
Short-Term  Load  Forecasting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper discusses the state of  the art in short-term load fore- 

casting  (STLF), that is, the prediction of the system load over an 
interval ranging from one hour to one week. The paper reviews the 
important role of STLF in  the  on-line scheduling and security func- 
tions of an energy management system (EMS). It then discusses the 
nature of  the load and the different factors influencing its behav- 
ior. A detailed classification of the types of load modeling and 
forecasting techniques is presented. Whenever appropriate, the 
classification is accompanied by recommendations and by  refer- 
ences to the literature which support or expand the discussion. 
The paper also  presents a lengthy discussion of practical aspects 
for the development and usage of STLF models and packages. The 
annotated bibliography offers a representative selection of  the 
principal publications in  the STLF area. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
INTRODUCTION 

The close tracking  of  the system load  by  the system gen- 
eration at all times is  a basic requirement in  the  operation 
of  power systems.  For economically  efficient  operation  and 
for  effective  control,  this  must  be  accomplished  over a 
broad  spectrum  of  time  intervals.  In  the range of seconds, 
when  load  variations are small and  random,  the  automatic 
generation  control (AGC) function ensures that  the  on-line 
generation  matches  the load. For the  time scale of  minutes, 
when larger load  variations are possible, the  economic  dis- 
patch function is used to ensure  that the  load  matching is 
economically  allocated  among  the  committed  generation 
sources.  For periodsof  hoursand days, still widervariations 
in  the  load occur. Meeting  the  load over this  time  frame 
entails the  start-up  or  shutdown of entire  generating  units 
ortheinterchangeof  powerwith  neighboring systems.This 
is  determined  by  a  number  of  generation  control  functions 
such as hydro scheduling, unit  commitment,  hydro-ther- 
mal coordination,  and  interchange  evaluation.  Over  the 
time range  of weeks, when  very wide swings in  the  load are 
present, functions such as fuel,  hydro,  and  maintenance 
scheduling are performed  to ensure  that the  load can be 
met  economically with  the  installed  resource mix. tn  addi- 
tion, to ensure the secure operation  of  the  power system 
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at  some future  time  requires  the  study  of its  behavior  under 
a variety of  postulated  contingency  conditions  by  the off- 
line  network analysis functions.  All these functions have in 
common  the  need  to  knowthe system load. In  the  real-time 
environment, state estimators are used to validate tele- 
metered  measurements from  which  the  estimated values 
of  the voltage magnitude  and  angle at  each bus are deter- 
mined. These  values  may be  used to compute  estimates for 
the  instantaneous load.  Procedures for  very-short-term  load 
prediction are embedded in  the AGC and  economic  dis- 
patch  functions  with lead times  of  the  order  of seconds and 
minutes, respectively. The load  information  for  the  hydro 
scheduling,  unit  commitment,  hydro-thermal  coordina- 
tion,  and  the  interchange  evaluation  functions is  obtained 
from  the  short-term  load  forecasting system. The fuel and 
hydro  allocation  and  maintenance  scheduling  functions 
require  load forecasts for  periods  longer  than  one  week. 
These load  predictions are obtained  from  operational  plan- 
ning  forecasting systems with lead  times as long as one  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
two years. 

Definition and Scope 

This paper is  concerned with  the area of  short-term  load 
forecasting (STLF) in  power system operations.  Throughout 
the paper, we use the  term  “short”  to  imply  prediction times 
oftheorderofhours.Thetimeboundariesarefromthenext 

hour,  or  possibly  half-hour, up  to 168 h. The  basic quantity 
of  interest in STLF is, typically,  the  hourly  integrated  total 
system load. In  addition  to  the  prediction  of  the  hourly val- 
ues of  the system  load, an STLF is  also concerned with  the 
forecasting of 

the  daily peak  system load 
the values of system load at certain  times  of  the day 
the  hourly  or  half-hourly values of system energy 
the  daily  and  weekly system energy. 

In  this paper, we include  under  the scope of STLF the pre- 
diction  of  the  hourly  or  half-hourly  load up  to 168 h as well 
as any and  all of these  quantities  (for  those systems where 
the basic quantity is the  half-hourly system load, the  fore- 
casting is done on  a  half-hourly basis). 
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Fig. 1. Major uses of the  short-term  load  forecasting  function  are to provide  dispatcher 
information and to be primary  inputs to the  scheduling  functions  and off-line security 
analysis. 

The Importance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof STLF 

STLF plays a key role  in  the  formulation  of economic,  reli- 
able, and secure operating strategies for  the  power system. 
The principal  objective  of  the STLF function is  to  provide 
the load  predictions  for 

the basic generation  scheduling  functions - assessing the security zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the  power system  at  any time 

timely dispatcher information. 
point 

The  primary  application  of  the STLF function is  to  drive  the 
scheduling  functions  that  determine  the most  economic 
commitment  of  generation sources consistent with reli- 
ability requirements,  operational  constraints  and  policies, 
and physical, environmental,  and  equipment  limitations. 
For purely  hydro systems, the  load forecasts  are required 
forthehydroschedulingfunctiontodeterminetheoptimal 

releases from  the reservoirs  and  generation levels in  the 
power houses.  For purely  thermal systems, the  load fore- 
casts  are needed  by the  unitcommitment  function  to deter- 
mine  the  minimal cost hourly strategies for  the start-up  and 
shutdown  of  units to supply  the forecast  load.  For mixed 
hydro  and  thermal systems, the  load forecasts  are required 
by  the  hydro-thermalcoordination  function to schedule the 
hourly  operation  of  the various resources so as to  minimize 
production costs.  The hydro  schedulehnit  commitment/ 
hydro-thermal coordination  function  requires system load 
forecasts for  the next day or  the next week to determine  the 
least  cost operating  plans  subject to  the various  constraints 
imposed on system operation.  A  closely associated  sched- 
uling task i s  the  scheduling  and  contracting  of interchange 
transactions bythe interchangeevaluation  function. For this 
function,  the  short-term  load forecasts  are  also  used to 
determine  the  economic levels of  interchange with other 
utilities. 

A second  application  of STLF i s  for  predictive assessment 
of  the  powersystem security. The system load forecast is  an 
essential  data requirement  of  the  off-line  network analysis 
function  forthe  detection  of  futureconditions  underwhich 
the  power system  may be  vulnerable.  This information per- 
mits  the dispatchers to prepare the necessary corrective 
actions(e.g., bringing  peaking  unitson line,  load  shedding, 
power purchases, switching operations) to operate the 
power systems  securely. 

The third  application of STLF is  to  provide system dis- 
patchers with  timely  information, i.e., the most  recent  load 
forecast, with  the latest weather prediction and  random 
behavior  taken into account.  The  dispatchers  need  this 
information  to operate the system economically and reli- 
ably. Fig. 1 summarizes the  major  applications  of STLF. 

STLF within the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEMS 

The manual  forecasting  previously performed  by  the sys- 
tem  dispatchers has been  replaced  by STLF software pack- 
ages in  the  modern energy management  system (EMS). The 
major  components  of an STLF system  are the STLF model, 
the data  sources, and the man-machine  interface ("1). 

The STLF model  implements  the system load representa- 
tion and the STLF algorithms. The  data  sources  are the his- 
torical  load  and  weather databases, the parameter  data- 
base, the  manually  entered data bythedispatchers,  and  the 
real-time data obtained  from  the AGC function of the E M S  

andthedatalinktoaweatherforecastingservice.Fig.2illus- 
trates the data inputs to  the STLF function. The manually 
entered data  may include weather updates, load forecast 
parameter  data, or  execution commands. In general, the 
STLF models use integrated  load  (MWh) data.  The tele- 
metered measurements in  the real-time database  are  used 
by  the AGC to determine  the "measured"  loads which are, 
typically,  integrated  (and  consequently  smoothed)  before 
they are  used by  the STLF model. The outputs of the STLF 
are provided to  the dispatcher  workstations  and  the  other 
E M S  functions  that  require  the  load forecasts  (see  Fig. 1). 

