a, 1998b) and Deng et al.
(1998), the authors estimate the Linear Payoff Function (1)
of a power plant to determine the plant’s value. Specifically,
over a period �0�T �, they propose:

Power plant value =
T∑

t=1

E0�max
pE
t −HpF

t �0��� (2)

so that given the price processes of electricity and the
fuel, a power plant’s value may be estimated by a series
of (European) spark-spread call options (expiring at t) as
in (2). Moreover, for price processes such as geometric
Brownian motion (GBM) and “geometric mean-reversion”
(GMR), Deng et al. (1998) provide analytical solutions to
(2). Because of the nature of these methodologies, we shall
refer to them as the financial options approaches in this
paper. Note that because these approaches value a power
plant on a per MWh output basis, they are also known as
“unit capacity valuation.”

While using option theory to value a power plant
is novel, such approaches necessarily overlook a power
plant’s operational constraints. In particular, using (2) to
value a power plant assumes that:

(1) Unit-commitment decisions are made after the prices
pE
t and pF

t are observed. Or, equivalently, a unit can be
immediately started up if the market prices are favorable,
and vice versa. This implies that there is no commitment-
decision lead time required.

(2) There are no intertemporal constraints for the com-
mitment: A unit can be committed/decommitted at any
time.

(3) The unit heat rate H is a constant at all levels of
power generation.

In reality, a power plant does have physical con-
straints such as nonzero startup/shutdown times (lead time),
nonzero minimum uptime and minimum downtime, and a
heat rate that varies over different levels of generation out-
put. Ignoring these physical constraints thus overestimates
a power plant’s value. And, in the increasingly volatile elec-
tricity market, such assumptions may involve considerable
risk.

To address these concerns, we specifically incorpo-
rate these physical constraints into our model. In the
next section, we begin by describing these physical con-
straints in detail and subsequently propose our valuation
methodology.

2. POWER-GENERATION UNIT COMMITMENT

In this paper we mainly focus on valuing fossil-fueled
steam (thermal) units whose unit-operation dynamics are
relatively complex. The power-generation process of a
steam unit begins with heating water in its boiler and, there-
fore, requires time to start up or shut down the genera-
tor. Additionally, a thermal-generation unit cannot switch
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between the online mode and the offline mode at an arbi-
trary frequency, due to both the nonzero response time of
the unit and the damaging effects of fatigue. Consequently,
once a thermal unit is shut down (or started up), it is
required to say offline (or online) for a minimum period,
known as the minimum down- (or up-) time, before it can
be started up (or shut down) again. These constraints are
modeled in the following section.

2.1. Physical Constraints for a Power Plant

In the model development, we first introduce the following
standard notation. Additional symbols will be introduced
when necessary.

t: index for time (t = 0� � � � � T ).

 : unit startup time, i.e., commitment decision lead

time (
 � 1 and 
 ∈ Z, a set of integers).
�: unit shutdown time, i.e., commitment

decision lead time (� � 1 and � ∈ Z).
xt: state variable whose sign indicates whether the

unit is started up (+) or shut down (−), and
whose magnitude indicates the length of
time at time period t the unit has been in
this mode.

ut: zero-one generation unit-commitment decision
variable made in time period t.

ton: the minimum number of periods the unit must
remain on after it has been turned on
(ton ∈ Z).

toff : the minimum number of periods the unit must
remain off after it has been turned off
(toff ∈ Z).

tcold: the number of periods after a unit has been
turned off until its boiler has completely
cooled down (tcold ∈ Z).

qt: decision variable indicating the amount of
power the unit is generating in time period t.

qmin: minimum rated capacity of the unit.
qmax: maximum rated capacity of the unit.
R: unit ramp rate.
pE
t : electricity price ($/MWh) in time period t.

pF
t : fuel price ($/MMBtu) in time period t.

C
qt�p
F
t �: fuel cost for operating the unit at output level

qt in time period t when the fuel price is pF
t .

Su
xt�: startup cost associated with turning on the unit
in time period t.

Sd
xt�: shutdown cost associated with turning off
the unit.

In this paper, unless otherwise stated, the unit of time
period is hours. The physical constraints of a power plant
are modeled below.

Minimum Up/Downtime Constraints

ut =




1� if 1 � xt < ton�

0� if − toff < xt �−1�

0 or 1� otherwise�

(3)

State-Transition Constraints

xt =




min
ton� xt−1 +1�� if 0 < xt−1

and ut−1 = 1,

−1� if xt−� = ton

and ut−� = 0,

max
−tcold� xt−1 −1�� if xt−1 < 0

and ut−1 = 0,

1� if xt−
 �−toff

and ut−
 = 1�

(4)

The state-transition diagram is given in Figure 1. In (4)
the state space of xt is summarized as a finite set �x ∈
Z�− tcold � x � ton� x �= 0�, where tcold � toff represents the
time period beyond which the temperature of the boiler is
so low that the unit state can be approximated by −tcold.
Consequently, referring to (3) we define

� ≡ �x ∈ Z�x = ton or − tcold
� x �−toff�

as the set of states in which the unit commitment may be
adjusted (i.e., on-off). If xt > 0 we say the unit is online at
time t, and is offline if xt < 0.

Unit-Capacity Constraints

qmin · sign
xt�� qt � qmax · sign
xt�� t = 1� � � � � T � (5)

where

sign
x�≡
{

1� if x > 0�

0� otherwise�

Note that (5) implies (i) qt = 0 if xt < 0; (ii) qt ∈ �qmin� qmax�
if xt > 0.

Ramp Constraints

�qt −qt−1�� R� if ut ·ut−1 = 1� t = 1� � � � � T � (6)

Figure 1. An example of the state transition diagram:
ton = 3, toff = 2, tcold = 4, 
 = 2, and � = 1.
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where R > 0 is called the ramp rate of the unit. The ramp
constraints are only applied to the generation levels of any
two successive online periods.

Note that when an offline unit is started up, it takes
time to gradually increase generation to reach the mini-
mum rated capacity qmin. Similarly, when an online unit is
turned off, its generation level has to reduce to qmin subject
to Ramp Constraints (6), then from qmin gradually reducing
to 0. In the state-transition diagram in Figure 1, the startup
period (shutdown period) is implicitly accounted for by the
transaction arc from xt = 0 to xt+
 = 1 (from xt = ton to
xt+� =−1).

Initial conditions on xt and q0 at t = 0. That is, x0 and q0

equal to some initial state, say x̃0 and q̃0.

