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Abstract—A new model to deal with the short-term generation
scheduling problem for hydrothermal systems is proposed. Using
genetic algorithms (GAs), the model handles simultaneously the
subproblems of short-term hydrothermal coordination, unit com-
mitment, and economic load dispatch. Considering a scheduling
horizon period of a week, hourly generation schedules are obtained
for each of both hydro and thermal units. Future cost curves of
hydro generation, obtained from long and mid-term models, have
been used to optimize the amount of hydro energy to be used during
the week. In the genetic algorithm (GA) implementation, a new
technique to represent candidate solutions is introduced, and a set
of expert operators has been incorporated to improve the behavior
of the algorithm. Results for a real system are presented and dis-
cussed.

Index Terms—Genetic algorithms, hydrothermal systems,
short-term hydrothermal scheduling.

I. INTRODUCTION

T HE efficient scheduling of available energy resources for
satisfying load demand has became an important task in

modern power systems. The generation scheduling problem
consists of determining the optimal operation strategy for the
next scheduling period, subject to a variety of constraints. For
hydrothermal systems, the limited energy storage capability
of water reservoirs, along with the stochastic nature of their
availability, make its solution a more difficult job than for
purely thermal systems. The well-timed allocation of hydro en-
ergy resources is a complicated task that requires probabilistic
analysis and long-term considerations, because if water is used
in the present period, it will not be available in the future,
increasing in this way the future operation costs.

So, the hydrothermal generation scheduling problem (HGSP)
is usually decomposed into smaller problems in order to solve it
[1]. In this way, the HGSP involves three main decision stages,
usually separated using a time hierarchical decomposition
(Fig. 1): the hydrothermal coordination problem (HCP), the
unit commitment problem (UCP), and the economic load
dispatch problem (ELDP). The model proposed in this paper
handles simultaneously the subproblems of short-term HCP,
UCP, and ELDP.

The HGSP is a nonlinear optimization problem with high di-
mensionality, continuous and discrete variables, a nonexplicit
objective function, with equality and inequality constraints. Be-
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Fig. 1. Time hierarchical decomposition for the HGSP.

sides, it is a large multi modal and nonconvex problem. Most
of the conventional optimization techniques are unable to pro-
duce near-optimal solutions for this kind of problem. Moreover,
conventional methods usually require certain suppositions that
force them to work with simplified instead of realistic models.
In order to deal with the HGSP in a more efficient and robust
way, this paper proposes an optimization model using a genetic
algorithm (GA) to solve it.

A GA is a metaheuristic technique inspired on genetics
and evolution theories [4]. During the last decade, it has
been successfully applied to diverse power systems problems:
optimal design of control systems [5], [6]; load forecasting
[7]; OPF in systems with FACTS [8]–[10]; FACTS allocation
[11]; networks expansion [12]–[14]; reactive power planning
[15]–[17]; maintenance scheduling [18], [19]; economic load
dispatch [20], [21]; generation scheduling and its subproblems
[22]–[34].

Section IV presents an overview of GA, and describes the im-
plementation of the proposed model using a GA, and Section V
shows tests results for test systems. Finally, Section VI presents
the main conclusions of the paper.

II. PROBLEM FORMULATION

A. Hydrothermal Coordination Problem (HCP)

It is the first stage in the solution of the HGSP. The HCP con-
sists of determining the optimal amounts of hydro and thermal
generation to be used during a scheduling period [1], [2]. The
HCP is also decomposed in long-, mid-, and short-term models
[35], depending on the reservoirs storage capacity.

Decisions in hydrothermal systems are coupled in time. In
other words, the operating costs in the future depend on the
amount of hydro generation during the present period [36]. Ac-
cording to the kind of output of the model, HCP approaches can
be classified in two principal categories:

• fixed reservoir storage level for each stage: the use of the
water in each stage is determined strictly by the model;

• future cost functions (FCF): future or opportunity cost of
the water used during the present stage, versus the storage
level at the end of the scheduling period.

0885-8950/03$17.00 © 2003 IEEE
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Fig. 2. Immediate and future cost functions [36].