The timeliness and  accuracy of  short-term  load forecasts 
have significant effects on power system operations  and 
production costs.  System dispatchers  must  anticipate the 
system load  patterns so as to have sufficient  generation to 
satisfy the demand.  At the same time,  sufficient levels of 
spinning reserve and  standby reserve  are required  to  mit- 
igate the impacts of  the  uncertainty  inherent  in  the fore- 
casts and in  the availability of  generating  units. The  cost of 
reserves is high since the  units  that make up  the reserves 
are not  fully  loaded  and  consequently may be  operating at 
less than  their  maximum efficiencies. The spinning  and 
standby  reserve  capacities  are  set  at  levels dictated  by  the 
desired measure of security  and  reliability for  the  power 
system operation. Thus by  reducing  the forecast error, 
reserve  levels  may be  reduced  without  affecting  the reli- 
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Fig. 2. Input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata sources for  the  short-term  load  forecasting  model. 

ability  and  security  of  the system. In this way, the  operating 
costs  are reduced. 

In addition, forecast error in load  predictions  results in 
increased operating costs. Underprediction  of  load results 
in a  failure to provide  the necessary  reserves which, in turn, 
translates to higher costs due to  the use of  the expensive 
peaking  units. Overprediction  of load, on  the  other hand, 
involves the start-up of  too many units  resulting  in an 
unnecessary increasein reservesand henceoperatingcosts. 
In  the year 1985, for  the  predominantly  thermal  British 
power system, it was estimated that a I-percent increase in 
the  foretasting  error was  associated with an  increase in 
operating costs of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 million pounds  per year [IO]. 

Forecasting Models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Techniques 

The technical  literature displays a wide range of meth- 
odologies  and  models for STLF. Since no  two  utilities are 
identical,  there is limited  portability  of an STLF model  from 
one  utility to another. On  the other hand, the  wide spec- 
trum  of techniques-standard  algorithms  tailored to  the 
particularities  of  aspecific system or  new procedures  devel- 
oped  for STLF-appearing in the  literature has a much 
broadercapabilityto beportablefromoneutilitytoanother. 

This  paper  reviews a  representative  sample of STLF models 
and  techniques. 

There are allied  forecasting  functions such as area load 
and bus load  forecasting.  Both are concerned with  the  fur- 
ther disaggregation of  the system  load.  For utilities  with a 

..-.. REAL-TIME 

bd 

wide range of geographical zones or  structural  subunits 
with climatic  diversity,  usually  called areas, the area load 
forecasting function  provides  the forecast of  the  total area 
load.  These  area short-term forecasts are required  for  the 
regulation  of  flows on  tie lines  between  the areas, fot area 
generation  scheduling,  and for  bus  load forecasting  func- 
tions. The bus load  forecasting  provides  predictions  of  the 
loads  at  key  buses through  the  allocation  of  the system or 
area load forecast. The bus load forecasts  are required  for 
security analysis in both  on-line  and  off-line modes.  The 
area and  bus  load  forecasting functions are not  considered 
here because the focus of  the present paper is  purely  on 
the short-term system  load. One must  keep in mind,  how- 
ever, that  many of  the STLF methodologies discussed here 
are applicable  just as well  to bus or area  loads as to the sys- 
tem load. 

Outline zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Paper 

The objective of the paper is to provide a  general  over- 
view of the STLF area and to  offer a  representative  view of 
the state of the art. There  are  five  additional sections in this 
paper. In the next section, we discuss the  nature  of  the sys- 
tem load.  The focus is on  the  principal effects  that  must  be 
considered in an STLF model.  This is  followed  by a dis- 
cussion of  the various STLF models  and  forecasting pro- 
cedures in the  literature based on aclassification  according 
to  the nature  of  the model, data and  computational needs, 
and the forecasting  requirements.  The  next  section is  
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devoted to  a  discussion  of  the  practical  considerations  in 
the  implementation  and use of an STLF system in  a  control 
center  environment. The Conclusions  section  outlines 
some possible  future  directions  in  the STLF area. The ref- 
erences cited  throughout  the paper form  part  of  a  bibli- 
ography  annotated  by  a  number  of  key STLF features. This 
is not  a  comprehensive  bibliography  and we apologize  to 
any authors  whose  works are not  included  or have been 
misinterpreted. The bibliography does, nevertheless, offer 
a reasonable cross section  of  the  present state of  the  art  of 
STLF, including  a  number  of  recent  publications  which 
complement  the  present paper. 

THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEM LOAD 

The  system load is  the sum of  all the  individual demands 
at all the  nodesof  the  power system. In principle,  onecould 
determine  the system load  pattern if each individual  con- 
sumption  pattern  were  known.  However,  the  demand  or 
usage pattern  of an individual  load (device) or  customer is  
quiterandomand highlyunpredictable.Also,thereisavery 

broad  diversity  of  individual usage patterns in  atypical  util- 
ity. These factors make it impossible to  predict  the system 
demand levels by  extrapolating  the  estimated  individual 
usage patterns. Fortunately, however, the  totality  of  the 
individual loads results in a distinct  consumption  pattern 
which can be  statistically  predicted. 

The  system load  behavior is  influenced  by a number  of 
factors. We classify these factors into  four  major categories 

economic 
9 time 

weather 
random effects. 

To model  the system  load, one needs to understand  the 
impact of each  class of  factors  on  the  electricity  consump 
tion patterns. We, next, briefly discuss the effects of each 
class. 

Economic Factors 

The economic  environment  in  which  the  utility operates 
has a clear effect on  the  electric  demand  consumption  pat- 
terns. Factors,  such as the service area demographics, levels 
of  industrial activity, changes in  the  farming sector, the 
nature  and  level  of  penetration/saturation  of  the  appliance 
population,  developments in  the  regulatory  climate and, 
more generally, economic  trends have significant  impacts 
on  the system load  growthldecline  trend.  In  addition,  util- 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Typical weekly load patterns for a summer  peaking utility. 

ity-initiated programs, such as changes in rate design  and 
demand  management  programs, also influence  the  load. 
Typically, these  economic  factors oper.ate with  consider- 
ably longer  time constants  than  one  week. It i s  important 
to  account  for these  factors in  the  updating  of  forecasting 
models  from  one year to  the  next  or  possibly  from  one sea- 
son to  another. The economic factors are not,  however, 
explicitly  represented in  the short-term  load  forecasting 
models because of  the  longer  time scales  associated with 
them. 

Time  Factors 

Three principal  time factors-seasonal effects, weekly- 
dailycycle,  and legal and  religious holidays-play an impor- 
tant  role in  influencing  load  patterns. The  seasonal  changes 
determine  whether a utility is  summer or  winter  peaking. 
Certain changes in  the  load  pattern  occur  gradually  in 
response to seasonal variations  such as the  number  of day- 
light  hours  and  the changes in temperature. On the  other 
hand, there are  seasonal events which  bring  about  abrupt 
but  important  structural  modifications  in  the  electricity 
consumption  pattern. These  are the shifts to and from Day- 
light Savings  Time,  changes in  the rate structure  (time-of- 
day or seasonal demand), start of  the  school year, and sig- 
nificant  reductions of activities  during vacation periods 
(e.g., Christmas-New Year period). 

Theweekly-dailyperiodicityoftheloadisaconsequence 
of  the  work-rest  pattern  of  the service area population. 
There are well-defined  load  patterns  for  “typical” seasonal 
weeks.  Fig. 3 gives  examples of  typical  weekly  summer  and 
winter  load  patterns  for  a summer  peaking  utility. 

The existence  of  statutory  and  religious  holidays has the 
general  effect  of  significantly lowering  the  load values to 
levels well  below  “normal.”  Moreover,  on days preceding 
or  following holidays, modifications  in  the  electricity usage 
pattern are observed  due to the  tendency  of  creating  “long 
weekends.” 

Weather  Factors 

Meteorological  conditions are responsible  for  significant 
variations in  the  load  pattern. This is  true because most util- 
ities have large components  of weather-sensitive load, such 
as those  due to space heating, air conditioning, and agri- 
cultural  irrigation. 