2.2. Modeling the Cost Functions

As aforementioned, the input-output characteristic of a gen-
erating unit is captured by H
q� (MMBtu), which is a func-
tion describing the heat required to generate q (MW) of
power; see Wood and Wollenberg (1984). As is standard,
we model H
q� as a quadratic function of the output q, so
that the fuel cost may be represented as follows:

C
qt�p
F
t �≡H
qt�p

F
t

≡ 
a0 +a1qt +a2q
2
t �p

F
t �

Moreover, we take each coefficient aj 
j = 1�2�3� of H
·�
to be nonnegative. In general, a2 > 0, so that the cost
function is convex; a1 > 0 since a1qt (MMBtu) is the
major component of the heat-power conversion; and a0 > 0
because a0p

F
t captures the so-called “no-load cost” asso-

ciated with keeping the plant running with no power out-
put in order to maintain immediate availability. Note that
this approach significantly generalizes the previously men-
tioned financial options approach, in which qt is either 0 or
a fixed quantity, and H is linear in q (i.e., a0 = a2 = 0).

In addition to fuel costs, the generating costs of a thermal
unit also include startup and shutdown costs. The startup
costs Su
xt� vary with the temperature of the boiler. The
longer the generator is down, the more heat is lost from
its boiler and the greater the expense to reheat the water.
In practice, a boiler is assumed to cool at an exponential
rate inversely proportional to a cooling constant �, and we
denote this function by

Su
xt�

=
{
b1
1−exp
xt/���+b2� if −tcold�xt�−toff�

0� otherwise�
(7)

where b1 represents the cold-start fuel cost for the unit and
b2 combines the labor costs plus the fixed operating and
maintenance expenses of the plant amortized over the unit.
To limit the size of the state space, we assume that Su
xt�
can be approximated by Su
−tcold� when xt <−tcold.

Finally, in this paper we model the shutdown costs Sd as
a function of xt:

Sd
xt�=
{
Sd 
a constant�� if xt = ton�

0� otherwise�

where Sd characterizes the labor and maintenance costs
involved in plant shutdowns.

2.3. Ramp Constraints

Ramp Constraints (6), which limit the capacity changes of
a generator from one online period to the next, may signif-
icantly impact the value of the generation asset. Detailed
models for incorporating ramp constraints into power plant
operations can be found in Svoboda et al. (1997) and Tseng
(1996). Because we describe the generation level qt by a
continuous variable, to incorporate ramp constraints into
the finite state valuation problem requires discretizing qt ,
which significantly increases the dimension of the dynamic-
programming state space. Thus, to simplify the exposition
of our approach, we initially leave out ramp constraints
from the model development. However, in a later section,
we revisit these constraints, discussing both an exact and a
heuristic method for incorporating them into the valuation
problem.

2.4. The Deterministic Case

The purpose of this paper is to determine the value of a
power plant, where this value is determined by the maxi-
mum possible profit that the unit can achieve from opera-
tion over the entire planning period. Thus, the power plant
valuation problem is, by default, also an optimal-operation
problem. Consequently, we present a solution procedure
for the valuation problem by solving the optimal-operation
problem. In this section, we assume that prices for electric-
ity and the fuel are fully and perfectly known.

The objective is to maximize the total profit subject to
Constraints (3), (4), and (5) and the initial conditions, omit-
ting (6), as mentioned above.

J ∗ = max
ut� qt

T∑
t=0

ft
xt� qt# p
E
t � p

F
t �

−Su
xt�ut −Sd
xt�
1−ut�� 
P�

where

ft
xt� qt# p
E
t � p

F
t �≡ 
pE

t qt −C
qt�p
F
t ��sign
xt� (8)

is the profit associated with the state xt at time t, and where
the last two terms in the objective depend on the commit-
ment and decommitment decisions.

In the problem formulation, the operator needs to make
a commitment decision in every (feasible) time period,
i.e., determine ut , and dispatch the generator if online by
determining qt . In reality, a generator is dispatched by the
Automatic Generation Control (AGC) system in real time.
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Therefore, we assume the dispatch problem can be solved
instantaneously and optimally after the prices are revealed.
Assuming a unit is online at time t, its optimal dispatch
problem is as follows:

max pE
t qt − 
a0 +a1qt +a2q

2
t �p

F
t

s.t. qmin
� qt � qmax� (9)

Thus, the optimal generation denoted by gt can be obtained
by

gt ≡ min
(
qmax�max

(
qmin�

1
2a2

(
pE
t

pF
t

−a1

)))
� (10)

In the sequel, the decision variables qt will be dropped
out of the formulation and replaced by gt . Note that gt
is a function of the prices pE

t and pF
t . Consequently the

optimization problem, originally formulated as a mixed-
integer program, is reduced to a 0-1 integer program.

To solve the deterministic case, let Ft
xt� be the power
plant value if the period starts at t in state xt . We employ
backward dynamic programming to solve the deterministic
problem. The recurrence equations are as follows:
• If xt = ton, t � T −�,

Ft
xt�= ft
xt� gt# p
E
t � p

F
t �

+ max
ut

�Ft+1
t
on�ut + 
Ft+�
−1�−Sd
xt��

× 
1−ut��� (11a)

• If −tcold � xt �−toff , t � T − 
 ,

Ft
xt�= ft
xt� gt# p
E
t � p

F
t �

+ max
ut

�
Ft+
 
1�−Su
xt��ut

+Ft+1
xt+1�
1−ut��� (11b)

• If 
t� xt� is not in either one of the two cases above,

Ft
xt�= ft
xt� gt# p
E
t � p

F
t �+Ft+1
xt+1�� (11c)

where xt+1 in the above equations is subject to state-
transition constraints (4). The boundary conditions are

FT 
xT �= fT 
xT � gT #p
E
T �p

F
T �� (12)

In both (11a) and (11b), the right-hand side of the equation
contains Ft+� and Ft+
 , respectively, where we generally
assume that �, 
 � 1. While somewhat atypical, this rep-
resentation of Bellman’s equation allows us to show the
effect of nonzero startup or shutdown time. Alternatively,
one may introduce additional states to capture subperiods
within the startup or shutdown period so as to formulate
(11a) and (11b) in a more standard form with only Ft+1 on
the right-hand side.

The optimal value J ∗ of this deterministic problem can
be obtained from the last step of the dynamic-programming
algorithm as

J ∗ = F0
x̃0��

where we use a tilde to denote that the value of x0 is known
with certainty at Time 0.

Note that because we focus on short-term periods (hours
to days), discount factors are not applied in the recurrence
relations. Should the period be long enough that the time
value of money becomes important, future values of Ft′
·�

t′ > t� should be discounted, for example, be multiplied
by exp
−r
t′ − t��, where r is the interest rate.

3. A MULTISTAGE STOCHASTIC MODEL

Obviously, price uncertainties plead for a stochastic model.
In this section, we accommodate this need by formulat-
ing the generation asset valuation problem as a multistage
decision-making problem.