Hydro generation has an opportunity cost associated to the
thermal generation displaced. As seen in Fig. 2, if a larger
amount of water is used during the present stage, the immediate
cost (obtained by solving the UCP and the ELDP for the present
stage) decreases, and the water available in the future (final
water storage) decreases. Hence, if less water will be available,
future costs will increase.

The FCF can be obtained by calculating recursively the
system operation costs in the future (starting from the end of
the period under analysis) considering different starting values
of water storage. This can be achieved using stochastic dual
dynamic programming (SDDP) [36]–[39].

The FCF allows uncoupling the long/mid-term from the
short-term hydrothermal coordination activity. This is the
approach used in this paper.

B. Unit Commitment Problem (UCP)

Once the hydroelectric generation for each hour is de-
termined, thermal units must meet the load not covered by
hydroelectric generation. The UCP deals with the decision
on which of the thermal units will be running or not during
each hour of the scheduling period [1], [3]. The committed
units must be able to meet the system load at minimum op-
erating cost, subject to a variety of constraints. The UCP is a
NP—complete optimization problem.

C. Economic Load Dispatch Problem (ELDP)

Once the running units for an hour have been determined by
the solution of the UCP, it is necessary to distribute the load de-
mand solving the ELDP. The ELDP consists of finding the op-

timal allocation of power demand among the running thermal
units, satisfying the power balance equations and the unit’s op-
eration constraints.

When the ELDP is solved in the context of the online oper-
ation of the system, transmission losses are usually included in
the optimization process, and sometimes even an optimal power
flow is executed. However, in the context of the selection of an
optimal schedule, there is evidence that losses do not have much
influence and they are not included.

D. Mathematical Formulation for the Short-Term HGSP

The main objective of the short-term HGSP is to determine
the optimal generation level for each hydro and thermal unit for
each hour over an entire period (a day or week), subject to a
large set of equality and inequality constraints.

The objective function of the short-term HGSP is represented
by (1). The objective function is set as to minimize the total
operation costs plus a
penalty factor (feasibility measure). (Please see the equation at
the bottom of the page.) Where

total system operation cost;
fuel costs for hour obtained from the ELDP;
number of hours for the time horizon;
number of thermal units;
number of hydraulic reservoirs;
status of thermal unit during the hour (1
for up and 0 for down);
power output for the thermal unitduring the
hour ;
power output for the reservoir during the
hour ;
fuel cost for the thermal unitduring the hour

with a power output (using a quadratic
cost function);

and start-up and shut-down costs for the thermal
unit during the entire scheduling horizon;
volume for reservoir during the hour ;
volume for reservoir at the end of the
horizon;
future cost of thermal units as a function of
the volume of reservoir at the end of the
scheduling horizon;

Penalty penalty factor.
Immediate costs are calculated as the sum of the energy pro-

duction costs and the start-up and shutdown costs, during the
present time horizon (from 1 to). The energy production cost

(1)
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, for a given hour, corresponds to the solution of the ELDP
for that hour, considering only the dispatched units.

On the other hand, the future cost for each reservoir is calcu-
lated using the respective FCF, as a function of the volume at
the end of the time horizon.

The penalty factor is directly proportional to the level of vio-
lation of constraints. In this way, it works as a feasibility mea-
sure.

From (1), it can be appreciated that the objective function
is not explicit, because the value of is obtained through the
solution of the ELDP, instead of a direct function evaluation.

The short-term HGSP presents a large set of units and system
constraints, which are taken into account in this paper, as fol-
lows:

1) Demand satisfaction for each hour:

(2)

where and are the total load demand
forecasted for the hour, total power output of hydraulic
units without water storage capacity during the hourand
the total losses estimated for the system during hour,
respectively.

In order to accomplish this rule, the model incorporates
a fictitious unit, whose cost function corresponds to the
failure cost for the system.

2) Technical operation limits of each unit

(3)

(4)

where and are the minimum and max-
imum power output of the thermal unit and

are the minimum and maximum power output
of the hydro unit and are the up and
down-time at hour for the thermal unit is
the minimum up time for thermal unitand
is the minimum down time for thermal unit.