In many systems, temperature is the most important 
weather  variable in terms  of  its effects on  the  load. For  any 
given day, the  deviation  of  the  temperature variable from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y;;:;[ ; ~ ~ : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
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a  normal  value may  cause  such significant load changes as 
to require  major  modifications in the  unit  commitment pat- 
tern.  Moreover, past temperatures also affect the  load pro- 
file. For  example, a  string  of  high-temperature days  may 
result in such  heat buildup  throughout  the system as to cre- 
ate a  new system  peak.  For a system with a nonuniform 
geography  and  climate, several temperature variables or 
several  areas  may need to be  considered to account forvari- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ationsinthesystemload.Humidityisafactorthatmayaffect 

the system load in a  manner  similar to temperature, par- 
ticularly in hot  and  humid areas. Thunderstorms also  have 
astrongeffectohtheloadduetothechangeintemperature 

thatthey induce. Other  factorsthat  impact on load  behavior 
are wind speed, precipitation,  and  cloud  coverllight  inten- 
sity. 

Random  Disturbances 

We  group  under  this classification  a  variety of  random 
events causing  variations in  the load  pattern  that  cannot  be 
explained in terms of  the  previously discussed  factors. A 
power system i s  continuously  subject to random  distur- 
bances reflecting  the fact  that the system load is  a  com- 
posite of a  large  number of diverse individual demands. In 
addition  toa large number of verysmall disturbances, there 
are large loads-steel  mills, synchrotrons, wind tunnels- 
whose  operation can  cause  large variations in electricity 
usage.  Since the  hours  of  operation  of these large  devices 
are usually unknown  to  utility dispatchers, they  represent 
large  unpredictable  disturbances.  There are  also certain 
events  such as widespread strikes, shutdown  of  industrial 
facilities,  and special television  programs  whose  occur- 
rence is known a  priori, but whose  effect on  the load is  
uncertain. 

CLASSIFICATION OF THE LITERATURE 

The classification of  the references that  follow is  done 
with  the objective  of  facilitating  the task of  the reader  faced 
with a  study zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor survey in the area of STLF.  As can be seen 
from  the  bibliographythe  number  of papers  available in  the 
literature i s  large.  However, few  fundamental  differences 
exist within this group.  Furthermore, because of  the  nature 
of  the problem, it is  difficult  to  judge  from  the available 
information  whether any single modeling  and forecasting 
technique stands out above the others. The  reason for  this 
is the  nature  of  the  power  demand in a  large utility. As 
described in  the  previous section, the system load is  a ran- 
dom nonstationary process composed of thousands of indi- 
vidual  components each of which behaves erratically with- 
out  following any known physical law. As a  result,  all 
macroscopic models are empirical in nature  and can only 
be objectively evaluated through extensive experimental 
evidence. It i s  our  view  that  the best test for a  load  fore- 
casting  scheme i s  its performance in theactual  control cen- 
ter  environment over a period of time  of at  least two years. 
Only  then can one evaluate the  ability of the  model  to per- 
form  well  throughout  the seasonal  variations, to track  cor- 
rectly parameter  variations, to handle  effectively  bad or 
anomalous data, and to interact  well with the  operator. 
Unfortunately, if we  exclude  the classical operator-based 
load  forecasting systems, only a  few  techniques have been 

implemented in a real operational  enviroment,  or even, for 
that matter, tested with real  data. 

The classification of  the  bibliography is, therefore, based 
on a  number  of  significant features  such as thetypeof load 
model, the data  needs of  the model, the  computational 
requirements  of  the  model  and  the forecasting  algorithm, 
and the availability of experimental results.  The potential 
user of a  load  forecasting scheme will have to weigh these 
various  features and use  some judgement based on  the 
needs and  types of resources  available. A selected number 
of  pertinent papers  are identified  under each category so 
that the reader  does not have to wade through  all available! 
publications.  Eachoneof the references in  the  bibliography 
contains key(s) identifying i ts  principal features. 

The  reader is also referred to some of  the recent survey 
papers in  the area of  short-term  load  forecasting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3],  [IO], 
[23],  [39], [ a ] ,  [53] for  further classification  and  interpre- 
tation  of  the state of  the field. 

The  classification of  the  literature in STLF that  follows is 
based on  the type  of  load  model used.  Some important 
aspects such as data  needs, computational  requirements, 
and  experimental  results  are discussed for each load  model 
type.  The classification  considers two basic  models: peak 
loadand loadshape  models.  The peak load  models are  basi- 
cally of a  single type. We have categorized the  load shape 
models into two basic  classes  each with it su btypes,  namely: 

1) Time  of day 

summation  of  explicit  time  functions models 
spectral  decomposition models. 

2) Dynamic 

ARMA models 
state-space models. 

We  next discuss  each model  type in detail. 

Peak Load  Models 

Here, only  the  daily  or  weekly peak load is modeled, usu- 
ally as a function  of  the weather.  Time does not play  a role 
in such models which are typically  of  the  form: 

peak load = base load + weatherdependent  component 

(1) 
or 

P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 + F(W) (2) 

where the base load 6 is  an  average  weather-insensitive load 
component to  which  the  weatherdependent  component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F( W) i s  added.The weather variables Wcan include  the  tem- 
perature at the peak load  time  or a combination  of pre- 
dicted  and  historical  temperatures.  Humidity,  light  inten- 
sity, wind speed, and precipitation have  also been 
considered in such  models.  The function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(. ) i s  empirically 
computed and it can be  linear or  nonlinear. Examples of 
peak load  models can be  found  in [6], [a], [63], [69], [70]. 

The  advantages of  a peak load  model are i ts  structural 
simplicity  and its relatively low data requirements to  ini- 
tialize  and to update. The parameters of  the  model are esti- 
mated through  linear or nonlinear regression. The disad- 
vantagesofsuchmodelsarethattheydonotdefinethetime 
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at which  the peak occurs, nor  do  they  provide any infor- 
mation  about  the shape of  the  load  curve.  Sincethe  models 
are essentially static, dynamic  phenomena  such as corre- 
lation across the  periods  cannot  be forecast. 

Load  Shape Models 

Such models  describe  the  load as a  discrete  time series 
(process) over the forecast interval.  The  load  sampling  time 
interval i s  typically  one  hour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor one-half hour,  while  the 
quantity measured is  generally  the  energy  consumed  over 
the  sampling  interval in  MWh.  Many  load  forecasting  tech- 
niques  describe  the  load shape since this also includes  the 
peak load. However, since the peak  load is  difficult  to  fore- 
cast with great  accuracy, combined  load shape and spe- 
cialized  peak  load  models may still be  desirable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6]. 

Basically, there exist two t y p e s  of  load shape models: time- 
of-day and  dynamic  models.  Combinations  of  these two 
basic types are  also possible. 

Time-of-Day Models: The time-of-day  model  defines  the 
load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(t) at  each discrete  sampling  time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt of  the forecast 
period  of  duration T by  a  time series 

{z(t),  t = 1, 2, * * * ,  T } .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 

In i ts  simplest form, the  time-ofday  model stores T load 
values  based on  previously  observed  load  behavior. Some 
utilities  today still use the  previous week's actual load  pat- 
tern as a  model  to  predict  the  present week's load. Alter- 
natively, a set of  curves is stored  for  typical weeks of  the 
year, and for  typical  weather  conditions, such as wet, dry, 
cloudy,  or  windy days, which are heuristically  combined 
with  the most  recent  weekly  load  pattern to develop  the 
forecast. Operator  judgment  determines  the  final forecast 
in such cases and  explicit  mathematical  formulas are inap- 
propriate to describe  the  modeling  mechanism. This  may 
be a  potential area of application  for an expert system which 
would  emulate  the  rules  followed  by  the  operator [2]. Not 
much  literatureon  this  heuristic  modeling  approach exists; 
however, some related  work based on  cluster analysis and 
pattern  recognition can be found  in (181,  [25],  [28],  [52]. 