3.1. Model Statement

In our stochastic model, a commitment decision must be
made before the commitment becomes effective. For exam-
ple, the decision variable ut is made based on observed pE

t

and pF
t . If ut = 1, the unit will be committed “on” at time

t+ 
 , although the prices at time t+ 
 remain uncertain.
However, we continue to assume that the generation level
qt can be adjusted optimally in real time (i.e., to gt) to max-
imize profit within the capacity range �qmin� qmax�. Last, we
assume that the operator is risk neutral so that his objective
is to maximize expected profit with respect to the random
price vectors (pE�pF), representing some subjective price
probability distributions believed by the operator.

At time t, the operator observes the prices pE
t and pF

t and
he either has no commitment decision to make, because the
minimum uptime or downtime constraints are not yet satis-
fied, or he can decide to turn on or turn off the unit. How-
ever, once committed, a unit needs to fulfill the minimum
uptime or downtime requirement regardless of whether
prices turn out to be favorable or unfavorable to the power
plant’s profitability.

Let Jt
xt# p
E
t � p

F
t � denote the power plant value for the

remaining period starting at state xt at time t. The dis-
patcher’s problem is then one of solving the recursive rela-
tionship:
• If xt = ton, t � T −� (cf. (11a)),

Jt
xt# p
E
t � p

F
t �= ft
xt� gt# p

E
t � p

F
t �

+ max
ut

Et�Jt+1
t
on#pE

t+1� p
F
t+1�ut

+ 
Jt+�
−1#pE
t+�� p

F
t+��

−Sd
xt��
1−ut��# (13a)

• If −tcold � xt �−toff , t � T − 
 (cf. (11b)),

Jt
xt#p
E
t �p

F
t �=ft
xt�gt#p

E
t �p

F
t �

+max
ut

Et�
Jt+
 
1#p
E
t+
 �p

F
t+
 �−Su
xt��ut

+Jt+1
xt+1#p
E
t+1�p

F
t+1�

×
1−ut��# (13b)
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• If 
t� xt� is not in either of the two cases above (cf.
(11c)),

Jt
xt# p
E
t � p

F
t �= ft
xt� gt# p

E
t � p

F
t �

+Et�Jt+1
xt+1#p
E
t+1� p

F
t+1��� (13c)

where Et denotes the expectation operator given the price
information available at time t. Again, the above equations
are subject to (3), (4), and (5), and similar to (12), the
boundary conditions are

JT 
xT #p
E
T �p

F
T �= fT 
xT � gT #p

E
T �p

F
T �� (14)

Note that because the maximization in the equations com-
pares the values of no more than two cases, ut = 1
or 0, in the rest of the paper we will also use the nota-
tion Jt
xt# ũt� p

E
t � p

F
t � with some known ũt to evaluate

Jt
xt# p
E
t � p

F
t � at ũt chosen in the maximization term of the

right-hand sides of (13) or (13b). That is,

Jt
xt# p
E
t � p

F
t �= max
Jt
xt# ut = 1� pE

t � p
F
t ��

Jt
xt# ut = 0� pE
t � p

F
t ���

3.2. Valuation Using Simulation

In any time period t such that xt ∈ �, there is a commit-
ment decision to make. Optimal commitment decisions at
xt are determined based on current information 
pE

t � p
F
t �

and its impact on the expectations of future gas and elec-
tricity prices. We assume that both prices follow Ito pro-
cesses and are Markov. At each state xt ∈ �, the optimal
decision can be described by a function of pE

t and pF
t , say

dt
p
E
t � p

F
t # xt�, such that the optimal commitment decision

to make in state xt at time t is

ut =
{

1� if dt
p
E
t � p

F
t # xt� > 0�

0� if dt
p
E
t � p

F
t # xt� < 0�

(15)

When the prices 
pE
t � p

F
t � are on the “locus” corresponding

to dt
p
E
t � p

F
t # xt� = 0, the commitment decisions “on” and

“off” are equivalent in terms of expected profit. We call this
locus the indifference locus (IL) in state xt ∈� at time t.

One approach to obtain the IL at each state xt is to
discretize the state space spanned by all possible prices

pE

t � p
F
t �, then solve (13) and (14) by recursive dynamic-

programming iterations. This is the approach taken in
Tseng (2000). The challenges of this approach include the
potentially large dimension of the price state space, and the
difficulty to model correlation between prices pE

t and pF
t

into the state space. In this paper, we use Monte Carlo sim-
ulation to obtain the IL, which has the flexibility to avoid
these difficulties.

Thus, supposing that at time t0 in state xt0
, one knows

all the IL for all xt ∈ �, t = t0 + 1� � � � � T , one can deter-
mine the power plant value over the period �t0�T � by mak-
ing commitment decision ut0

at t0, i.e., Jt0
xt0
# ut0

� pE
t0
� pF

t0
�,

using simulation.

Simulation Algorithm for Obtaining Jt0
xt0
# ut0

� pE
t0
� pF

t0
�

with All Future IL Known

Data: Initial conditions t0, 
pE
t0
� pF

t0
�, ut0

and xt0
are

given. N � 0 is given.
Step 0: Set t ← t0, i← 1 and J 
i� ← 0. Go to Step 3.
Step 1: If i > N , stop. Otherwise obtain a pair of sample

prices (pE
i�
t � p

F
i�
t �.

Step 2: Determine u

i�
t using (15).

Step 3: J 
i� ← J 
i� + f 
x

i�
t � g


i�
t # p

E
i�
t � p

F
i�
t � −

Su
x

i�
t �u


i�
t −Sd
x


i�
t �
1−u


i�
t �.

Step 4: Determine x

i�
t+1, x


i�
t+
 , or x


i�
t+� based on u


i�
t

and (4).
Step 5: Update t ← t+1, t ← t+
 , or t ← t+� based

on u

i�
t . If t > T , set t ← t0, i ← i+ 1 and

J 
i� ← 0, then go to Step 3. Otherwise, go to
Step 1. �

In the algorithm, the superscript (i) denotes the simula-
tion iteration. Note that in the algorithm, ut0

is an input
parameter. When the algorithm terminates, the expected
asset value by choosing u0 initially is given by

Jt0
xt0
# ut0

� pE
t0
� pF

t0
��≈

∑N
i=1 J


i�

N
�

The expected asset value is optimized over both possible
initial decisions, and is thus

Jt0
xt0
#pE

t0
� pF

t0
�= max

ut0∈�0�1�
J 
xt0

# ut0
� pE

t0
� pF

t0
�� (16)

where ut0
is subject to (3). By setting t0 = 0 and xt0

to be
x̃0, (16) gives the power plant value sought by this paper.
What remains to be shown is how to determine the IL at
all xt ∈�, t = 1� � � � � T . In the following section, we show
that one can use the simulation algorithm recursively to
determine the IL of xt0

∈� at time t0, provided all IL for
all xt ∈�, t = t0+1� � � � � T are known. Thus, by repeating
this process starting from t0 = T −1, one may obtain all IL
at all xt ∈� of all t.