3) Hydraulic dynamic of each reservoirfor each hour

(5)

where is the forecasted inflow; is the
discharge for a power output is the filtration;

is the evaporation; and is the spillage.
Each hydrothermal power system has its own particular

hydraulic restrictions, depending mainly on geographical
and hydrological conditions. Sometimes, water discharge
from one reservoir can affect availability in another reser-
voir, the so-called hydraulically coupled units.

Fig. 3 Proposed model.

4) Limit storage capacity for each reservoir

(6)

where and are the minimum and max-
imum feasible volumes for reservoir.

5) Spinning reserve requirements

(7)

where corresponds to the percentage of the load demand
to be used as reserve ( in this case).

III. PROPOSEDMODEL

A scheme of the proposed model is given in Fig. 3. As input
information, the proposed model uses the FCF obtained from
a long/mid-term model, detailed information on the hourly
load demand, the reservoir inflows and water losses, models of
the hydro and thermal generating units and initial conditions,
among others.

The proposed model uses this input information, handling si-
multaneously the subproblems of short-term hydrothermal co-
ordination, unit commitment, and economic load dispatch. Con-
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Fig. 4. Candidate solution representation (matrixG ).

TABLE I
BINARY CODIFICATION EXAMPLE USING 3 b

sidering an analysis horizon period of a week, the proposed
model obtains hourly generation schedules for each of the hydro
and thermal units.

IV. I MPLEMENTATION OF THE MODEL USING GA

The GA is a search technique inspired on genetics and evolu-
tion theory. They are described in [4], [45]–[48]. The implemen-
tation of the proposed model using a GA includes the following
stages.

A. Representation of Candidate Solutions

Each candidate solution is represented by a binary matrix,
(Fig. 4), by means of an adequate codification of the decision
variables. Each matrix representing a candidate solution must
contain all of the information necessary to be distinguished from
another one, and necessary to evaluate its fitness. The decision
variables are

1) Power output of each hydroelectric unit for each hour:
it is a continuous variable, which is discretized using a
3-bit code. So, there are eight possible discrete power
generation levels for each unit. The generation levels for
each 3-bit combination are assigned arbitrarily, as seen in
Table I. Then, each candidate solution contains a set
of binary submatrices with size (3, ) for each hydro
unit .

2) Status of each thermoelectric unit for each hour: 1 if the
unit is running, 0 if the unit is down. Then, each candidate
solution contains also a set of binary vectors with
length for each thermoelectric unit.

B. Initialization

An initial population of candidate solutions is created
randomly, and “seeded” with some good solutions obtained by

Fig. 5. Future cost calculation process for the hydraulic unitj.

means of heuristic rules based on the expert knowledge of the
system and using a priority list.

C. Fitness Evaluation

To compare different solutions, a fitness (or cost) evaluation
of each candidate solution must be done. It is achieved by means
of the decoding of the strings and the evaluation of the objec-
tive function (1) for each candidate solution. In order to achieve
the fitness evaluation, the following steps are executed for each
candidate solution.

1) For each hydro sub-matrix , (from 1 to ),
columns are decoded and final volume for each reservoir
is calculated. Then, weekly FCFs for hydro generation
have been used to obtain the opportunity cost due to the
use of hydro energy during the week (Fig. 5).

2) Generation of hydro units is discounted from total load
demand for each hour. Thermal demand (total minus
hydro) must be satisfied by running thermal units at
least cost. Then, for the running thermal units for each
hour (obtained from vectors ), an economic load
dispatch is achieved. The ELDP is solved using Lagrange
multipliers [1]. Production costs for each thermal unit
over the week are calculated.

3) Analyzing each vector , start-up and shutdown costs
are calculated using (8). As in [23], [25], and [34],
is equal to 0 for each thermal unit, and is equal
either to the cold start cost or to the hot start
cost , depending of the time that the unit has
been down

(8)

4) Specialized subroutines determinates if each constraint is
violated, and penalty factors are calculated.

