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Short-Term Hydrothermal Generation Scheduling
Model Using a Genetic Algorithm
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Abstract—A new model to deal with the short-term generation Hydrothermal Generation Scheduling Problem (HGSP)
scheduling problem for hydrothermal systems is proposed. Using |——————— " " " ————————

; . . ‘mal
genetic algorithms (GAs), the model handles simultaneously the Iéyo(i:(:;il:;'t;zi

Unit Commitment Economic Load

subproblems of short-term hydrothermal coordination, unit com- Problem (HCP) || Problem (UCP) | | Dis"‘:g{g;‘)’b'em
mitment, and economic load dispatch. Considering a scheduling 1 |(Yearly, monthly and (Weekly or daily) (Hourly)

horizon period of a week, hourly generation schedules are obtained weekly)

for each of both hydro and thermal units. Future cost curves of
hydro generation, obtained from long and mid-term models, have
been used to optimize the amount of hydro energy to be used during Fig- 1. Time hierarchical decomposition for the HGSP.

the week. In the genetic algorithm (GA) implementation, a new

technique to represent candidate solutions is introduced, and a set sjdes, it is a large multi modal and nonconvex problem. Most
of expert operators has been incorporated to improve the behavior ¢ e «onventional optimization techniques are unable to pro-
of the algorithm. Results for a real system are presented and dis- . . A
cussed. duce near-optimal solutions for this kind of problem. Moreover,
conventional methods usually require certain suppositions that
force them to work with simplified instead of realistic models.
In order to deal with the HGSP in a more efficient and robust
way, this paper proposes an optimization model using a genetic
. INTRODUCTION algorithm (GA) to solve it.

HE efficient scheduling of available energy resources for A GA is a metaheuristic technique inspired on genetics

satisfying load demand has became an important taskdfd evolution theories [4]. During the last decade, it has
modern power systems. The generation scheduling probl&@en successfully applied to diverse power systems problems:
consists of determining the optimal operation strategy for tig®timal design of control systems [5], [6]; load forecasting
next scheduling period, subject to a variety of constraints. Fidd; OPF in systems with FACTS [8]-[10]; FACTS allocation
hydrothermal systems, the limited energy storage capabilldd]; networks expansion [12]-[14]; reactive power planning
of water reservoirs, along with the stochastic nature of thd#51-[17]; maintenance scheduling [18], [19]; economic load
availability, make its solution a more difficult job than fordispatch [20], [21]; generation scheduling and its subproblems
purely thermal systems. The well-timed allocation of hydro e22]—{34].
ergy resources is a complicated task that requires probabilisticection IV presents an overview of GA, and describes the im-
analysis and long-term considerations, because if water is u§é@mentation of the proposed model using a GA, and Section V
in the present period, it will not be available in the futureShows tests results for test systems. Finally, Section VI presents

Index Terms—Genetic algorithms, hydrothermal systems,
short-term hydrothermal scheduling.

increasing in this way the future operation costs. the main conclusions of the paper.
So, the hydrothermal generation scheduling problem (HGSP)
is usually decomposed into smaller problems in order to solve it [l. PROBLEM FORMULATION

[1]. In this way, the HGSP involves three main decision stageg, Hydrothermal Coordination Problem (HCP)

usually separated using a time hierarchical decomposition . ) . .
(Fig. 1): the hydrothermal coordination problem (HCP), the Itis the first stage in the solution of the HGSP. The HCP con-
unit commitment problem (UCP), and the economic ’Ioa ists of determining the optimal amounts of hydro and thermal

dispatch problem (ELDP). The model proposed in this papg?neration to be used dur.ing a schgduling period [1], [2]. The
handles simultaneously the subproblems of short-term H Pis also Qecomposed n Iong-, mid-, and sho.rt—term models
UCP, and ELDP. 5], depending on the reservoirs storage capacity.

