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ABSTRACT To fully mine the relationship between temporal features in load data, improve the accuracy

and efficiency of short-term load forecasting and overcome the difficulties caused by load nonlinearity and

volatility in accurate load forecasting. In this paper, a hybrid neural network short-term load forecasting

model based on temporal convolutional network (TCN) and gated recurrent unit (GRU) is proposed.

Firstly, the correlation between meteorological features and load is measured with the distance correlation

coefficient, and the fixed-length sliding time window method is used to reconstruct the features. Next,

temporal convolutional network is adopted to extract the hidden historical information and time relationship

including meteorological features, electricity price, etc., and a better-performing gated recurrent unit is

utilized for perdition. Furthermore, the state-of-the-art AdaBelief optimizer and Attention mechanism are

utilized to enhance the prediction accuracy and efficiency. The effectiveness and superiority of the proposed

model are verified by load and weather data from Spain and PJM power system data. Short-term load

forecasting results in different periods and comprehensive comparisons with the performance of different

models show that the proposed model can provide accurate load forecasting results rather quickly. The

highlights of this paper are that temporal convolutional network and gated recurrent unit are combined

for load forecasting for the first time, and the forecasting performance is improved by the novel optimizer

AdaBelief and feature selection based on distance correlation coefficient.

INDEX TERMS Short-term load forecasting, distance correlation coefficient, adabelief, temporal convolu-

tion network, gated recurrent unit, attention mechanism.

I. INTRODUCTION

Accurate and fast short-term load forecasting has become an

essential task throughout the development of the market and

smart grid. It can effectively ensure the safe operation of the

power grid, reduce the cost of power generation and improve

socioeconomic benefits [1]. However, the fluctuation of

short-term power load sequence has obvious randomness and

The associate editor coordinating the review of this manuscript and
approving it for publication was Sanjeevikumar Padmanaban.

nonlinearity, and the influencing factors are diversified and

complex (weather, electricity price, holidays, etc.), which

bring huge challenges to accurate forecasting [2].

In response to these difficulties, there are numerous stud-

ies on short-term load forecasting currently. The invention

of various forecasting technologies promotes the progress

of short-term load forecasting. These methods are mainly

divided into statistical methods, time series prediction meth-

ods, and machine learning methods. The statistical method is

represented by Kalman filter [3], Shaima et al. [4] proposed
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a blind Kalman filter method for short-term load forecasting.

The experimental results showed that the method is superior

to the state-of-the-art technology in load profile estimation

and peak load forecasting through the improvement of the tra-

ditional Kalman filter. Time series prediction method mainly

include linear regression method [5], exponential smoothing

method [6] and autoregressive integrated moving average

(ARIMA)method [7]. Arima is themost commonly used time

series analysis method among these. Cao et al. [8] used the

ARIMA model and similar day method to forecast the load

within one day. By grouping meteorological similar days and

target days, the load was predicted according to the average

demand of the target day. It was proved that the ARIMA

model performs better on ordinary days while a similar day

method outperforms on special days.

However, all of the above methods have higher require-

ments for the stationarity of time series. Their data regres-

sion capabilities are all weak. Machine learning methods

which are widely applied short-term load forecasting meth-

ods at present, have good nonlinear data fitting ability and

parameter learning ability. Jiang et al. [9] proposed a hybrid

prediction model based on support vector regression (SVR)

and hybrid parameter optimization algorithms. After SVR

is optimized by a two-step hybrid optimization algorithm,

this model can deal with nonlinear problems better, and it

wins upon other models in short-term load forecasting tasks.

Shi et al. [10] introduced a continuous multi-day peak load

forecasting method based on series-parallel ensemble learn-

ing. This method adopts XGBoost [11] serial ensemble algo-

rithm and Bagging parallel ensemble algorithm to forecast

peak load, and uses particle swarm optimization algorithm

to tune parameters. It was demonstrated that the ensemble

algorithmmakes full use of the advantages of the twomodels,

which maintain small bias and small variance respectively,

thus improving the prediction accuracy.

In addition to the above-mentioned traditional methods

and tree-based methods for machine learning methods, deep

learning algorithms have also been continuously developed

and have received extensive attention in recent years. In the

existing literature, the work of Kong et al. [12] introduced

a long short-term memory neural network (LSTM) into the

short-term residential load forecasting with high volatility

and uncertainty. Meanwhile, the method of aggregating indi-

vidual forecasts was adopted. The proposed LSTM frame-

work achieved the best prediction performance in the data set.