D. Offspring Creation

Creation of new individuals is a fitness-dependant activity,
due to solutions with best fitness have more probabilities to be
selected as parents. The offspring creation process used in this
paper (Fig. 6) involves three groups of genetic operators.

1) Crossover Operators:The crossover operators select
randomly (but better solutions have more chances to be se-
lected) two parent solutions and then combine their respective
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Fig. 6. Offspring creation process.

strings based in some rules, generating new population mem-
bers. To achieve the parent selection, tournament selection has
been used.

Three different kinds of crossover operators were used (one at
a time), performed with probabilities , and , respec-
tively, (with ).

Window Crossover:For two selected parents, it selects
randomly a “window” formed by two rows and two columns,
and interchanges the bits inside the window between the par-
ents. The better solution must transfer more information (bits)
to the descendant [34].

2 Points Crossover:It is a particular case of the window
crossover. It selects randomly two columns, and the parents in-
terchange the bits between the columns.

Daily Crossover: this specialized operator takes advan-
tage that hourly demand has a similar behavior for different
weekdays. When the scheduling is being achieved for a week,
this operator interchanges 24-h blocks between parents to create
an offspring. It is a particular case of the two points crossover.

2) Mutation Operators:They are applied to avoid prema-
ture convergence of the algorithm, and are achieved over the
created descendants. Two mutation operators has been used in
this paper, performed with probabilities and , respec-
tively.

Standard Mutation: it randomly changes a bit of the ma-
trix.

Swap Mutation: this operator selects arbitrary an hour,
and search for the most expensive unitthat is ON and the most
cheaper unit that is OFF. Then, with probability 0.7, unit
is turned OFF while unit is turned ON [34].

3) Repair Operators:The offspring creation process often
produces unfeasible solutions due to violations of restrictions
described in (4) and (6). To avoid the creation of too many un-
feasible solutions, two repair operators have been included:

Repairing of Minimum Up/Downtime Constraints:This
operator goes across each one of the vectorsevaluating the
consecutive time that a thermal unit has been up or down. If
a minimum up or down time constraint is violated for a given
hour, the state of the unit at the hour is changed. An analysis of
this operator and its benefits can be seen in [34].

Repairing of StorageCapacity Constraints:This operator
tracks each submatrix , decodes it, and recursively calculates
the water volume for each hour using (5). If at a given hour the
constraint is violated, the operator randomly changes a bit of

for that hour until the violation is fixed.
If more feasible solutions are created on each generation,

the process of replacement of the population members becomes
more competitive, and the exploration of more zones of the

search space is allowed. To investigate the effect of the repair
operators, a sensibility analysis was performed in a small test
system with four units (not shown in this paper). It could be
seen that the inclusion of repair operators implies a faster con-
vergence and solutions closer to the optimal.

E. Replacement of the Population Members

In order to create a new and improved population of solutions,
a parents versus descendants competition is achieved, where
best solutions survive and bad solutions disappear. The replace-
ment procedure used is the selection, used successfully
in [34]. It can be described as:

Step 1) For each solution G of the present population, se-
lect randomly (using an uniform distribution) an off-
spring .

Step 2) If , then add to the new
population. If , then add .

Step 3) Remove and from the selectable offspring and
repeat the process for the next solution.

This procedure is described in more detail in [48].

F. Convergence Criterion

If a fixed number of generations is reached, the algorithm
stops, else it goes back to stage. The maximum number of
generations depends on the size of the system (number of units).

V. CASE RESULTS

The algorithm was programmed using MATLAB 5.3, and the
simulations were performed using a 1-GHz Athlon processor.
For tuning the parameters of the GA, it was previously tested
using a purely thermal test system. After, the model was tested
for a hydrothermal system.