The HGSP is a nonlinear optimization problem with high di- Decisions in hydrothermal systems are coupled in time. In

mensionality, continuous and discrete variables, a nonepriBHQIer words, the operating costs in the future depend on the

biective function, with litv and i lit traint _Beqmognt of hydrp generation during the present period [36]. Ac-
objective function, with equaily and inequality constraints cording to the kind of output of the model, HCP approaches can

be classified in two principal categories:
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Cost — — timal allocation of power demand among the running thermal
| FCF : Future Cost Function ‘ . . . . iy
| ICF : Immediate Cost Function | units, satisfying the power balance equations and the unit’s op-
\ |_ICF + FCF : Total Cost | . eration constraints.
\\\ — When the ELDP is solved in the context of the online oper-
\\\\ ation of the system, transmission losses are usually included in
\ ' the optimization process, and sometimes even an optimal power
FCE ~_ , - — 7 MICF flow is executed. However, in the context of the selection of an
pd optimal schedule, there is evidence that losses do not have much
Water — "=~3y — influence and they are not included.
value ﬁ‘, S
s /‘ T . .
,,,,,, D. Mathematical Formulation for the Short-Term HGSP
Optimal Finalwater The main objective of the short-term HGSP is to determine

decision storage the optimal generation level for each hydro and thermal unit for
each hour over an entire period (a day or week), subject to a
large set of equality and inequality constraints.
The objective function of the short-term HGSP is represented
Hydro generation has an opportunity cost associated to $ (1). The objective function is set as to minimize the total
thermal generation displaced. As seen in Fig. 2, if a larggperation costs(immediate costs + future costs) plus a

amount of water is used during the present stage, the immedigéfalty factor (feasibility measure). (Please see the equation at
cost (obtained by solving the UCP and the ELDP for the presgfk hottom of the page.) Where

Fig. 2. Immediate and future cost functions [36].

stage) decreases, and the water available in the future (final,
water storage) decreases. Hence, if less water will be availableyt
future costs will increase. T

total system operation cost;
fuel costs for hout obtained from the ELDP;
number of hours for the time horizon;

The FCF can be obtained by calculating recursively the ny ..
system operation costs in the future (starting from the end of ;.
the period under analysis) considering different starting vaIuesEivt
of water storage. This can be achieved using stochastic dual

number of thermal units;

number of hydraulic reservoirs;

status of thermal unit during the hourt (1
for up and 0 for down);

dynamic programming (SDDP) [36]-{39]. Pt;, power output for the thermal unitduring the
The FCF allows uncoupling the long/mid-term from the hourt:

short-term hydrothermal coordination activity. This is the pp;, power output for the reservojf during the

approach used in this paper. hour ¢:

. . CCi(Pt; 4 fuel cost for the thermal unitduring the hour
B. Unit Commitment Problem (UCP) (i ¢ with a power outpuf’t; , (using a quadratic

Once the hydroelectric generation for each hour is de- cost function);
termined, thermal units must meet the load not covered by, ; andC.q ; start-up and shut-down costs for the thermal
hydroelectric generation. The UCP deals with the decision unit 7 during the entire scheduling horizon;
on which of the thermal units will be running or not during Vol;, volume for reservoiy during the hout;
each hour of the scheduling period [1], [3]. The committed Vol; r volume for reservoirj at the end of the
units must be able to meet the system load at minimum op- horizon;
erating cost, subject to a variety of constraints. The UCP is aFCF;(Vol; ) future cost of thermal units as a function of
NP—complete optimization problem. the volume of reservoij at the end of the

) ) scheduling horizon;

C. Economic Load Dispatch Problem (ELDP) Penalty penalty factor.

Once the running units for an hour have been determined byilmmediate costs are calculated as the sum of the energy pro-
the solution of the UCP, it is necessary to distribute the load dduction costs and the start-up and shutdown costs, during the
mand solving the ELDP. The ELDP consists of finding the ogresent time horizon (from 1 t6). The energy production cost

Immediate Cost Future Cost
N A

Y Y

Ny Nuat E\UGH
Zr = min Z (Hlln E; - CC Ptl t ) + Z (Osui + Ciq i) + Z FCFj(VOleT) +Penalty Q)
=1

t=1 i=1 j=1
N

~~
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(y:), for a given hout, corresponds to the solution of the ELDF
for that hour, considering only the dispatched units.