A  more  common  time-of-day  model takes the  form 

N 

z(t) = ,C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; fi(t) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdt), t E r (4) 

where  the  load at time t, z(t), is  considered  to  be  the sum 
of  a  finite  number of explicit  time  functions f;(t), usually si- 
nusoids with  a  period  of 240r  168 h, depending  on  thefore- 
casting lead time. The coefficients ai are treated as slowly 
time-varying constants, while v(t)  represents  the  modeling 
error, assumed to be white  random noise. The model is 
assumed to be  valid  over a range  of time  interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr covering 
the  recent past, the  present,  and  a  future  time  period cov- 
ering  the  maximum lead time. 

Whenthef,(.)areaprioriselectedtobeexplicittimefunc- 

tions such as sinusoids, the parameters a; are estimated 
through  a  simple  linear regression or  exponential  smooth- 
ing analysis applied to  a set of past load  observations {z(t), 
t E rpast} where 7past is an interval  of  time  from  the  recent 
past [59]. Examples of  such  models can be found  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[IV, [a], 
[49],[51],  (571,  [62],  (641. The advantages of  these  models are 
that  they are structurally  quite simple, and  that  the  model 
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parameters can be  updated  very  simply  through  linear 
regression or  linear  exponential  smoothing. The nature  of 
these schemes is such that recursive algorithms  requiring 
a relatively  low  computational  effort can be  devised to 
update  the parameters, as well as the forecast, as new  load 
data are  measured. On  the negative side, time-of-day 
models do  not  accurately  represent  the  stochastically  cor- 
related  nature  of  the  load process, or i ts  relation  to weather 
variables. As a result,  when  weather  patterns are changing 
rapidly,  the  coefficients ai are not  appropriate, except for 
a short  time  interval into  the  future. This  will, in turn, cause 
accuracy problems  for  longer lead time  predictions. 

There exists a second class of  time-of-day  models,  that is 
those based on spectral  decomposition. The model has 
basically the  form  of (4), however,  here the  time  functions 
c ( * )  represent  the  eigenfunctions  corresponding to  the 
autocorrelation  function  of  the  load  time series (after 
removal of  trends and  periodicities).  This  method is  based 
on  the Karhunen-L&ve spectral decomposition  expansion 
[43],[71].Ithastheadvantagethatthetimefunctionschosen 
to  represent  the  load  time series  are optimal  in  the sense 
that  they can more  closely  approximate i ts  autocorrelation 
function,  that is, its  second-order probabilistic  behavior. As 
such, the  summation of time  functions  in  this  method can 
represent  stationary  colored  random loads with greater 
precision  than with  arbitrarily selected time  functions. 
Although  the  coefficients a; are estimated  using  linear 
regression techniques,  the  identification  of  the  eigenfunc- 
tions f ; ( * )  requires an approximation  of  the process  auto- 
correlation  matrix,  and  the  solution  of  the  corresponding 
eigenvalue  problem.  This identification step is not as well 
suited fora real-time recursive algorithm  becauseof  its  more 
intensive  computational nature; however,  if  the  process is 
almost stationary, the  identification  part is  required at only 
infrequent  intervals. This technique is  also susceptible to 
errors  under  conditions of sudden  and large weather vari- 
ations, since these effects are not  explicitly  modeled. 
Although  thespectral  decomposition  model i s  theoretically 
sounder  than other  time-of-day  models, i ts  practical advan- 
tage  does not appear to have been  clearly  demonstrated. 
Asaresult,onlyafewutilitiesseemtorelyonsuchamethod 

Dynamic Models: Dynamic  load  models  recognize  the 
fact that  the  load is  not  only a function  of  the  time  of day, 
but  alsoof its most recent behavior, as well  asthat  of  weather 
and  random  inputs.  Dynamic  modelsareoftwo basictypes, 
autoregressive moving average or ARMA models  and state- 
space models. 

ARMA models: The ARMA-type model takes the  gen- 
eral form 

1121,  [421, [MI. 

z(t) = y ~ t )  + y(t) (5) 

where yJt) is acomponent  which  depends  primarilyon  the 
time of day and on  the  normal  weather  pattern  for  the  par- 
ticular day.  This component can be  represented  by a peri- 
odic  time  function  of  the  type  given  by (4). The term y(t)  is  
an additive  load  residual  term  describing  influences  due to 
weather  pattern  deviations from  normal  and  random  cor- 
relation effects. The additive  nature  of  the  residual  load is 
justified by the fact that  such effects are usually small com- 
pared to  the  time-ofday  component.  Nonlinear  models 
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describing  the  interaction  of  the  periodic and  residual  com- 
ponents also  exist, but are  less common [ l l ] .  The residual 
term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t )  can be  modeled  by an  ARMA  process of  the  form 

n 

y(t) = C aiy(t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi )  
i = l  

H 

-t ch W ( t  - h) 
h = l  

where uk(t), k = 1, 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 a ,  nu represent the n, weather- 
dependent  inputs.  The  impact  of  the  weatherdependent 
variables i s  considered to be  significant. These inputs are 
functionsof  thedeviationsfrom  the  normal  levelsforagiven 
hour  of  the day of  quantities such as temperature, humid- 
ity, light intensity,  and  precipitation. The inputs u k ( t )  may 
also represent  deviations of weather  effects  measured in 
different areas of  the system.  The  process w(t) is azero-mean 
white  random process representing  the  uncertain effects 
and random  load  behavior. The  parameters ai, b,,, and ch, 
as well as the  model  order parameters n,  nu, mk, and Hare 
assumed to be  constant but  unknown parameters to be 
identified  by  fitting  the simulated model data to observed 
load  and  weather data. 

Theliteraturepresentsanumberofvariationsofthebasic 

model described  by (5) and (6).  The  various  names encoun- 
tered are  Box-Jenkins, time series,  transfer function,  sto- 
chastic, ARMA, and ARIMA.  Since there exists only a  slight 
difference  among these  terms, we  prefer  here to take  a 
unifying approach  and  concentrate on  the  common char- 
acteristics of  these  models.  Accordingly,  we shall refer to 
all these  types of  models as ARMA  models.  The  reader is 
referred to  the  textbook [66] for a  detailed  description of 
ARMA models. 

Some authors [13], [14], [MI, [56]  have chosen to explicitly 
represent the  periodic  load  component as in (5), while  oth- 
ers  [a], [W,  [191-[211, [27l, [301, 137, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 3 8 3 ,  [47l, 1601 have pre- 
filtered  the load data so as to eliminate  the  periodic com- 
ponent as an explicit  time series.  The pre-filtering is  basi- 
cally done by defining a  new  load process of  the  form 

z’(t) = z(t) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(t- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

where tp  is the  period  of  the time-of-day component (usu- 
ally24or 168 h).The  resulting  processz’(t)  is,therefore,  free 
of  periodic terms, and satisfies  an  ARMA equation  similar 
to that  of (6).  This now has the advantage that  more  standard 
techniques can be  applied to  the  identification  of  the 
parameters of the  resulting ARMA model [37 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[60], [66]. The 
disadvantage of pre-filtering lies in  the fact  that such a 
scheme i s  basically equivalent to  differentiating a process 
which almost  certainly  contains  measurement  and  mod- 
eling errors. The result is a  potential  amplification  of mea- 
surement  errors  leading to corresponding  modeling inac- 
curacies. Explicit modeling  of  the time-of-day  component, 
on the  other hand,  does not require  pre-filtering and is, 
therefore, not subject to this  type  of  pre-filtering errors. 
However, for such  models, a  nonlinear parameter esti- 
mation scheme must  be used to  identify  the  model param- 
eters.  This  results in a  slight increase in computational  effort 
in  the parameter estimation step.  The  existence of constant 
biases or time-varying  trends in the  load  model can  also be 

handled  by  appropriate  pre-filtering [19], or  by i ts  explicit 
representation in  the time-of-day component  through a 
polynomial in time. 