A. Test Results for Purely Thermal Systems

The generation scheduling for a purely thermal system (or
unit commitment problem) is a particular case of the short-term
HGSP. The simulations were performed over a 24-h demand
schedule for 10, 20, and 40 thermal units systems, which are
described in [25]. Probabilities for the GA were set to

per bit and .
Results were compared with test results reported in [23], [25],

and [34], as seen in Table II, where the cost for the better, the av-
erage, and the worst solution over ten runs are shown. It can be
seen that the results from the simulations are competitive with
previously reported results. The convergence process is shown
in Fig. 7, with the average, over ten runs, of the minimum pop-
ulation cost, normalized by the minimum cost known for the
system.

B. Test Results for a Hydrothermal System

The hydrothermal test system is a reduced version of the
Chilean Central Interconnected System (see Appendix). It con-
sists of six water reservoirs (11 hydro units, any of them hy-
draulically coupled) and ten thermal units.

Probabilities for the GA were set to
per bit and .
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TABLE II
TEST RESULTS FORPURELY THERMAL SYSTEMS

Fig. 7. Convergence process for a purely thermal system.

The simulation converged (Fig. 8) to a population of feasible
solutions. From the analysis of the matrix for the best so-
lution, it could be observed that the two cheaper thermal units
were ON for the entire scheduling period, while the most expen-
sive were only turned on to satisfy demand peaks. Also, running
thermal units were operating near their respective maximum ef-
ficiencies.

As seen in Fig. 9, total thermal generation is flattened by the
effect of the hydro generation. In this way, hydro generation
displaces the most expensive thermal generation. Besides, it can
be observed the similar behavior of generation for different days
of the week, mainly due to the effect of the “daily crossover.”

Fig. 8. Convergence process for hydrothermal system.

Fig. 9. Total hydro and thermal hourly generation scheduling for a week.

VI. CONCLUSION

This paper proposes and develops a new model for dealing
with the short-term HGSP, incorporating, as a whole, three prob-
lems traditionally analyzed separately: short-term HCP, UCP,
and ELDP.

Hydrothermal systems are coupled in time. In order to un-
couple the long/mid-term models from the short-term model,
FCFs have been used. In this way, FCFs work as the link be-
tween the short and the mid/long-term models.

The definition of the decision variables, the representation of
candidate solutions, and the fitness evaluation are the basis for
implementing a GA. They act like the connection between the
electric/economic model and the GA. Once these aspects are
solved, the solution through GAs is fundamentally a program-
ming problem.

Promising results obtained from the computational simula-
tion have been presented. The proposed GA, using new spe-
cialized operators, have demonstrated excellent performance in
dealing with this kind of problem, obtaining near-optimal solu-
tions in reasonable times and without sacrificing the realism of
the electric and economic models.
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Fig. 10. Hydraulic configuration of hydro units in Chilean system.

TABLE III
INPUT/OUTPUT CHARACTERISTICS FORHYDRO UNITS

TABLE IV
RESERVOIRSCHARACTERISTICS

APPENDIX

HYDROTHERMAL TEST SYSTEM DESCRIPTION

The hydrothermal test system is a reduced version of the
Chilean Central Interconnected System, where a real model of

TABLE V
FUTURE COST FUNCTION FORRESERVOIR1

TABLE VI
THERMAL UNITS CHARACTERISTICS

TABLE VII
HOURLY DEMAND FOR A WEEKDAY

the six most important hydraulic reservoirs (and their associated
hydraulic systems) and a reduced set of representative thermal
units were incorporated.

The hydraulic configuration of the hydro units in the test
system is shown in Fig. 10. It can be seen that three of the
hydro units are independent, but the rest are hydraulically cou-
pled. Except for a 2-h time lag between units 7 and 8, no time
lags were considered. Input/output characteristics (water dis-
charge/power) for hydro units are given in Tables III and IV.
Also, curves for modeling each of the six water reservoirs can
be obtained from Table IV.
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The FCF for reservoir 1 is indicated in Table V. The FCF for
the others reservoirs can be calculated using the respective
values given in Table IV.

Parameters for the quadratic cost functions for each thermal
unit (with ), along with their technical
limits, are summarized in Table VI.

Hourly demand for a weekday is given at Table VII. For Sat-
urday and Sunday, 80 and 70% of a weekday demand have been
used, respectively.
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