On the other hand, the future cost for each reservoir is calc
lated using the respective FCF, as a function of the volume
the end of the time horizon.

The penalty factor is directly proportional to the level of vio:
lation of constraints. In this way, it works as a feasibility mee
sure.

From (1), it can be appreciated that the objective functic
is not explicit, because the value gf is obtained through the
solution of the ELDP, instead of a direct function evaluation.

The short-term HGSP presents a large set of units and syst
constraints, which are taken into account in this paper, as fi
lows:

1) Demand satisfaction for each haur

Nuat Nuau
> Eiy-Ptis+ Y Phjy=Demy + Loss; — Gupy Vi
i=1 j=1

)

whereDem;, Gy p+ andLoss; are the total load demand
forecasted for the hour total power output of hydraulic
units without water storage capacity during the hioaind
the total losses estimated for the system during hour
respectively.

In order to accomplish this rule, the model incorporate
a fictitious unit, whose cost function corresponds to th
failure cost for the system.

2) Technical operation limits of each unit

Ptoin i < Pt; < Ploaxi Vi
Phin j < Phji < Phpax

(T34,
(s

Vit
Vi Vit
— Tminupi) (Eip—1—FE;4) >0 Vi Vt
— Tmindowni) (Eiy—FE;i4—1)>0 Vi Vt (4)

®)

where Pt,.;, ; and Pt,,.. ; are the minimum and max-
imum power output of the thermal unit Phy,;, ; and
Phuay ; are the minimum and maximum power outpu
of the hydro unitj; 7;'Y_, and T¢¥" are the up and
down-time at hout — 1 for the thermal unif; Tminup, is
the minimum up time for thermal unitand Tmindown;
is the minimum down time for thermal unit

3) Hydraulic dynamic of each reservgirfor each hout

VOlj,t-‘,-l = VOlj,t
+ inﬂj,t — Qj (Phj,t) — ﬁltj’t — €Vt — Spﬂj,t

Long/Mid—Term
model output
Weekly Future Cost
curves for each reservoir
obtained from a
Long/Mid-Term model

Hourly load forecasting
For scheduling horizon,
including losses estimation

Inflows and water
losses prediction

[For each hydroelectric unit

Thermal units model
o Fuel cost curves
e Power limits and units
operational constraints

Water reservoirs model
e Hydraulic model of
each reservoir

e Hydraulically coupled
units model

e Water storage capacity
limits

Short-Term
Hydrothermal
Generation
Scheduling
Model

Weekly horizon
Hourly steps

Solutions for:
e Short-Term HCP
e UCP
e ELDP

D

Initial conditions
e Reservoir volume in
each reservoir

e Up-time and down-time
at the beginning

Others
Maintenance programs,
reliability constraints, etc

- /
~—
Model Input

Fig. 3 Proposed model.
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Model Output

The proposed model
obtains a set of
feasible solutions. For
each one of them, it is
indicated:

¢ Hourly power
output for hydro units
e Volume of each
reservoir at the end of
the scheduling horizon
e Future cost of the
water used in the
period

e Hourly status (up or
down) for thermal
units

« Hourly power
output for thermal
units

¢ Hourly fuel costs

e Total operation
costs

o Constraints
evaluation for each
solution

4) Limit storage capacity for each reservgir

VOlmin j S VOlj,t S VOlmax j

Vi Wt (6)

whereVol,,i, ; andVol,.x ; are the minimum and max-
imum feasible volumes for reservagir
5) Spinning reserve requirements

UGT

Z Ei,t(Ptmaxi - Pti,t)

=1

Nucn

+ > (Phmax j — Phjs) > 3-Dem; ¥t (7)

Jj=1

whereg corresponds to the percentage of the load demand

to be used as reservg & 0.1 in this case).