Only some  ARMA models  include weather as an input 
(refer to those references in the  Bibliography  with  the keys 
ARMA and W). Those that do  not  include weather,  auto- 
matically  update some parameters to take into account the 
effect of meteorological  variations on  the load. This 
approach is, however, not satisfactory during  rapidly 
changing  climatic  conditions  under  which  the assumption 
that  the  load process is stationary is  no  longer satisfied. In 
many  recent STLF models, weather is explicitly  accounted 
for. Some of  the available  ARMA models  describe mete- 
orological effects by  additional  explicit  inputs as in (6) [a], 
[14],  [19],  [21],  [56], while  others  rely  on a more  heuristic 
approach  where the  load process is  “corrected”  for  tem- 
perature  influences  before  applying an  ARMA model to  the 
corrected  load [16]. The most important weather input is 
based on  the temperature  deviations,  and i s  usually 
expressed as a  nonlinear  function  of  the differences 
between the actual and the  “normal” temperatures. Such 
functions  take  into  account  the varying effects of  temper- 
ature on load  during  the  different seasons,  deadbands, and 
other  nonlinearities. The models  relating actual weather 
effects and the  inputs  to  the ARMA model are, primarily, 
empiricallyderived  andvary  from system to system (seethe 
referencescited in this paragraph). Certain  nonlinear effects 
are, however, well  known. Thus in  the summer  most sys- 
tems experience  higher loads due to increasing  tempera- 
ture, with  the inverse phenomenon  taking place in  the  win- 
ter. It is also  reasonable to hypothesize  that it is not  the 
absolute value of  the weather  variable which affects the 
load, but i ts  deviation  from some “normal”  level  for  that 
particular hour of the day, and for  that specific day of the 
year.  The time-of-day or  periodic  component  will take care 
of  the  long-term seasonal effect  of  weather on  the  power 
consumption. 

The identification  of  the parameters of an  ARMA model 
i s  generally more  computationally  intensive  than  those of 
the  time-ofday models; however,  this  extra effort is needed 
in order to  obtain a more  robust  model  that  incorporates 
dynamic, weather, and  random effects. In  the  long run, less 
parameter tuning is required  and better  forecasting  per- 
formance i s  obtained. In any  case,  because of  the  low fre- 
quency  of parameter identification (once  a day), the com- 
putational  burden on  the EM.S computers i s  not a  major 
factor for  the  techniques  being discussed  here.  The  param- 
eter identification  for a  general ARMA model can be  done 
by  a  recursive scheme involving  the  solution of the Yule- 
Walker equations [a],  [60], or  using a  maximum-likelihood 
approach [MI, which is  basically a  nonlinear regression 
algorithm. The tunable  coefficients of some forms  of ARMA 
models are identifiable  through linear regression tech- 
niques. These include  those models which are AR (auto- 
regressive) in y(t)  and MA (moving average) in  the U k ( t ) ,  but 
are not  MA  in  the random  input w(t). Models  which  explic- 
itly describe the  time-ofday  component generally require 
the  application  of  nonlinear regression methods to simul- 
taneously identify  the dynamic model and the  periodic 
component parameters [56]. One can avoid  having to use 
nonlinear regression byleavingouttheARpartofthe model 
[14]. However,  then, one loses the  capability  of  modeling 
the  short-term  random  correlation  of  the load.  The  readers 
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are  also referred to a number of  excellent  references which 
describe the above mentioned parameter identification 
techniques in great detail zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[22], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[50], [59], [65]. 

In general, the  updatingof  model parameters i s  not  avery 
computationally  demanding task,  even in cases which 
require an iterative  solution  of  a  nonlinear  estimation  prob- 
lem. In models where parameters may be  estimated  using 
linear regression, the parameter updating may be  per- 
formed recursively  on-line as new  load  and  weather data 
are acquired. Such frequent parameter updating is  unnec- 
essary,  unless the  model is very  simple,  such as a pure  time- 
of-day  model, which  requires  continuous  updating. For 
more  elaborate model types,  such as ARMA, the  model 
structure  and  its parameters remain  unchanged  over  a 
period  of a few days.  The updating  of these parameters on 
an hourly basis  may, in fact, be  undesirable,  particularly 
during  periods  of  anomalous  load  behavior. In such 
instances, the  model parameters  should definitely  not  be 
updated. For  ARMA  models, daily  parameter updating i s  
probably  sufficient. In  this case, the data from  the  previous 
24  h, after "cleaning" their anomalous  behavior, are added 
tothedatasetandtheoldest24hofdataareremoved.Daily 
parameter updating is not a  critical task and can be  done 
at a time  when  the  computer is  least  busy. 

State-space  models: It i s  well  known  that an  ARMA 
model can be  converted into a state-space model and  vice 
versa  [22], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that  conceptually  there  exist no fundamental 
differences  between the two types of  models.  However,  a 
number  of state-space load  models have been  proposed in 
the  literature  which add  a  degree of  structure  not always 
present in  the  typical ARMA model. In these models, the 
load at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, z(t), is generally  given  by 

z(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) 

where 

x ( t  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) = A x( t )  + B u(t) + w(t). (9) 

Here the state  vector at time t is denoted  by x ( t ) ,  the vector 
of weather variable-based input is  u(t), while  the vector  of 
random  white noise inputs i s  w(t). The matrices A, 6, and 
the vector c are  assumed constant.  There exist a  number 
of variations of  this basic  state-space model. In some cases, 
the states x i ( t ) ,  i = 1,2 ,  . . . , N,, may represent the  periodic 
load component  for a  certain day of  the week  at a  given 
hour,or  a parameter of  this  model,  or  acombination  of  load- 
and  weather-dependent  inputs. One  difference  between 
the state-space and ARMA models lies in  the fact that  the 
available techniques  for state-space models assume that 
the parameters defining  the  periodic  component  of load 
are random processes. In essence, this allows  one to make 
use of some a priori  information  about  their values  (a  rea- 
sonable assumption in practice) which may help  in  the 
parameter estimation step  via  Bayesian techniques. This a 
priori parameter information  could, however, also be used 
in ARMA  models. In some of the state-space models pro- 
posed, the matrices A and B are  very  sparse and known [4], 
[26],  [55],  [67], while  other state-space models  require  the 
identification  of  the  full A matrix [30], [61]. The  advantages 
of state-space models  over ARMA models are not very  clear 
at this stage and more  experimental  comparisons  are 
needed. One possible  areawhere state-space methods may 
prove advantageous i s  in  the  development of  bus  load  fore- 

casting, where  the bus loads exhibit a high degree of  cor- 
relation. 

Summary o f  the State o f  the Art in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTLF 

Of  the two main STLF model types-peak load  and  load 
shape models-the  latter type i s  the  more  common. Load 
shape models have  greater flexibility  and are in general 
more accurate.  The pure time-of-day  models have  been 
almost totally  replaced  by  dynamic  models, since time-of- 
day models do  not have the  capability  of accurately rep- 
resenting  time-correlated  random effects and  weather 
influences. The two major  dynamic model subtypes,  ARMA 
and  state-space,  use random  and  weather  inputs.  Judging 
from  the  published literature, it appears that ARMA models 
are more  common  than state-space  models, possibly 
because the  former  require fewer  explanatory variables and 
parameters.  The computational  effort associated with avail- 
able STLF techniques varies, but  in  no case is it a  major  con- 
sideration, as both  the  off-line and on-line  computational 
requirements are modest. The major  missing component 
in  the STLF literature is reports  on experience with actual 
data, particularly in an on-line  environment. Also lacking 
in  the  literature is a  comparative  study  of the  performance 
of various STLF approaches applied to a standard set of 
benchmark systems. 

PRACTICAL CONSIDERATIONS 

In this section the reader is guided  through  the  main steps 
required  for  the  development  of an STLF model and pro- 
cedure, considering a number of  practical  constraints and 
requirements.  Whenever  possible, references  are cited 
which  provide  additional  information and  experience. Spe- 
cifically, we  discuss practical aspects in  model  formulation 
and  selection, forecasting  algorithms,  performance eval- 
uation, and implementation. 

A general load  modeling  and forecasting procedure is  
applicable to  the STLF problem  with  the  following steps: 

i) Model  formulation  or selection. 
ii) ldentification  or updating of  the  model parameters. 
iii) Testing the  model performance  and updating  the 

iv) If  the  performance i s  not satisfactory return  to step 
forecast. 

i) or  to step ii); else, return  to step iii). 