Jiao et al. [13] proposed an LSTM-based method to predict

the load of non-residential consumers by using multiple cor-

related sequence information. The daily load curve of non-

residential consumers was analyzed by K-means, which was

also superior to other load forecasting methods in experimen-

tal results. Nevertheless, considering that a large number of

relevant features and historical information cannot be ignored

in load forecasting. Single RNN algorithms such as LSTM

or GRU [14] could consider the historical information of

temporal data, but it needs to construct the feature relation-

ship manually [15]. Convolution neural network also has the

ability to process time information, and the feature extraction

ability of CNN is higher than that of RNN [16]. Combined

with CNN, the RNN model can get better prediction results

in power load forecasting [17].

Facing the problem, feature extraction techniques are con-

sidered to be practicable methods. There are gradually some

researches dedicated to combining feature extraction tech-

nologies with forecasting models to form a hybrid model for

short-term load forecasting. Alhussein et al. [18] proposed

a deep learning framework based on the combination of

convolutional neural networks (CNN) and LSTM. The hybrid

CNN-LSTMmodel utilizes the CNN layer to extract features

from input data with LSTM layers for time series learning.

It proved that the model is preferable to other deep learning

models. Yao et al. [19] and Xu et al. [20] also used CNN to

extract features, combined with GRU and LightGBM [21] to

complete short-term load forecasting tasks, and both achieved

good accuracy.

Based on the above analysis, temporal convolutional net-

work (TCN) [22] is an improved one-dimensional CNN for

time series problems. Experiments testify that TCN is supe-

rior to RNNs such as LSTM and GRU in certain application

scenarios. Zhang et al. [23] introduced a quantile Huber func-

tion guided TCN for load probability forecasting to quantify

the variability and uncertainty of consumer side load forecast-

ing. And it achieved better performance than other models in

residential and industrial users. Wang [24] proposed a hybrid

algorithm combining TCN and LightGBM, then conducted

experiments on three different types of industrial user load

data sets. It was established that the method has the best

feature extraction ability and the highest accuracy among all

contrast models.

At present, there are fewer researches on TCN or hybrid

algorithm of TCN and neural networks in the field of the

power system. At the same time, a large number of studies

have adopted grid search as parameters adjustment method

and applied Adam optimizer to train the neural networks.

In Table 1, we list some references to indicate the state-of-the-

art development of load forecasting based on hybrid models.

Therefore, based on the hybrid model of TCN with GRU,

in this work, we firstly analyze the correlation of weather

features, electricity price, and date features in load data. Then

we use Tree-structured Parzen Estimator (TPE [25]), which is

an optimized approach based on Bayesian optimization algo-

rithm [26] to tune parameters. Finally, we use an improved

optimizer AdaBelief and Attention mechanism to further

improve the accuracy and efficiency of short-term load fore-

casting. Our proposed method uses the hourly power load

series from 2015 to 2018 in Spain and PJM power system

load data for load forecasting. The resolution of both datasets

is 1 hour.

Lastly, about STLF models, there is a very important

point that can not be ignored. Nowadays, more and more

power grids perform an optimal operation considering day-

ahead STLF [27]. In many studies about day-ahead STLF,

direct multistep-ahead forecasting [28] is better than iterative
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TABLE 1. Studies for load forecasting based on hybrid models.

one-step-ahead forecasting when the data resolution is 1 hour

[29], [30]. In our article, all models will be designed for day-

ahead load forecasting.

The main contributions of this paper are presented as

follows:

1. A relatively novel data preprocessingmethod: we use the

distance correlation coefficient to analyze the non-linear cor-

relation between various meteorological features and short-

term load, comprehensively consider the features (weather,

electricity price, holidays, working hours, etc.). After feature

engineering, the difficulty of prediction is effectively reduced

and the prediction efficiency is improved.

2. A new hybrid algorithm: due to the lack of convolution,

traditional single RNN model cannot well extract the hidden

information [24], which limits the prediction accuracy of the

model [15], [16]. Thus, a TCN-GRU algorithm with strong

feature extraction capability is proposed to improve the per-

formance of short-term load forecasting while avoiding gra-

dient disappearance problem. TPE algorithm is also applied

to select the optimal parameters of model.