A scheme of the proposed model is given in Fig. 3. As input
information, the proposed model uses the FCF obtained from
discharge for a power outpiith; +; filt; . is the filtration; a long/mid-term model, detailed information on the hourly
ev;; is the evaporation; angil,; , is the spillage. load demand, the reservoir inflows and water losses, models of

Each hydrothermal power system has its own particulttre hydro and thermal generating units and initial conditions,
hydraulic restrictions, depending mainly on geographicamong others.
and hydrological conditions. Sometimes, water dischargeThe proposed model uses this input information, handling si-
from one reservoir can affect availability in another resemultaneously the subproblems of short-term hydrothermal co-
voir, the so-called hydraulically coupled units. ordination, unit commitment, and economic load dispatch. Con-

PROPOSEDMODEL

®)

whereinfl; ; is the forecasted inflow¢);(Ph;.) is the
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H*
i Matrices ¢ Vj, 1< j<Nygy
: with hourly Power i it 7
‘ k ower in unit j for
H’J‘ %evrzgt}gfn Ph;, (H j) the hour t
: each hydro o Vi 10<T
k unit ( k)
G. = Nuen | — y, VOZJ’T VOZJ.’M,,H].
k Ek | 3\
1 y
: ; Zsf‘:(;mszi::s FCF (VO / ) Future Cost of water
E:‘ oo ] >for ez;vch J 7T /| used by unit
; thermal unit
k 0 0:0 n ’0 ] Fig. 5. Future cost calculation process for the hydraulic ginit
ST [ [ KK R— 1)
Fig. 4. Candidate solution representation (ma€ix). means of heuristic rules based on the expert knowledge of the
system and using a priority list.
TABLE | y gap y

BINARY CODIFICATION EXAMPLE USING 3 b . .
C. Fitness Evaluation

% Phmax j O 40 S50 60 70 8 90 100 To compare different solutions, a fitness (or cost) evaluation
Binary g 8 ? ? :) ; 1 1 of each candidate solution must be done. Itis achieved by means
codification | 1 0 1 0 1 0 1 of the decoding of the strings and the evaluation of the objec-

tive function (1) for each candidate solution. In order to achieve
the fitness evaluation, the following steps are executed for each
sidering an analysis horizon period of a week, the propose@ndidate solution.

model obtains hourly generation schedules for each of the hydro1) For each hydro sub-matrig’ , (from 1 to Nygn),

and thermal units. columns are decoded and final volume for each reservoir
is calculated. Then, weekly FCFs for hydro generation
IV. I MPLEMENTATION OF THE MODEL USING GA have been used to obtain the opportunity cost due to the

The GA is a search technique inspired on genetics and evolu—2 lése of htydro (?r;]eré:]y dur.itng'thg_week ,chijg]; 5). total load
tion theory. They are described in [4], [45]-[48]. The implemen- ) Generation of hydro units is discounted from total loa

tation of the proposed model using a GA includes the following demand for each h_ou_r. Thermal Qemand (total minus
stages. hydro) must be satisfied by running thermal units at

least cost. Then, for the running thermal units for each
hour (obtained from vector&:), an economic load

) o . ] dispatch is achieved. The ELDP is solved using Lagrange
Each candidate solution is represented by a binary m@gix multipliers [1]. Production costs for each thermal unit
(Fig. 4), by means of an adequate codification of the decision  ,yer the week are calculated.

variables. Each matrix representing a candidate solution mustg Analyzing each vectaE:, start-up and shutdown costs
contain all of the information necessary to be distinguished from 516 calculated using (8). As in [23], [25], and [3dL;
another one, and necessary to evaluate its fitness. The decision g equal to 0 for each thermal unit andC.,; is equal

variables are either to the cold start co$Cs, ..1a;) OF to the hot start
1) Power output of each hydroelectric unit for each hour: cost (Csy not 1), depending of the time that the unit has
it is a continuous variable, which is discretized using a been down(tgown)
3-bit code. So, there are eight possible discrete power )
generation levels for each unit. The generation levels for C. . = { Csucoldiis }f tdown < Teold start i . (8)
each 3-bit combination are assigned arbitrarily, as seenin o Csunoti; I tdown > Teold start

Table I. Then, each candidate solutiGn, contains aset 4y specialized subroutines determinates if each constraint is
of binary submatriceI; with size (3,T) for each hydro violated, and penalty factors are calculated.
unit j.