The model  performance  should  be  continuously  moni- 
tored;  however, oncea reasonable model  stucture has been 
established, a  deterioration  of  the  model  performance 
should  be  corrected  first  by  fine  tuning  the  model param- 
eters through step ii). Changes in  the model  stucture  need 
to be  made  rather infrequently  once  the  proper  model 
choice has been made.  The model state and the load  fore- 
cast  are updated  on an hourly  or  half-hourly basis. 

The computer  requirements associated with  the short- 
term  load  forecasting function are rather  modest. The  frac- 
tion of time spent on  the forecasting  part of  the E M S  appli- 
cation  software is very  small,  since the forecasting  proce- 
dure is not  computationally intensive  and  a  relatively small 
number  of executions are performed.  Adequate  disk  stor- 
age must  be provided  for  the  historical load and weather 
data  used for  initialization  of  the  forecasting  model and 
subsequently for  updating. 

Dispatchers like  to use forecasting packages that are  easy 
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to use and  that  work  well  paticularly at critical times. Oper- 
ators are much  more  concerned  with  forecasting  results at 
peak hours  than  those at off-peak  hours  or  during  holidays. 
Themodel  mustworkaccuratelyand  reliablyatsuchcritical 
times. 

Model  Formulation  and Selection 

The first  consideration in selecting an  STLF model is the 
objectives  of  the forecast, i.e., the  nature  of  the forecast 
quantities,  the  desired  lead times, and  the  intended uses 
of  the forecast. More than  one  model may be required  to 
forecast the  daily peak  system load, the system load values 
at specific times  of  the day, the  hourly  (or  half-hourly) sys- 
tem  load values, and/or  the  weekly system energy. In cer- 
tain cases, more  than  one  model can be  used to  predict  the 
same quantities with  the  predictions  being statistically 
combined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[61]. The use of  a  multiple  model  forecasting 
framework  provides an effective system of checks  and 
results in increased  forecasting  reliability. 

For a  particular  model  under  consideration,  the  common 
sense test is  first  applied. The basic questions to be 
answered are as follows: 

Does the  model make sense? 
Are  all  the factors affecting  the  load  of  the  particular 
system explicitly  or  implicitly  accounted  for? 
Is the  model  physically  meaningful? 

These questions  should  receive  affirmative answers before 
proceeding  further. 

An important  consideration in  the  formulatien  andlor 
selection  of  appropriate  forecasting  models is model par- 
simony. The basic  issues that  come into play are: 

the  number  of  independent  or  explanatory variables 
ease of  forecasting  and  the associated uncertainty  of 

the  number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof tunable parameters. 
each explanatory  variable 

In general, models with fewer  explanatory variables and 
tunable  parameters are preferable. Such models are  easier 
to initialize,  update,  modify, .and operate. 

A further  consideration in model  formulationlselection 
is  that  of data requirements. The data  requirements ass@ 
ciated with various models are strongly  tied to the  nature 
of  the  model.  In general, the  models  requiring a large  initial 
data set  are: 

nonlinear  models 
stochastic input  models  involving  moving average 

models with weather  descriptors 
models with many parameters. 

terms 

In contrast, models  whose  coefficients appear in  a  linear 
relationship, such as time-of-day  models,  usually  require  a 
shorter period  of data  for initialization  and  update. 

A  dilemma exists in  the data  requirements. On  the  one 
band, it is  desirable to develop as permanent  a  relationship 
as possible  between  the  dependent  and  independent  or 
explanatory variables.  This necessarily requires a set of his- 
torical data covering  a  long  period. On  the  other hand, there 
i s  the need  for the  model to be flexible  enough  to  reflect 
any  changes in  the basic underlying process.  This imposes 

the  requirement  for  a  short data set covering  only  the  most 
recent period, so that any previous processes that may no 
longer  be  operative are excluded. This consideration may 
be especially relevant  for  the  incorporation  into  a  model  of 
the effects of conservation  efforts, in particular,  and  new 
management  demand  programs, in general. 

The highly  data-intensive  models have negative  impacts 
on  their ease of use and ease of  updating aspects. In gen- 
eral, models with lesser data  requirements are preferable. 
For  example, if  the  model  initialization  requires a database 
of various months,  one may then  question  whether  the 
model is a reasonable  representation  of  the load, given  that 
seasonal variations  and  anomalies  could  be  significant over 
such a period. Databases of  three  to six weeks are pref- 
erable in this respect. In addition,  one  must  keep  in  mind 
that  the database must also contain  information  about spe- 
cial days of  the year which have a yearly periodicity. 

Some judgment is  clearly  involved in  the formulation  of 
a load  model  or  models  for  a  particular  utility.  Given  the 
state of  the  field  of  load  modeling and  forecasting today, 
it is, however,  reasonable to  try  to develop a model  with  the 
capabilities to describe  the  load shape, as well as dynamic, 
weather, time-of-day, and  random effects. Models  which 
describe  only  the peak load, or  which  do  not  explicitly 
model  weather effects, although  simpler to develop  and 
update,donotoffertheaccuracyandflexibilityofthemore 

general  methods.  At the  model  formulation stage, one may 
narrow  the  choice  of  models to those  most  suitable to the 
needs of  the user  based on  the  type  of data and  compu- 
tational  facilities available. However,  one  should  probably 
keep an open  mind  and  experiment  with  afew  model types, 
since no  conclusive  evidence exists indicating  that any one 
of  the available models is  superior to  the others. It should 
also be  noted  that most  of the models can be  identified  and 
operated within acceptable  computational  and  data 
requirements, so that  this  criterion is probably  not so crit- 
ical. The ultimate  criterion  will  then be the  model  fore- 
casting  performance with actual data, something  which is  
difficult  to  predict  without  experimentation. 

The initialization phase of  the STLF model  requires  that 
a database of at least two  to three years of  hourly  load and 
weather  data be examined. Although  the parameters  of  the 
model can be  tracked  over  the seasons to some extent, the 
yearly load  behavior has many  special days, or  disconti- 
nuities,  which  occur  only  once a year, and  must,  therefore, 
be identified  and  modeled as a special term  of time-of-day 
component(holidays,switch to Daylight SavingsTime, start 
and end  of school). In addition,  before  proceeding with  the 
identification phase, the  load  must  be  examined  for  abnor- 
mal behavior which may becaused  byevents such as strikes, 
blackouts,  election days, or special television  programs. 
Such abnormal  behavior  must  be  identified  and  left  out  of 
the "clean" initial database. At  this stage, the  input  of expe- 
rienced  load  forecasting  operators is  essential. During  the 
initialization phase one can  also establish  the  need  for 
weather inputs based on previous  experience, or  on  simple 
correlation tests. 

Forecasting Algorithms 

The forecasting  algorithms are intimately tied to  the type 
of  load  model  formulated.  Once  the  load  model is  selected, 
the  forecasting  algorithm is, therefore, essentially deter- 
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mined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll forecasting schemes follow  the  following basic 
steps: 

a) Substitute into  the load  model  the estimate of  the 
model parameters obtained  from  the  model  initial- 
ization phase or  from  the parameter identification/ 
update  algorithm. 

b) Define  the  prediction lead  time. 
c) If weather variables  are involved in the model, input 

their forecast values, and  error estimates, if available. 
d) If the  model is  dynamic,  estimate the present system 

state (initial  conditions  for  the dynamic  equation (6)) 
using  a  recursive  linear  estimation scheme [22],  [59]. 

e) Calculate the  predicted load wih  the model, the esti- 
mated parameters, the specified  lead  time, and, if the 
model so requires, theforecastweathervariables, and 
the actual state estimate as initial  condition.  If  the 
model has a white  random process input,  then  for 
prediction purposes it i s  estimated by i ts  mean. 

f )  Calculate the forecast error variance if  the  model 
allows it (dynamic stochastic model). 