3.3. Generating IL Using Simulation

At time t, if a price pair 
p̂E
t � p̂

F
t � is said to be on the IL

corresponding to state x̂t ∈�, it implies dt
p̂
E
t � p̂

F
t # x̂t�= 0

and

Jt
x̂t# ut = 1� p̂E
t � p̂

F
t �= Jt
x̂t# ut = 0� p̂E

t � p̂
F
t �� (17)

Equivalently,
• If x̂t = ton, t � T −� (cf. (13a)),

Et�Jt+1
t
on# p̂E

t+1� p̂
F
t+1��

= Et�Jt+�
−1# p̂E
t+�� p̂

F
t+��−Sd�� (18a)

• If −tcold � x̂t �−toff , t � T − 
 (cf. (13b)),

Et�Jt+
 
1# p̂
E
t+
 � p̂

F
t+
 �−Su
x̂t��

= Et�Jt+1
xt+1# p̂
E
t+1� p̂

F
t+1��� (18b)

again; xt+1 in (18b) is subject to ut and (4).
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To determine a locus theoretically calls for an infinite
number of price pairs satisfying (17). In practice, we must
identify only as many price pairs as necessary to obtain an
acceptable approximation of the locus. To obtain one price
pair (p̂E

t � p̂
F
t ) satisfying (17), we initially fix either of these

prices, say the electricity price p̂E
t , and then search for the

root of the following one-variable equation h
y�= 0:

h
y�= Jt
x̂t# ut = 1� p̂E
t � y�− Jt
x̂t# ut = 0� p̂E

t � y�= 0�

Because h
y� is continuous and smooth, we can apply root-
finding techniques such as curve fitting to improve conver-
gence.

In solving the equation h
y� = 0, each function evalu-
ation involves the difference of two terms, where each of
these terms is obtained by simulations using the algorithm
presented in the previous section. For example, to evalu-
ate Jt′
x̂t′# ut′ = 1� p̂E

t′ � ŷ�, we employ the simulation algo-
rithm by setting t0 ← t′, 
pE

t0
� pF

t0
�← 
p̂E

t′ � ŷ�, ut0
← ut′ = 1

and xt0
← x̂t′ , provided all the IL for all xt ∈�, t > t′ are

available. Therefore, to obtain the IL, we move backward
starting from t = T −1.

Note that for each xt ∈� at some t close to T , there is no
IL because the remaining time to T is already shorter than
the startup or shutdown time required. This corresponds
to the third case covered by (13c). Thus, in these cases,
we start either from t = T − 
 or t = T −�. For example,
assuming xT−
 = toff , a Monte Carlo simulation can be ini-
tiated for any given p̂E

T−
 to determine a corresponding gas
price p̂F

T−
 such that (17) is satisfied with t = T −
 , where

JT−
 
t
off# uT−
 = 1� p̂E

T−
 � p̂
F
T−
 �

= 0−Su
t
off�+ET−
JT 
xT # p̂

E
T � p̂

F
T � (from (13b))

= lim
N→�

1
N

N∑
i=1

f 
1� g
i�
T # p̂

E
i�
T � p̂

F
i�
T �−Su
t

off�� (19)

and

JT−
 
t
off# uT−
 = 0� p̂E

T−
 � p̂
F
T−
 �

= 0+ET−
 �JT−
+1
t
off# p̂E

T−
+1� p̂
F
T−
+1�� 
from (13b)�

= ET−
 �0+ET−
+1�JT−
+2
t
off# p̂E

T−
+2� p̂
F
T−
+2���

= ���

= ET−
 �ET−1�JT 
t
off# p̂E

T � p̂
F
T ���

= 0�

In (19), pE
i�
T � p

F
i�
T , and g


i�
T are the values of pE

T , pF
T , and

gT in scenario i based on some assumed price model using
Monte Carlo simulation with initial prices 
p̂E

T−
 � p̂
F
T−
 �.

Once a sufficient number of 
p̂E
T−
 � p̂

F
T−
 � pairs satisfying

(17) are obtained, we can construct an IL. Similarly, we
can obtain the corresponding IL for other xT−
 ∈�.

With all the IL for all xT−
 ∈� at time T − 
 obtained,
we repeat the same process beginning at time T − 
 − 1.
Likewise, for each given p̂E

T−
−1, we determine correspond-
ing p̂F

T−
−1 such that (17) is satisfied with t = T − 
 − 1.

Because the IL of t = T − 
 are available, we can employ
the simulation algorithm presented in the previous section
to evaluate the expected power plant value in the period
�T − 
−1�T �.

By repeating this process, working backward in time to
Time 1, we identify the IL for each t and xt ∈ �. The
last simulation, which begins with the initial conditions at
Time 0, provides an estimate of the value of the power plant
during the operating period. In summary, this approach
integrates a forward-moving Monte Carlo method into a
backward-moving dynamic program. Our approach corre-
sponds closely to that presented in Grant et al. (1997) for
valuing path-dependent options, in which the authors obtain
a critical locus in each period to determine an optimal early
exercise policy for American-style Asian options. In this
paper, we extend the approach to a more complicated sit-
uation involving multistage decision making and intertem-
poral constraints.

3.4. An Analytical Upper Bound

If we relax some of the physical constraints described in
§2, we may (more easily) obtain an upper bound of the
power plant value. To that end, in this section, we focus on
a special case in which an analytical solution is possible.

If we let ton = toff = tcold = 1, 
 = � = 1, and Su
xt� =
Sd
xt�= 0 ∀ t, we have an upper bound, because the actual
constraints ton, toff , and tcold are tighter, and the actual costs
are greater. These assumptions imply � = �+1�−1�, so
that Equations (13) and (13b) become identical and can be
reduced to

Jt
xt# p
E
t � p

F
t �= ft
xt� gt# p

E
t � p

F
t �

+ max
xt+1

Et�Jt+1
xt+1#p
E
t+1� p

F
t+1���

where the capacity constraints (5) remain imposed. Thus,
the IL for either xt = +1 or xt = −1 at each t are iden-
tical. For shorthand, we use ft
xt� and Jt
xt� instead of
ft
xt� gt# p

E
t � p

F
t � and Jt
xt# p

E
t � p

F
t �.