2) Status of each thermoelectric unit for each hour: 1 if the
unitis running, 0 if the unitis down. Then, each candidat®. Offspring Creation
solutionGy contains also a set of binary vectd$ with
lengthT for each thermoelectric unit

A. Representation of Candidate Solutions

Creation of new individuals is a fithess-dependant activity,
due to solutions with best fitness have more probabilities to be
selected as parents. The offspring creation process used in this
paper (Fig. 6) involves three groups of genetic operators.

1) Crossover OperatorsThe crossover operators select

An initial population of candidate solutions is createdandomly (but better solutions have more chances to be se-
randomly, and “seeded” with some good solutions obtained lcted) two parent solutions and then combine their respective

B. Initialization
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| (G1, - Gy e Gve] | search space is allowed. To investigate the effect of the repair
19 soe UKy eee N T . .
. . = operators, a sensibility analysis was performed in a small test
ikttt : system with four units (not shown in this paper). It could be
Crossover Mutation Repair 1 hat the inclusi f . t . li fast
operators  [®] operators  [®]  operators : seen that the inclusion of repair operators implies a faster con-
1

---------------------------------------- vergence and solutions closer to the optimal.

E. Replacement of the Population Members

In order to create a new and improved population of solutions,
a parents versus descendants competition is achieved, where
best solutions survive and bad solutions disappear. The replace-

strings based in some rules, generating new population megient procedure used is the + ) selection, used successfully
bers. To achieve the parent selection, tournament selection #g24]. It can be described as:

been used. _ Step 1) For each solution G of the present population, se-
Three different kinds of crossover operators were used (one at lect randomly (using an uniform distribution) an off-

a time), performed with probabilities.;, p.2, andp.s3, respec-

Fig. 6. Offspring creation process.

. ; springD.
tively, (With pet + pez + pes = 1)- _ Step 2) IfCost(G) < Cost(D), then addG to the new
Window Crossover:For two selected parents, it selects population. IfCost(G) > Cost(D), then addD.

randomly a *window” formed by two rows and two columns,  gie 3) Remove& andD from the selectable offspring and
and interchanges the bits inside the window between the par- repeat the process for the next soluti@n

ents. The better solution must transfer more information (b|ts).|_hiS procedure is described in more detail in [48].

to the descendant [34].
2 Points Crossover:lt is a particular case of the window E. Convergence Criterion

crossover. It selects randomly two columns, and the parents in- . _ _ _

terchange the bits between the columns. If a fixed number of generations is reached, the algorithm
Daily Crossover: this specialized operator takes advarStops, else it goes back to stafle The maximum number of

tage that hourly demand has a similar behavior for differefnerations depends on the size of the system (number of units).

weekdays. When the scheduling is being achieved for a week,

this operator interchanges 24-h blocks between parents to create V. CASE RESULTS

an offspring. Itis a particular case of the two points crossover. 1,4 algorithm was programmed using MATLAB 5.3, and the
2) Mutation Operators:They are applied to a\_/0|d Préma-qimyations were performed using a 1-GHz Athlon processor.

ture convergence of the algorlthm, and are achieved over ¥ tuning the parameters of the GA, it was previously tested
created descendants. Two mutation operators has been us§giiRy a purely thermal test system. After, the model was tested
this paper, performed with probabilities,: andp,,2, respec- ¢, 4 hydrothermal system.
tively.

Standard Mutation:it randomly changes a bit of the ma-a  Test Results for Purely Thermal Systems
trix. . ]

Swap Mutation: this operator selects arbitrary an haur The generation scheduling for a purely thermal system (or

and search for the most expensive unthat is ON and the most unit commitment problem) is a particular case of the short-term
cheaper unit» that is OFF. Then, with probability 0.7, unit HGSP. The simulations were performed over a 24-h demand

is turned OFF while unit, is turned ON [34]. schedule for 10, 20, and 40 thermal units systems, which are

3) Repair Operators: The offspring creation process oftenderScribed inr [25]. Probabilities for the GA were setplq =
produces unfeasible solutions due to violations of restrictiofls?: Pe2 = 0.5, pm1 = 0.001 per bit andp,> = 0.3.