In  the  time-ofday  or nondynamic models, load  fore- 
casting is then a  simple  matter  of  substituting  the lead time 
or  the  pertinent weather variables into  the load model 
equations which are parametrized  by the estimated  coef- 
ficients.  Dynamic models, on  the other hand, include  dif- 
ference  equations, which  require  initial  condition esti- 
mates  (state  estimates) to start the  forward simulation,  and 
an estimate of  the  future  inputs, i.e., the weather forecast, 
to proceed with  the simulation  forward in time. The  state 
is estimated by a  recursive  linear  estimation process  [22], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[59]. This  process updates the state using  the most  recent 
values of the  load  and  the weather variables.  Since differ- 
ence equations are  recursive, the  load forecast  at  some 
future  time can only  be calculated  by computing all the load 
forecasts between  the present  and  that  time. This fore- 
casting  requirement  of  dynamic  models,  therefore, 
increases the  on-line  computational  effort over nondy- 
namic  models.  The  extra computation is, however,  well 
within  the  power of modern  control center  computers. 

Parameter Identification 

Before  applying  parameter  identification  techniques to 
the "clean"  database, one  must  account  for  the seasonal 
load  variations as well as possible  growth/decline  trends 
from  one year to  the next. One way of handling this time 
variation is to pre-filter  the data as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 )  with a period of one 
year [16],  [19], thereby  eliminating seasonal variations from 
the  pre-filtered  load process which is  then assumed  sta- 
tionary. A second more  common approach to handle sea- 
sonal variations assumes that  the  load  model is  slowly  time- 
varying  over the seasons. A moving  time  window of data i s  
then used to  identify  the  model parameters which are 
assumed to be  constant within  the  moving  window as well 
as during  the  future forecasting time interval. Such moving 
windows  range  from  three to six weeks depending  on  the 
time  of  the year. In order to increase the  amount  of data 
available for  identification,  moving  windows  for  the same 
time intervals from  previous years  can be combined  into 
a larger  data  set. 

For a  discussion of  the various approaches  used in  the 

parameter identification step, and  a  number of related  ref- 
erences, see the  previous section on  model classification. 

Performance  Evaluation 

The performance  of  a  given  short-term  load  forecasting 
system  may be evaluated in terms of 

the accuracy of  the  model 
ease of use of  the  application  program 
the badlanomalous data detection  and  correction 
capabilities. 

Accuracy:  The evaluation of  the accuracy of  a model 
requires  that the forecast error, i.e., the  difference between 
the forecast value  of the  load and the "measured"  (actual) 
value of  the load, be  determined at  each time  point of the 
forecasting  period. It i s  common  to measure the  model 
accuracy statistically in terms of  the standard  deviation  of 
the forecast error.  Other accuracy  measures,  such as the 
maximum  error  or a  weighted squares criterion  with  the 
heaviest weights  for  the peak hours  and  declining  weights 
for off-peak hours, are possible but  not  in  wide use. In prac- 
tice, it i s  difficult  to  find STLF systems that have a  root-mean 
square  forecast errors  of less than 2 to 3 percent  of  the peak 
load  for a 24-h prediction. This  may constitute  a statistical 
limit  to  the goodness of fit of  a model and represents, by 
and large, the  inherent noise component  of  the load. One 
should  keep in mind, however, that  the actual 24-h pre- 
diction  error  will  depend  strongly  on  the  type of load, that 
is i ts  mix of residential,  industrial,  and  commercial  com- 
ponents, its  geographical  location  and  distribution, as well 
as the season of  the year. 

In more  general terms, two  principal factors-the  length 
of the lead time and the  uncertainty  in  the explanatory 
variables-act to  limit  the accuracy of forecasting  models. 
As the lead time increases, theaccuracyof  the forecast  dete- 
riorates. Also, the greater the  number o f  explanatory  vari- 
ables in  the  model,  the  more  uncertainty is introduced in 
the forecast.  This i s  particularly  true  when  the forecast 
explanatory variables  have a  large  uncertainty  of  their  own. 
Furthermore, one  should  be aware that  different forecast 
weather  variables  have different forecast  accuracies.  For 
example, it is considerably easier to forecast temperature 
than it i s  to forecast the  amount of  precipitation. Conse- 
quently,  the use of  independent variables that are difficult 
to forecast should  be  avoided so as to foreclose the pos- 
sibility  of  generating forecasts with inherently  large errors. 

The comparison  of  the accuracy of  two  or  more  different 
short-term  load  forecasting  models  should  be evaluated 
under  conditions  approximating as closely as possible 
actual operating  conditions. For the  comparison  to be 
meaningful, the evaluation  should  be  carried out over a 
large number  of  subperiods  of  a  sufficiently  long  period 
using  the forecast  values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the variables.  This approach 
permits  the  performance  of  different models to be  com- 
pared on a uniform basis over  a wide range of data  sets. 

The testing  of  the  model  performance can be system- 
atically done by verifying  that  the one-step prediction errors 
e(t) form a white process, where 

e(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(t) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t / t  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) (10) 

and where z( t )  is the load at time t ,  while  the variable 
f(t lt - 1) is the  load  prediction at time  tgiven measured load 
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and  weather data up to  time t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Various  whiteness tests 
can be  found [50], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[59], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[65]. A  deterioration of  the  model  due 
to parameter variations or  due  to anomalous  load  behavior 
can be systematically detected  by  the whiteness test. 
Depending on  the  type  of  model  deterioration,  the  model 
parameters  can be updated, or  in  the case of bad or anom- 
alousdata,  such datacan  bediscarded  toobtain  aclean data 
set. Model  performance  should also be  tested by  the  ability 
of  the  algorithm to adapt to  interruptions  in  the input data, 
to anomalous data, and to computer  breakdowns. 

Ease zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Application: The implementation  of  the short- 
term load  forecasting  models  constitutes  a  part  of the EMS 
application  software package.  To be useful to dispatchers, 
the forecasting  software  must be easy to use. The  program 
must  be  designed to  be conducive to virtually  "automatic" 
operation  by  dispatchers.  Desirable features include 

direct data link  to a  weather  forecasting service 
good man-machine  interface (MMI) 
badlanomalous data detection  and  correction capa- 
bilities. 

These  features  are  necessary  because forecasting systems 
have not reached the stage where  completely  automated 
operation is  possible; manual intervention and the  judg- 
ment  of dispatchers  are still necessary. From the  usability 
point  of view, it is generally advisable to avoid  models  that 

require excessive  data entry 
are complicated  and have many  coefficients which 
require  periodic  updating 
need frequent parameter tuning. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A closely associated consideration is  the ease zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof updating 
the models.  Forecasting models  require  updating on a  peri- 
odic (seasonal or annual)  basis.  This is carried out  off-line 
by  the dispatchers  either on  the EMS computer or some 
other  computing facility. It can be  effectively  accomplished 
if easy-to-use routines  are  provided as part  of  the software 
package. 

Bad/Anomalous  Data Handling: A critically  important 
featureof  agood  short-term  load forecasting package i s  the 
ability to detect  and  exclude  bad or anomalous data and to 
provide  replacement with corrected values.  For  example, 
every forecasting package will have  some manually  entered 
data. The dispatchers, in  the course of  their work, will  from 
time  to  time make data entry  errors. The forecasting pack- 
age must  be "smart" enough to detect  and  exclude 
obviously  flawed  manually  entered data and  request from 
the dispatchers  corrected values. 

A more  complex issue i s  that  of anomalous data. An 
underlying assumption of all  short-term  load  forecasting 
models is  that  the load is  essentially in a steady-state mode 
of behavior. The  existence of holidays  and "near  holidays," 
however,  violates this  assumption. For  example, the peak 
load on Easter  Sunday will generally  be  considerably  lower 
thanona"normal"Sundayatthattimeoftheyear.Theload 
pattern  of  the week following Easter  Sunday, on  the other 
hand, exhibits essentially normal behavior. Clearly, the 
actual Easter  Sunday  loads will  not  be  useful  in forecasting 
the  future loads of  the  following week.  The forecasting 
package must  immediately  detect these anomalous loads 
and  exclude them  from  the forecasting database SO as to 
avoid  "contamination"  of the database. Moreover, the pro- 
gram must  automatically  supply  corrected load values or 

pseudo-loads for use in forecasting future loads. Anoma- 
lous data  are detected  when  the deviations of  the actual 
load  from  the forecast  values  are  large. Whiteness tests of 

the  type discussed  abo.ve offer  a systematic mechanism for 
this detection.  The  anomalous data correction can  easily be 
accomplished by  replacing  the actual loads by  their fore- 
cast  values whenever the  predicted value  differs  from  the 
actual one  by a preset quantity. Fig. 4 displays the behavior 
of a  short-term  load  forecasting  model  without  and with 
anomalous data detection  and  correction feature. More 
generally, the anomalous data detection  and  correction 
capability is  called on whenever the system exhibits  abnor- 
mal behavior.  Typical  examples  are  system component  out- 
ages  (e.g., a  major  blackout), special  events (e.g., television 
broadcasts of  the  Olympics  or  the  World Soccer  Cup), and 
severe weather  conditions,  such as thunderstorms. 