In period T , we have

JT 
xT �= fT 
xT ��

In period T −1, we have

JT−1
xT−1�= fT−1
xT−1�+max
xT

ET−1�FT 
xT ��

= fT−1
xT−1�+max
ET−1�fT 
1���0��

The IL at this time period is ET−1�fT 
1�� = 0. In period
T −2,

JT−2
xT−2�= fT−2
xT−2�+ET−2�max
ET−1�fT 
1���0��

+max
xT−1

ET−2�fT−1
xT−1��

= fT−2
xT−2�+ET−2�max
ET−1�fT 
1���0��

+max
ET−2�fT−1
1���0��
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The IL in this period is ET−2�fT−1
1��= 0. In period T −3,

JT−3
xT−3�

= fT−3
xT−3�+ET−3�max
ET−2�fT−1
1���0��

+ET−3�ET−2�max
ET−1�fT 
1���0���

+max
xT−2

ET−3�fT−2
xT−2��

= fT−3
xT−3�+ET−3�max
ET−2�fT−1
1���0��

+ET−3�max
ET−1�fT 
1���0��

+max
ET−3�fT−2
1���0��

where the fact that the price processes for pE
t and pF

t are
Markov is used to reduce the number of operators for con-
ditional expectation. Furthermore, we can summarize the
solution of the unconstrained case as

J0
x̃0�= f0
x̃0�+max
E0�f1
1���0�

+
T∑

t=2

E0�max
Et−1�ft
1���0��

= 
pE
0 g0 −H
g0�p

F
0 �sign
x̃0�

+max
E0�p
E
1 g1 −H
g1�p

F
1 ��0�

+
T∑

t=2

E0�max
Et−1�p
E
t gt −H
gt�p

F
t ��0��� (20)

Finally, the IL are the same for all xt ∈�, ∀ t (because the
price processes are Markov) and is

Et�ft+1
1��= Et�p
E
t+1gt+1 −H
gt+1�p

F
t+1�= 0

⇔ E0�f1
1��= E0�p
E
1 g1 −H
g1�p

F
1 �= 0�

which can be shown to be a straight line passing through
the origin.

Note that given the more realistic characterization of
plant constraints, the value obtained by (20) should better
approximate a power plant’s value than that obtained by the
financial options approach. We will quantitatively evaluate
this improvement in a later section of numerical results.

3.5. Price Processes

In this paper, we assume that price processes for both elec-
tricity and fuel are given. Although the valuation method
to be presented in this paper can be applied to general Ito
price processes, we focus on the following two processes
for electricity and fuel respectively:

d ln
pE
t �=−*E
ln
pE

t �−mE
t �dt+,E dBE

t �

and

d ln
pF
t �=−*F
ln
pF

t �−mF
t �dt+,F dBF

t �

where BE
t and BF

t are two Wiener processes with instan-
taneous correlation .. The above commodity price mod-
els are characterized by mean reversion and lognormally

distributed seasonal prices. Because, to varying degrees,
both electricity and fuel have associated storage costs, their
prices are determined to a large degree by the forces of pro-
ducer supply and consumer demand, and less so by investor
speculation. This interplay is manifested in the mean-
reverting nature of their price processes. In some sense,
the mean-reversion parameter * represents the storability
of the commodity. For electricity, which is quite difficult to
store, this parameter is large, implying little autocorrelation
between today’s price and tomorrow’s price. Furthermore,
this parameter in conjunction with , captures the short-
and long-term price fluctuations and characterizes the vari-
ance of the lognormal price distribution. This distribution
resembles that of other traditional price-process models in
that price returns are normally distributed and prices are
nonnegative. Finally, mt is a periodic function capturing the
cyclical nature of the long-term expected prices. mt is thus
a function of the interplay between the cost of production
and consumer demand for the commodity. In the Appendix
of this paper, we will describe the procedures for estimat-
ing the parameters from historical data using the method of
maximum likelihood.

Note that because risk-neutral price processes reflect the
present market values of the prices in the future, implied
by existing derivative securities, their resolution is limited
to that of the derivatives. Thus, in our analysis we uti-
lize actual price processes instead of risk-neutral price pro-
cesses because we seek to determine the impact of opera-
tional constraints of shorter term than the monthly averages
upon which derivative contracts are typically based. How-
ever, the incorporation of risk-neutral processes is reason-
ably straightforward. The necessary modification is sim-
ply a constant adjustment to the commodity-price-process
mean, where the magnitude of the adjustment is determined
from the appropriate commodity derivatives (e.g., futures).

3.6. Ramp Constraints Revisited

As previously mentioned, an exact method for incorporat-
ing the ramp constraints into the dynamic programming is
to discretize the generation levels qt to the state space. For
example, let

qt ∈Q ≡ �qmin� qmin +0q�qmin +20q� � � � � qmax��

where 0q is a divisor of qmax − qmin and 0q � R. After
incorporating qt into the state space, the state space can
be thought of as a three-dimensional diagram extended
from the one shown in Figure 1, where the transition
among the states of different qt is subject to the ramp
constraints (6). Consequently, by changing Jt
xt# p

E
t � p

F
t �

to Jt
xt� qt# p
E
t � p

F
t �, we may obtain an IL for each state


xt� qt�, ∀xt ∈�, ∀qt ∈Q. Thus, the algorithm for obtain-
ing an IL still applies in the ramp-constrained case. Obvi-
ously, the major change is in the computational complexity,
which is greatly increased due to the increase of the size
of the state space.
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Without extending the state space to include variable
generation levels, we can use heuristics in the Monte Carlo
simulation process to account for the ramp constraints.
Because in the proposed method the price simulations
are forward moving, intuitively one can solve a ramp-
constrained dispatch problem sequentially starting from
t = 0. The ramp constraints are imposed with respect to
the generation level obtained for the previous hour. The
heuristic ramp-constrained dispatch problem (cf. (9)) is as
follows.

max pE
t qt − 
a0 +a1qt +a2q

2
t �p

F
t

s.t. qmin
� qt � qmax�

�qt −qt−1�� R� (21)

where qt−1 is known when determining optimal qt . By def-
inition, the IL of a state describes the optimal commit-
ment strategy at that state, which depends on the dispatch
rule. For example, in the nonramp-constrained case, (10)
uniquely determines the dispatch gt for a given price pair
(pE

t � p
F
t ). With the presence of ramp constraints, and using

the modified dispatch rule (21), determining qt depends not
only on (pE

t � p
F
t ), but also the price history prior to t. An

IL of a state obtained by simulation using such a heuristic
method for dispatch can be regarded as an “average approx-
imation” of the loci of all IL(xt� qt), qt ∈ Q corresponding
to the exact method.

In our numerical test, we apply the above heuristics (21)
only in the final simulation runs starting from t = 0. That
is, the ramp constraints are not considered in obtaining the
IL of all states. Therefore, the computational complexity
is virtually unchanged due to ramp constraints. Again, we
emphasize that an IL provides optimal commitment strat-
egy when the generation is at the optimal level gt , while in
the final simulation runs, subject to the ramp constraints,
the generation level may not be exactly gt . In the final sim-
ulation runs starting from t = 0, the obtained value pro-
vides a lower bound of the expected profit of the generator
during the operating period. This follows because one dis-
patches the unit suboptimally using the heuristic method
with respect to suboptimal commitment strategy at each
stage.