described in (4) and (6). To avoid the creation of too many un- R€sults were compared with test results reported in [23], [25],
feasible solutions, two repair operators have been included: 2"d [34], s seenin Table II, where the cost for the better, the av-
Repairing of Minimum Up/Downtime Constraint&his erage, and the worst solution over ten runs are shown. It can be

operator goes across each one of the vecﬁérevaluating the S€en that the results from the simulations are competit.ive with
consecutive time that a thermal unit has been up or down Peviously reported results. The convergence process is shown
a minimum up or down time constraint is violated for a givefl! Fig- 7, with the average, over ten runs, of the minimum pop-
hour, the state of the unit at the hour is changed. An analysis$ftion cost, normalized by the minimum cost known for the
this operator and its benefits can be seen in [34]. system.

Repairing of Steage Capacity Constraints:This operator
tracks each submatrB’, decodes it, and recursively calculate8: Test Results for a Hydrothermal System
the water volume for each hour using (5). If at a given hour the The hydrothermal test system is a reduced version of the
constraint is violated, the operator randomly changes a bit Ghilean Central Interconnected System (see Appendix). It con-

Hi for that hour until the violation is fixed. sists of six water reservoirs (11 hydro units, any of them hy-
If more feasible solutions are created on each generatianaulically coupled) and ten thermal units.
the process of replacement of the population members becomeBrobabilities for the GA were set tp.; = 0.3,pe2 =

more competitive, and the exploration of more zones of te3, p.3 = 0.4, pm1 = 0.001 per bit andp,,2 = 0.3.
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TABLE I
TEST RESULTS FORPURELY THERMAL SYSTEMS

Problem P1 P2 P3
Method Number of units 10 20 40
Search Space 1.70E+72 | 2.90E+144 | 8.30E+288
F',Dr ’(;’;_"[gf] Optimum 565827 No No
Lagrangian Better 566107 1128362 2250223
Relaxation Average 566493 1128395 | 2250223
(LR) (5000 Worst 566817 1128444 2250223
iterat.) [34] Variation (%) 0.13 0.01 0.00
GA [25] Better 565825 1126243 | 2251911
Worst 570032 1132059 | 2259706
Better 565866 1128876 | 2252909
GA [34] Average 567329 1130160 | 2262585
Worst 571336 1131565 | 2269282
Variation (%) 0.96 0.24 0.72
Memetic Better 565827 1127254 | 2252937
Algorithm Average 566453 1128824 | 2262477
(MA) [34] Worst 566861 1130916 | 2270361
Variation (%) 0.18 0.32 0.77
LR (100 iterations) | 567663 1129633 | 2250223
MA seeded Better 566686 1128192 | 2249589
with LR [34] Average 566787 1128213 | 2249589
Worst 567022 1128403 | 2249589
Variation (%) 0.06 0.02 0.00
LR 565825 1130660 | 2258503
GA FZZ(]’ LR GA 565825 | 1126243 | 2251911
LR + GA 564800 1122622 | 2242178
Better 565169 1128075 | 2252201
Proposed Average 566045 1129328 | 2254329
GA Worst 567117 1130899 | 2260114
Variation (%) 0.34 0.25 0.35

— System P1 (10 units)
——— System P2 (20 units)
- System P3 (40 units)

Normalized Average Minimum Population Cost

Generation

Fig. 7. Convergence process for a purely thermal system.
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Fig. 8. Convergence process for hydrothermal system.
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Fig. 9. Total hydro and thermal hourly generation scheduling for a week.

VI. CONCLUSION

This paper proposes and develops a new model for dealing
with the short-term HGSP, incorporating, as a whole, three prob-
lems traditionally analyzed separately: short-term HCP, UCP,
and ELDP.

Hydrothermal systems are coupled in time. In order to un-
couple the long/mid-term models from the short-term model,
FCFs have been used. In this way, FCFs work as the link be-
tween the short and the mid/long-term models.