Usage  Issues 

We  next  focus on a set of miscellaneous issues that arise 
in  theactual use of  short-term  load  forecasting  procedures. 
The short-term  load  forecasting  program is  used in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo 
usage  modes: 

real-time mode 
study mode: 

In the real-time mode, the  hourly  (or  half-hourly) values of 
the load for  the specified forecast period are  predicted. 
These  forecast  data  are used to drive  the basic scheduling 
functions of  the EMS or to provide dispatcher  information. 
Real-time mode  execution of  the forecasting  procedure uses 
the  historical  load and  weather data files, automatically or 
dispatcher-entered  weather  forecast data, and  real-time 
telemetered data.  The 24h forecast must  be  generated  at 
least once  a day. In addition, in the real-time mode, there 
may be  frequent re-forecasting  whenever  weather  fore- 
casts  change markedly,  abnormal events  occur,  teleme- 
tered data indicate  a  significant  deviation  of  the values of 
the actual load  from  the forecast  ones, or  simply to update 
and  refine  the  current day's  forecast  based on  the most 
recent  load  and  weather information. 

In  the study mode, the  short-term  load forecasting pro- 
cedure is  used to produce  historical  loadsor forecast future 
loads within  or  outside  the forecast period. These load data 
are  used for security analysis of past, current, or possible 
future system conditions.  Execution in  the study mode may 
call for a forecast  at one  time  point  or  for  the  length of the 
forecasting  period. The  forecast  may be  initialized  from real- 
time  conditions, in  which case the  contents  of  the  current 
real-time forecast  are provided. For historical loads  avail- 
able in  the  load files, the actual  loads are provided. For fore- 
casts outside  the stored period  or  beyond  the forecast 
period,  additional data must  be  input  to generate the 
requested forecasts. 

Man-Machine  Interface ("1) 

The  system operators  interface with  the short-term  load 
forecasting through  the dispatcher work station.  For effec- 
tive usage, the forecasting system must  provide a number 
of user-oriented features. Typical examples include syntax 
and  range  check for  flagging data entries  outside  specified 
limits and  dependency checks for  identifying  computed 
quantities  which deviate from  the average value by  more 
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Fig. 4. The effect of anomalous data handling for  forecasting the load  for the month 
including Easter  Sunday.  (a) Without anomaly detection and correction. (b) With anomaly 
detection and correction. 

than a  specified  amount.  Well-designed CRT diplays  are 
absolutely essential. Minimal  requirements are  an  execu- 
tion display for data entry  and editing, message  display, 
report display for  presenting  the real-time inputs, manually 
entered data, weather  and  load forecasts and  performance 
statistics, and  load  and  weather  history displays. 

A very useful  feature is  the capability to permit dispatch- 
erstomodifyloadforecastspriortotheirusebysubsequent 

application  functions. With such a feature, dispatchers can 
modify an entire  hourly or half-hourly  load forecast or any 
subset therwf  by simple  arithmetic  manipulations  of  addi- 
tion of, subtraction of, multiplication by, and  division by, 
a  constant. 

Another  useful  feature is  an a posteriori  error analysis 
capability to  perform forecast error analysis after the fact. 
Such a  capability  provides  a measure of the  validity and 
goodness of  the forecasts generated  by the  model. 

Erroranalysiscapabilityisparticularlyusefulinthemodel 
formulationor selection stage.  Such afeature  isvery  helpful 
in  the selection of  the appropriate  model  among  a  number 
of candidate models. Typically with such  a feature, the ex 

postforecasts for a  specified period  of  the candidate  models 
can be  compared on a  consistent basis by  using  only a  part 
of  the  historical data. Good backcasting  performance of a 
model is a strong  indicator  of i ts  ex ante  forecasting  ability. 

The  advent of  full interactive  graphics  brings  about 
expanded  capabilities,  particularly  useful for STLF in the 
MMI area; for example, the ability to  display, using full 
graphics, actual  and forecast load  and weather data for a 
specified period  of  interest is  very  desirable. 

CONCLUSIONS 

This paper has presented  a survey in  the area of fore- 
casting  system load with  prediction  times  of  the  order  of 
hours  and up to one week. STLF plays a  key role in system 
operations as the  principal  driving  element  for  all  daily  and 
weeklyoperations  scheduling.  The  modeling  of  the system 
load  and i ts  prediction is essential for  the  economic  and 
reliable  performance  of  these  functions. In addition,  the 
load  model  and forecast  are  essential information  for secu- 
rity analysis in both  the real-time  and the study modes. The 
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survey evaluated the  literature based on a classification  of 
the state of  the  field  according  to  a  number  of features zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
includingthetypeofmodel,thedatarequirements,andthe 
parameter identification  and  load  forecasting needs. The 
paper also discussed  various  practical  considerations asso- 
ciated with the  development  of an STLF model  and fore- 
casting  algorithm  for use in a  control  center  environment. 
The annotated  bibliography  constitutes  a  representative 
view  of  the  principal  publications in  STLF over the last 
twenty years. 

Because of  the  particular  and  often  heuristic  nature  of 
STLF, it is not always possible to assume portability  of an 
STLF system from  one  utility  to another.  General  models 
and  algorithms have wider  applicability, but must  be  used 
cautiously  and  should  be  experimentally  tested with a suf- 
ficiently  lengthy  data record. The detailed  discussion  of  the 
advantages and  drawbacks  of the available STLF meth- 
odologies,  the l ist of  desirable  practical features in STLF  sys- 
tems, and the representative annotated  bibliography  should 
help engineers in  their  work  on  specific aspects of STLF. 

The STLFfunction providesacriticallyimportant decision 
tool  in system operations.  A  good STLF system  can  save the 
utility  significant sums of  money  by  reducing  the  error in  
load  predictions. Thus efforts  aimed at the  implementation 
of accurate  and  effective STLF are highly  worthwhile.  A step 
in  the  right  direction is the  incorporation  into STLF models 
of  meteorological effects for  which  better forecasts will be 
available in the near future. Such models  will  undoubtedly 
provide  improved  load  predictions. 

The  state of  the  art in  STLF  has developed  considerably 
over  the last fifteen years. Of  the many models  studied  and 
tested, the so-called dynamic  models,  particularly ARMA- 
type models,  are the most  popular. Such models are capa- 
ble  of  describing  time-correlated  random  phenomena, 
periodicities  and trends, as well as weather effects, includ- 
ing heat buildup phenomena, with relatively  few  explan- 
atory variables and parameters.  ARMA models are relatively 
easily developed  and  updated,  wih  only  modest  compu- 
tational  requirements. In spiteof  the progress in load  mod- 
elingand  in loadforecastingalgorithms, relativelylittlework 
has been  published on applications to actual load  and 
weather data, particularly in an on-line  environment  over 
an extended  period  of  time.  More  comparative  work  of  this 
nature is  needed. Another  potentially  useful area of inves- 
tigation in STLF is the  application  of  expert systems or  intel- 
ligent  heurisics in  both  the  model  formulation phase and 
in i ts  on-line  operation,  particularly  the  problem  of  anom- 
alous data  detection  and  suppression.  More  work is also 
needed in bus  and area load’forecasting,  and in  the devel- 
opment  of  advanced MMI functions  which will facilitate  the 
input  of weather  data  and the  interaction  of  the  operator 
with  the STLF algorithms. 
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