3.7. Incorporating Other Markets: The Case of
Spinning Reserves

Thus far, we have only valued a power plant based on its
energy output. Other “products” associated with a power
plant, such as ancillary services and emission allowances,
which are traded in separate markets, can also add value.
For example, when a unit is online (spinning) and its gen-
eration level, qt (MW), is not at its maximum rated capac-
ity 
qt < qmax�, the residual capacity qmax −qt can be sold
to a spinning-reserve market, a capacity-only market. If the
unit is called to generate on contingency, it gains addi-
tional value from energy. On the other hand, the power
plant could sell its emission allowance in exchange for less

generation (thus less emission) if it believes doing so is
profitable. With the presence of markets other than energy,
the valuation problem becomes a complicated optimization
problem where one must determine the optimal strategy to
allocate resources to different markets simultaneously. As
an example, in this section we discuss how the proposed
model can be extended to account for the spinning-reserve
market.

Assume a unit is online and generates qt (MW) of power
such that qmin � qt � qmax, let q̂t denote the spinning-reserve
capability available for the unit:

q̂t ≡ min
qmax −qt� q̂
max��

where q̂max is the maximum spinning reserve of the unit.
For simplicity, assume there is a spot market for spinning
reserve, with prices denoted by pS

t . We can modify the
Profit Function (8) as follows.

f̂t
(
xt� qt# p

E
t � p

F
t � p

S
t �wt� q̃t

)
= (

pE
t qt +pS

t q̂t +pE
t q̃twt

−C
(
qt + q̃twt� p

E
t

))
sign
xt�� (22)

where wt is a 0-1 random variable indicating whether the
unit is called to generate on contingency and where q̃t is
a nonnegative random number bounded above by q̂t indi-
cating the additional generation level if, in fact, the unit is
called. In (22), the first term is the revenue of selling power
from the energy market, the second term is the capacity
payment from the spinning-reserve market, and the third
term is the payment for energy if called to generate on con-
tingency. Accordingly, (13c) should be replaced by

Jt
(
xt#p

E
t � p

F
t � p

S
t �wt� q̃t

)
= f̂t

(
xt� qt# p

E
t � p

F
t � p

S
t �wt� q̃t

)
+Et

[
Jt+1

(
xt+1#p

E
t+1� p

F
t+1� p

S
t+1�wt+1� q̃t+1

)]
� (23)

Given the process of pS
t and probabilistic distribution of wt ,

one can use the proposed procedure to value (23).
For a responsive unit such as a combustion turbine that is

usually dispatched on the margin and gets its major revenue
from the ancillary service market, the physical constraints
(minimum uptime/downtime constraints) modeled in §3 can
be ignored. Consequently, a method similar to the financial
options approach may be more appropriate for valuing this
type of unit. Because a combustion turbine can be started
up and shut down very quickly, we assume that at time t
the operator observes the prices pE

t , pF
t , and pS

t , and then
determines the quantities to sell to the energy market qt and
the spinning-reserve market q̂t . With some chance wt , the
combustion turbine would be dispatched on contingency,
so the value of a combustion turbine can be formulated as
(cf. (2)),

V0 =
T∑

t=1

E0

[
min

qmin�qt�qmax

(
pE
t qt +pS

t q̂t +pE
t q̃twt

−C
(
qt + q̃twt� p

F
t

))]
�
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As a final remark for this section, the markets for ancil-
lary service or emission may require bidding processes to
buy or sell to the market. Because bidding rules vary in dif-
ferent areas, the formulations presented in this section may
need further modification in practice.

4. NUMERICAL RESULTS

We have implemented the proposed method for valuing
a power plant in FORTRAN. This section presents the
numerical test results.

4.1. Test System Parameters

The proposed method has been applied to a natural gas-
fueled generating unit with the following input-output char-
acteristics:

H
qt�= 600+9�121qt +0�00131q2
t � (24)

with qmin = 250 MW and qmax = 750 MW. For the startup
costs, we assume b1 = $2�300, b2 = $950, and � = 4 hours
in (7).

To obtain the parameters of the price processes of both
electricity and fuel, we examine the historical price-data
series of NYMEX natural gas prices and electricity prices
from the California Power exchange, taking the logarithm
of these prices as our basic data series. Because there is
no hourly market for natural gas, we assume that mF

t is
constant within a given day and fit the price process to
daily data. Because the model time step is hourly, how-
ever, we adjust these parameters accordingly. Specifically,
because the model is a continuous-time model, we deduce
the implied hourly fluctuations from the daily parameters.

For electricity, we use historical daily data from the
California Power Exchange and similarly normalize the
data to the hourly time step. However, to incorporate a daily
price pattern, we adjust mE

t by overlaying the daily elec-
tricity price pattern (in terms of percentage changes). In
the Appendix of this paper, we summarize how to use the
maximum likelihood method to estimate price parameters.

Using the maximum likelihood method, we obtain *F =
6�95×10−4 and ,F = 0�019 for fuel, and *E = 0�072 and
,E = 0�27 for electricity, where 1/* is in units of hours
and characterizes the rate of mean reversion, and , is in
$/MWh. Obtained mE

t values, which capture the cyclical
nature of the expected electricity prices, are summarized in
Table 1, where mt is in the same units as , , i.e., $/MWh.
(Note that while mt reflects the daily pattern of prices, it
is not a vector of the average daily values, because each
such average is a function of both corresponding mt and
the average value from the preceding time period.) Also,
we assume that the instantaneous correlation coefficient
between electricity and natural gas prices is .= 0�4.

4.2. Indifference Loci (IL)

We begin our analysis by valuing the unit of (24) over a
one-week (168 hours) period, and investigate how the IL

Table 1. Values of hourly mE
t .

t mE
t t mE

t t mE
t

1 1.8874 9 4.8613 17 3.7233
2 2.6557 10 4.7100 18 1.4573
3 1.9348 11 5.8114 19 1.3220
4 2.3402 12 4.7363 20 2.5106
5 3.5027 13 5.0440 21 3.6167
6 3.8568 14 5.7383 22 0.6446
7 3.7583 15 5.9166 23 1.8328
8 4.6602 16 4.7126 24 1.8328

behaves as time changes. We assume that ton = toff = tcold =
10 and 
 = � = 2. Therefore � = �+10�−10�.