The simulation converged (Fig. 8) to a population of feasible The definition of the decision variables, the representation of
solutions. From the analysis of the matix for the best so- candidate solutions, and the fitness evaluation are the basis for
lution, it could be observed that the two cheaper thermal unitaplementing a GA. They act like the connection between the
were ON for the entire scheduling period, while the most expealectric/economic model and the GA. Once these aspects are
sive were only turned on to satisfy demand peaks. Also, runniaglved, the solution through GAs is fundamentally a program-
thermal units were operating near their respective maximum efing problem.

ficiencies.

Promising results obtained from the computational simula-

As seen in Fig. 9, total thermal generation is flattened by thien have been presented. The proposed GA, using new spe-
effect of the hydro generation. In this way, hydro generatiarialized operators, have demonstrated excellent performance in
displaces the most expensive thermal generation. Besides, it daaling with this kind of problem, obtaining near-optimal solu-
be observed the similar behavior of generation for different dagiens in reasonable times and without sacrificing the realism of
of the week, mainly due to the effect of the “daily crossover.”the electric and economic models.
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18.4 273 TABLE V
’ FUTURE COST FUNCTION FOR RESERVOIR1
m3/s 88
q=36 m3/s
m3/s  Res.2 [End Volume [Mm3] | 500 [ 568.7 | 824.7 |1107.1[1416.0{1784.6]2217.9
Res. IN/7 777777 Res. 3 Future Cost [M$] 145 [1.371] 1.19 [ 1.041] 0.94 | 0.806] 0.724
, Unit 4 q=358 End Volume [Mm3] |2721.3] 3259 |3785.5[4294.2|4775.7|5525.0|5572.4
Unit 1 4=23 m3S i Future Cost [M$] | 0.626 | 0.542 | 0.494 | 0.466 | 0.443| 0.412| 0.4
m3/s  Unit 5
Unit 3 Unit 8 TABLE VI
Unit 6 THERMAL UNITS CHARACTERISTICS
6.7 151 55 1 Unit 7] Unit2 | Unit3 | Unit4 | UnitS |
m3/s m3/s m3/s Ptmin [MW] 80 80 80 40 40
[Ptmax [MW] 350 350 300 200 150
Reserv. 4 Reserv. 5 Reserv. 6 as/m 0,0004 | 0,0004 | 0,0005 | 0,002 | 0,0022
b [$/MWh] 13,19 | 1319 [ 1419 | 16,6 | 19,5
Unit 9 Unit 10 Unit 11 ¢ [$/MW2-h] 800 800 780 700 680
min. up time [h] 3 3 3 5 5
Fig. 10. Hydraulic configuration of hydro units in Chilean system. min. down time[h] 3 3 3 5 5
TABLE Il hot start cost [$] 1500 1500 1500 550 560
INPUT/OUTPUT CHARACTERISTICS FORHYDRO UNITS cold start cost [$] 5000 | 5000 | 5000 | 1100 | 1120
shut down cost [$] 0 0 0 0 0
i |cold start hrs [h] 5 5 5 4 4
Unit [ﬁr;,':] [?nn;,ag Ph(Q) [MW] ‘initial status [h] 8 8 ) 5 5
1 5 92 JPh=k-Q (See values for k in Table V) Onto 1 Unt7 1 Ontg 1 onto 1unt 10,
2] 0 | 9 Jph=12Q Ptmin [MW] 40 20 20 55 55
3] 0 [ 192 |Ph=163Q Ptmax [MW] 150 | 80 50 55 55
4 0 40 |Ph=k-Q (See values for k in Table IV) [a[$/m] 0,0022 | 0,0071 | 0,0071 | 0,0041 | 0,0041
51 0 84 |Ph =-15.89+Q7(1.495-0.588e-2*Q) ‘ b [$/MWh] 19,5 | 22,26 | 26,26 | 32,92 | 32,92
6 0 84 |Ph=Q-(0.833+Q-(0.715e-3+Q-(0.951e-4-Q-0.891e-6))) c [$/MW2-h] 680 370 320 650 650