3. Improved optimizer and Attention mechanism: we com-

pare the learning performance of different optimizers on the

training set and validation set. The state-of-the-art AdaBelief

optimizer based on Adam is adopted to greatly improve the

accuracy and efficiency of model operation. The Attention

layer is also introduced into the neural network structure to

avoid the problem of long-distance information weakening

and improve the prediction accuracy of the model.

4. A comprehensive evaluation of the predictive perfor-

mance of the proposed model: by comparing other single

models and hybrid models, combined with multiple statisti-

cal parameter evaluation indicators (MAPE, RMSE, MAE,

Training Time), in-depth analysis of the pros and cons of each

model. And the effectiveness of our proposed model in short-

term load forecasting is demonstrated by using two datasets

from different regions. And considering the difference in load

fluctuations between working days and holidays, it is verified

that this method has strong adaptability.

The remainder of this paper is organized as follows.

In Section II, we introduce the basic theory of algorithms

adopted in this article. Section III presents the main steps of

the proposed hybrid model in detail, including the principles

of the model, the prediction framework and the structure

of TCN-GRU, and some details of feature engineering.

Section IV provides specific process and parameter settings

of the experiment, describes the comparison with other mod-

els, also analyzes and discusses the reasons for the dif-

ferent evaluation indicators obtained by different models.

The conclusion of this paper and the future work are given

in Section V.

II. METHODOLOGY

A. CORRELATION ANALYSIS

Weather features are vital factors affecting short-term

load [31]. Due to actual geographical differences, which

weather features should be selected for short-term load fore-

casting should be analyzed in detail according to the actual

situation, and the factors with high correlation should be

selected to build the input data set. The distance correla-

tion coefficient [32] (DCC) is improved based on the Pear-

son correlation coefficient (PCC), which can measure the

non-linear correlation. According to the theory of statistics,

the distribution function represents the unique property of the

random vector itself, and the conditional distribution function

represents the distribution property of a certain random vector

under certain conditions. If we want to investigate the cor-

relation between any two random vectors X and Y , we can

compare the distribution F(Y ) of Y with the conditional

distribution function F(Y |X ) of Y under the condition of X .

The higher the similarity between the two, the less influence

of X on Y , the weaker the correlation between X and Y .

For the convenience of calculation, the distribution func-

tion is replaced by the following characteristic functions:

fXY (s, t) = E exp[i 〈s,X〉 + i 〈t,Y 〉] (1)

fX (s) = fXY (s, 0) = E exp[i 〈s,X〉] (2)

fY (t) = fXY (0, t) = E exp[i 〈t,Y 〉] (3)
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where E denotes Expectation, i represents imaginary unit,

s and t represents Real vector, 〈〉 accounts for dot product

operation. If and only if fXY (s, t)− fX (s) fY (t) = 0, X and Y

are not correlated, otherwise they are correlated. The follow-

ing distance covariance and variance are defined according to

the Euclidean norm:

D2
cov (X ,Y ) = ‖fXY (s, t)− fX (s) fY (t)‖2 (4)

D2
cov (X) = ‖fXX (s, t)− fX (s) fX (t)‖2 (5)

D2
cov (Y ) = ‖fYY (s, t)− fY (s) fY (t)‖2 (6)

The expression of the distance correlation coefficient is

constructed by formula (4) - (6) as

Dcor =











D2
cov (X ,Y )

√

D2
cov (X)D2

cov (Y )
, D2

cov (X)D2
cov (Y ) > 0

0, D2
cov (X)D2

cov (Y ) = 0

(7)

The various meteorological features and load data are

brought into above formula to calculate the correlation dis-

tance coefficient and Pearson correlation coefficient. The

distance correlation coefficient has only non-negative values.

The larger the value, the stronger the correlation between this

feature and short-term load, while the Pearson correlation

coefficient is between -1 and 1, the closer the absolute value

to 1, then the stronger the linear correlation between features

and short-term load.

B. TPE ALGORITHM

The selection of hyperparameters in machine learning will

directly affect the performance of the model. In the past, grid

search and random search were used for hyperparameters

optimization, but the execution time of this type of method

will increase proportionally with the expansion of the hyper-

parameter scale, resulting in insufficient efficiency. Other

tuning algorithms, such as particle swarm optimization [33],

are relatively time-consuming and not conducive to practical

application. TPE algorithm constructs a probability model

of the objective function in order to intelligently evaluate

each group of hyperparameters, reduce the searching time of

hyperparameters, and find the best hyperparameters for the

machine learning model more effectively.