In Figure 2, we show all IL corresponding to xt ∈ �,
t = 1� � � � �168. Each IL divides the price plane (pE

t � p
F
t )

into two regions: online region (the lower right half) and
offline region (the upper left half). At some state xt , if
(pE

t � p
F
t ) falls into the online region of the corresponding

IL, the optimal decision is to turn on the unit, and vice
versa. The unit, once turned on, will be in full operation
two (
) hours later. The IL are clustered into two groups:
The upper group corresponds to xt = +10, and the lower
one to xt = −10. This implies that for each t, the online
region of some xt < 0 is a subset of the online region of
some xt > 0, i.e.,{(
pE
t � p

F
t

)�dt

(
pE
t � p

F
t # xt < 0

)
> 0� xt ∈�

}
⊆ {(

pE
t � p

F
t

)�dt

(
pE
t � p

F
t # xt > 0

)
> 0� xt ∈�

}
� (25a)

Similarly, because the online region and the offline region
are mutually exclusive,{(
pE
t � p

F
t

)�dt

(
pE
t � p

F
t # xt > 0

)
< 0� xt ∈�

}
⊆ {(

pE
t � p

F
t

)�dt

(
pE
t � p

F
t # xt < 0

)
< 0� xt ∈�

}
� (25b)

This result is intuitive: If an observed price set (pE
t � p

F
t ) is

worth starting up the unit from an offline state 
xt < 0 and

Figure 2. Example of indifference loci.
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xt ∈��, it is certainly optimal for the unit to remain online
if it were already online, without incurring the startup cost.
In Figure 2, we highlight the two IL corresponding to
t = T − 1. The upper one corresponding to xt = +10 has
a positive y-intercept, which reflects the nonzero shutdown
cost Sd. That is, it allows a small loss if the loss is smaller
than the shutdown cost. The lower highlighted IL corre-
sponding to xt =−10 has a positive x-intercept, which rep-
resents nonzero startup cost Su. The nonzero x-intercept
reflects the minimum profit required to turn on the unit. As
the time index t moves toward the starting point, the impact
due to the startup or shutdown cost is gradually alleviated,
i.e., the x-intercept and y-intercept are both approaching
zero. As t is decreased, while the y-intercept is reducing
to zero, the IL corresponding to xt = +10 move upward.
This shows that the IL are not linear, but more like asymp-
totically linear. The movement for the IL corresponding to
xt =−10 is opposite to that of xt =+10. Equations (25a)
and (25b) are with respect to the same t, so Figure 2 should
not be taken to imply that the two clusters of IL do not
overlap. Indeed, in various tests with different price param-
eters, they do.

4.3. Power Plant Value vs. Physical Constraints

To demonstrate the relation between a power plant value
and physical constraints, we applied the proposed method
to the generator of (24) under various physical constraints.
Five cases are tested over a one-week period (168 hrs).
The first case considers no physical constraints and no
decision lead time (i.e., 
 = � = 0, ton = toff = tcold = 0,
Su = Sd = 0), which corresponds to the approaches using
financial options (e.g., in Deng et al. 1998; Hsu 1998a,
1998b). Case 2 assumes all physical constraints are at their
minimum values (i.e., 
 = � = 1, ton = toff = tcold = 1,
Su = Sd = 0) corresponding to the approximate method pre-
sented in §4.3. In Case 5, we set ton to infinity, implying
the unit is online unconditionally at all hours, much like
a nuclear power plant. The other two cases correspond to
different minimum uptime and downtime constraints. The
purpose is to observe how plant value varies with different
physical constraints. The results are summarized in Table 2.

In these test cases, we see that with physical constraints
the expected power plant value decreases, but the variance
increases. Ignoring the physical constraints may result in
a 13.7% difference in power plant value (between Cases 1
and 4). Case 3 has a shorter minimum uptime and down-
time, and its performance is between those of Cases 1 and
4. Case 4 has a lower mean, but larger variance due to phys-
ical constraints than Case 1. Case 5, with units on at all
hours, can be considered to be a measurement of the limit-
ing case for increasing ton. This case, which corresponds to
the lowest mean profit and the highest variance among all
test cases, is the worst among the five cases and provides
a poor lower bound of the power plant value.

Table 2. Power plant value vs. physical constraints.

Case no. 1 2 3 4 5

ton (hr) 0 1 4 10 �
toff (hr) 0 1 4 10 —

 (hr) 0 1 1 2 —
� (hr) 0 1 1 2 —
Su ($) 0 0 0 3�061 —
Sd ($) 0 0 1�000 1�000 —
x0 1 1 4 10 —
R (WM) � � 100 75 75
Mean power plant 2�82 2�75 2�64 2�48 2�40

value 
$×106�
Std 
$×106� 1�49 1�43 1�50 1�52 1�59
Skewness 1�19 1�26 1�03 1�30 1�13
Kurtosis 5�30 5�72 4�34 6�10 5�29
Mean per MWh 35�24 35�03 34�72 31�34 23�71

profit ($/MWh)

4.4. Power Plant Value vs. Time

In this section we focus on the relation of the power
plant value and time. By repeatedly running the program
with different lengths of planning horizon T , we obtain
the expected power plant values summarized in Table 3.
The unit parameter set corresponding to Cases 1 to 4 in
Table 2 are tested. Cases 1 and 2 are tested using the
financial options approach (recorded as Value 1 in Table 3)
and the approximate method presented in §4.3 (Value 2),
respectively. To incorporate ramp constraints into the test-
ing, we adopt the heuristic method presented in §4.5. The
power plant values before and after applying the heuristic
method are recorded in Table 3 corresponding to Value 3
and Value 4, respectively. It is clear that Values 1 to 4
are in a decreasing order because of the increasing physi-
cal constraints. That is, both Value 1 and Value 2 provide
upper bounds for the true power plant values, and Value 2
is a better bound than Value 1 as stated in §4.3. Com-
paring Value 1 and Value 4, the percentage overestimate
of the power plant value of the financial options approach
decreases as T increases, and seems to converge approxi-
mately to 7% and 14% for Case 3 and Case 4, respectively.
Comparing Value 3 and Value 4, the effect of the ramp con-
straints upon the power plant value can be observed, and
this proves to be critical. In the two test cases, about 50% of
the overestimate of the financial options approach is due to
the ramp constraints (i.e., the ratio of 
Value 3−Value 4� to

Value 1−Value 4�). Additionally, each of these methods
reveals approximately linear relations between the power
plant value and the length of the planning horizon; see
Figure 3, which ranges in our tests from one day to one
week.

We also record the per MWh value ($/MWh) of the
power plant in Table 4, as well as depict it in Figure 4. The
percentage overestimate of the per MWh value of the power
plant obtained by the financial options approach seems to
converge to approximately 1.5% in Case 3 and 12% in
Case 4, as T increases. The numerical results also show
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Table 3. Power plant value ($) vs. time.