7 | 56.5 | 310 |Ph=kQ (See values for k in Table V) min. up time [h] 5 3 3 1 1
8 | 56.6 | 310 JPh=Q:(0.359-Q:(0.235e-3+0.370e-6-Q)) min. down time[h] 5 3 3 1 1
9 0 83 |Ph=k-Q (See values for k in Table IV) hot start cost [$] 560 170 170 30 30
10] 0 | 578 JPh=kQ (See values for k in Table IV) cold start cost [$] 1120 | 340 340 60 60
11] 115 | 315 |Ph=k-Q (See values for k in Table IV) shut down cost [$] 0 0 0 0 0
cold start hrs [h] 4 © 2 2 0
TABLE IV initial status [h] -3 -3 -1 -1 -1
RESERVOIRSCHARACTERISTICS
Reservoir 1 2 3 4 5 6 TABLE VI
- - . - - - - . HOURLY DEMAND FOR A WEEKDAY
Associated unit Unit1 | Unit4 | Unit7 | Unit9 | Unit 10 | Unit 11
Init.volume [Mm3]| 1866 | 417 | 9462 | 662.8 | 198.05| 106.6 Semard S Demand
Inflow [m3/s] 184 | 273 88 6.7 151 55 Hour MW Hour IMW] Hour IMW]
Volume1 [Mm3] 500 7.5 384 2249 | 14265| 103 1 1800 9 2280 17 2280
k1 [MW/m3/s] 45494 262 | 1.204 | 1.9197] 06200 1.7322 2 1840 10 2300 18 2396
Filt1 [m3/s] 17.98 0 0 0 0 0 3 1920 11 2320 19 2400
Volume2 [Mm3] | 1768.1] 49.29 | 666.1 | 435.03 | 215.32 | 110.66 4 2000 12 2320 20 2440
k2 [MW/m3/s] 46974 263 | 1.343 | 1.9602] 0.6447 | 1.7494 5 2080 13 2300 21 2440
Filt2 [m?3/s] 2487 0 0.07 0 0 0 6 2160 14 2280 22 2320
Volume3 [Mm3] [ 30362 91.07 | 984.2 | 645.15] 287.99 | 118.32 7 2200 15 2240 23 2000
K3 [MW/m3/s] | 48149 2.64 | 1.440 | 1.9996 | 0.6549 | 1.7663 8 2240 16 2240 24 1800
Filt3 [m3/s] 31.77 0 34 0 0 0
Volumed [Mm3] ) 43043} 13286} 1230 ] 855.28 | 360.65 | 125.98 the six most important hydraulic reservoirs (and their associated
k4 [MW/m3/s] 49154 265 | 1513 | 2.0389] 0.664 | 1.775 . .
Filtd [m3/s] 40.2 0 7.02 ) ) ) hydraulic systems) and a reduced set of representative thermal
Volumeb [Mm3] | 55724 | 174.64| 1512 | 10654 | 433.32 | 13364  Units were incorporated. o
K5 [MW/m3/s] 500261 266 | 1582 | 203891 0672 | 1.78 The hydraulic configuration of the hydro units in the test
Filt5 [m3/s] 50.33 0 10.13 0 0 0 system is shown in Fig. 10. It can be seen that three of the
hydro units are independent, but the rest are hydraulically cou-
pled. Except for a 2-h time lag between units 7 and 8, no time
APPENDIX

HYDROTHERMAL TEST SYSTEM DESCRIPTION

lags were considered. Input/output characteristics (water dis-
charge/power) for hydro units are given in Tables Il and IV.

The hydrothermal test system is a reduced version of théso, curves for modeling each of the six water reservoirs can
Chilean Central Interconnected System, where a real modelloé obtained from Table IV.
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The FCF for reservoir 1 is indicated in Table V. The FCF for[20]

the others reservoirs can be calculated using the respéctive

values given in Table IV.

[21]
Parameters for the quadratic cost functions for each thermal

unit (with CC = a - Pt? +b- Pt + ¢), along with their technical
limits, are summarized in Table VI.

[
Hourly demand for a weekday is given at Table VII. For Sat-
urday and Sunday, 80 and 70% of a weekday demand have be[en

used, respectively.
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