T (hr) 24 48 72 96 120 144 168

Case 1 Value 1 
$×106� 0�30 0�71 1�13 1�55 1�97 2�39 2�82
Case 2 Value 2 
$×106� 0�29 0�68 1�10 1�51 1�92 2�34 2�75

Value 3 
$×106�† 0�28 0�68 1�09 1�50 1�91 2�32 2�73
Value 4 
$×106�‡ 0�27 0�65 1�05 1�44 1�84 2�24 2�64

Case 3 Overestimate 
%�∗ 11�1 9�2 7�6 7�6 7�1 6�7 6�8
Overestimate due 33�3 50�0 50�0 54�5 53�8 53�3 50�0

to ramp 
%�∗∗

Value 3 
$×106�† 0�26 0�65 1�05 1�45 1�85 2�26 2�66
Value 4 
$×106�‡ 0�22 0�59 0�97 1�34 1�72 2�10 2�48

Case 4 Overestimate 
%�∗ 36�4 20�3 16�5 15�7 14�5 13�8 13�7
Overestimate due 50�0 50�0 50�0 52�4 52�0 55�2 52�9

to ramp 
%�∗∗

†: by the proposed method without ramp constraints.
‡: by the proposed method with ramp constraints handled by the heuristic method in Section 4.5.
∗: (Value 1/Value 4)−1.
∗∗: �Value 3−Value 4�/�Value 1−Value 4�.

that the per MWh value of the power plant seems less sen-
sitive to the physical constraints compared with the mea-
sure of dollar value. Clearly, results for different markets
would vary as well with the price parameters * and , .

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper we present a method for valuing a power plant
using Monte Carlo simulation. As opposed to the popular
approach using financial options, we incorporate physical
constraints into the problem modeling, without which the
potential risk due to operational limits is overlooked, and
the payoff is nonnegative.

The real-world physical constraints which we model into
the power plant valuation problem include the minimum
uptime/downtime constraints and the unit ramp constraints.
We present both the exact and the heuristic methods to
handle ramp constraints. We observe that the power plant
value in some test case is overestimated by approximately
14%.

Although this paper focuses on the short-term power
plant valuation, the proposed method can also be used
to aid long-term valuation. When dealing with long-term
generation-asset valuation, it is debatable whether one
wants to run such a spot-price model, say hour to hour, for a

Figure 3. Power plant value vs. time.

one-year period. Monthly forward prices seem more appro-
priate. How to integrate the proposed short-term model to
a better long-term price structure such as a forward price
curve is a new research direction. To sum up, the proposed
method can be used to estimate how a power plant value
can be affected by the physical constraints during a short-
term period. This component, if overlooked, may result in
sizable risks.

Our numerical results also suggest an approximate form
of formulation when length of time period to be valued
is much larger than the ranges of physical constraints,
and suggest a correction term to the financial options
approaches to account for the physical constraints. In these
cases, a power plant can be valued accurately and effi-
ciently.

Valuing a power plant using dynamic programming and
Monte Carlo simulation is quite flexible, and so is read-
ily conducive to incorporating new price processes or even
new uncertainties. This method, however, requires massive
computations in repeated forward and backward processes.
To improve the efficiency, our research direction has turned
to developing a price lattice that can represent both fuel
and electricity price processes, so that we may solve the
problem using backward stochastic dynamic programming
(Tseng 2000). We shall present these additional research
results in a future paper.

Figure 4. Power plant per MWh value vs. time.
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Table 4. Power plant value ($/MWh) vs. time.

T (hr) 24 48 72 96 120 144 168

Case 1 Value 1 26�03 30�59 32�63 33�70 34�47 34�96 35�24
Case 2 Value 2 25�77 30�40 32�40 33�43 34�21 34�72 35�03

Value 3 25�37 30�17 32�30 33�34 34�12 34�60 34�92
Value 4 25�19 30�03 32�13 33�19 33�95 34�43 34�72

Case 3 Overestimate (%) 3�3 1�9 1�6 1�5 1�5 1�5 1�5
Overestimate due 27�3 33�3 51�5 41�7 48�6 47�2 62�5

to ramp (%)
Value 3 23�89 28�25 30�17 31�59 31�83 32�30 32�57
Value 4 23�67 27�43 29�20 30�05 30�65 31�09 31�34

Case 4 Overestimate (%) 10�0 11�5 11�7 12�1 12�5 12�4 12�4
Overestimate due 9�3 25�9 28�3 42�2 30�9 31�3 31�5

to ramp (%)

APPENDIX A. FITTING MODEL PARAMETERS

Studies of the dynamic behavior of electricity and natural
gas prices suggest that their dynamic price-process behav-
ior may be reasonably represented by “geometric” mean-
reverting processes. (The interested reader is referred to
Barz 1999 for a formal comparison of various electricity
price-process models.) Denoting the price at time t by pt ,
we represent the dynamic price behavior as

d ln
pt�=−*
ln
pt�−mt�dt+, dBt�

where Bt represents a Weiner process and mt is time-
varying to capture the effects of seasonality. The procedure
for fitting the data is as follows:
• We begin by constructing a new time-series consisting

of the natural logarithm of prices, zi.
• Next, we deseasonalize this modified data by remov-

ing the predictable price patterns to allow the use of a
nontime-varying stochastic process:

dzt =−*
zt − m̄�dt+, dBt

Specifically, we subtract the average difference of the value
at each hour of the day from the overall mean. Note that
this can be shown to be equivalent to fitting mt directly,
using the method of maximum likelihood.
• Last, we fit the deseasonalized, log-price data via the

method of maximum likelihood, where the maximum like-
lihood estimators:

m̄= 1
n

n∑
i=0

zi −
1
n

(
z0 − e−*zn
1− e−*

)

≈ 1
n+1

n∑
i=0

zi for z0� zn ≈ m̄�

*=− ln
[∑n

i=1
zi − m̄�
zi−1 − m̄�∑n−1
i=0 
zi − m̄�2

]
�

,̂2 = 1
n

n∑
i=1

(

zi − m̄�− e−*
zi−1 − m̄�

)2
�

,2 = 2*,̂2


1− e−28�
�

are derived directly from conditional distributions implied
by the previous period’s prices and the stochastic model
(Oksendal 1995, Davidson and MacKinnon 1993).

To simulate prices, these steps are reversed.
• First, nontime varying log-prices are simulated:

zt = e−*
zt−1 − m̄�+ m̄+,N�0�1��

• Next, seasonal (daily) fluctuations are reincorporated
into zt by adding to zt its respective hour-of-day adjust-
ment. This reproduces the time-varying effect of mt .

• Last, prices are derived: pt = ezt .
The correlation of gas and electricity prices is incorpo-

rated via the N�0�1� random variables.
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