TPE algorithm obtains the posterior probability distribu-

tion p(y|x) by parameterizing the probability distribution

p(x|y) and the prior probability distribution p(y). p(x|y) is
defined as follows [34]:

p(x|y) =
{

ℓ(x), y < y∗

g(x), y ≥ y∗
(8)

where ℓ(x) is the density formed by model observation, y

denotes the value of loss function generated by the model,

y∗ is the set threshold, and g(x) represents the density formed

by residual observation.

The expected improvement (EI) in TPE is optimized [35]:

EIy∗ (x) =
∫ y∗

−∞
(y∗ − y)p(x|y)p(y)

p(x)
dy (9)

Let γ = p(y < y∗),
∫

R

p(x|y)p(y)dy = γ ℓ(x)+ (1− γ )g(x),

we can get:

EIy∗ (x) ∝ (γ + g(x)

ℓ(x)
(1− γ ))−1 (10)

Equation (10) represents that in order to maximize

improvement, we hope the ℓ(x) probability to be high and

the g(x) probability to be low at point x. In each epoch,

the algorithm is trying to improve the prediction model better

by returning the candidate algorithm x∗ with the largest EI .

C. AdaBelief OPTIMIZER

The so-called AdaBelief [36] refers to adjusting the train-

ing stride according to the Belief in the gradient direction.

Compared with the Adam optimizer, the improved steps are

decomposed as Step 1-Step 4:

Step 1: Intialize θ0, and setM0← 0, s0← 0, t ← 0;

Step 2: While θ is not converged, set t ← t + 1, gt ←
∇θ ft (θt−1), Mt ← β1Mt−1 + (1 − β1)gt , st ← β2st−1 +
(1− β2)(gt −Mt )

2;

Step 3: Bias correction toMt and st ;

Step 4: Update θt ←
∏

F ,
√
st

(

θt−1 − α Mt√
st+ε

)

using Mt

and st corrected in Step 3.

Where gt represents the t-th step, Mt represents the expo-

nential moving average (EMA) of gt , and α is learning rate.

Consequently, AdaBelief replaces vt in Adam with st . vt and

st are EMA of gt
2 and (gt −Mt )

2 respectively. In the pro-

posed method for load forecasting, the optimizer will adopt

this improvement to consider curvature of the loss function,

instead of taking a large (small) step where the gradient is

large (small). In other words, this method considers not only

modulus size of the past gradient of parameters, but also the

consistency of the gradient direction in the past.

III. SHORT-TERM LOAD FORECASTING

BASED ON TCN-GRU

Short-term load forecasting can denote as:

Ŷi = f
(

Xi,Ŵ ,b̂
)

(11)

where Xi is the input data after correlation analysis and

preprocessing; Ŵ and b̂ are the optimal estimates of weight

parameter and bias parameter. Based on massive input data,

we continuously iterate in the direction of the fastest gradient

descent with the goal of the smallest loss function value.

Finally, the non-linear implicit relationship f between the

short-term load and the input data is learned, and then obtain

the optimal estimation value Ŷ of short-term load forecast-

ing. In this paper, the hidden information of data features is

extracted by temporal convolution network and input it into

the prediction model of gated recurrent unit to obtain the

short-term load forecasting value.

A. TEMPORAL CONVOLUTIONAL NETWORK

Temporal Convolutional Network (TCN) is a neural network

algorithm proposed by Bai et al. [22] in 2018 to analyze
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time series data. Causal convolution, expansion convolution

and residual connection are introduced in TCN, which solve

the problem of feature extraction of long-term time series

information. The structure and principle are described as

follows:

1) CAUSAL CONVOLUTION

Causal convolution plays two key roles in TCN: making the

network produce an output with the same length as the input,

and avoiding the leakage from future to past. Figure 1 shows

the principle of causal convolution structure. In causal con-

volution, convolution operations are performed strictly in

chronological order, that is, the convolution operation at time

t only occurs on the data before t − 1 and t − 1 in the

previous layer. It is worth noting that causal convolution is

easily restricted by the receptive field, so that it can only

accept short history information for prediction.

FIGURE 1. The principle of causal convolution structure.

2) DILATED CONVOLUTION

Distinct from traditional convolution, to solve the restricted

receptive field problem, the TCN convolution structure

allows interval sampling of convolution input, which is

called dilated convolution [37]. For one-dimensional time

series input X = (x0, x1, . . . , xT ) and filter f : {0, 1,
2, . . . , n − 1} → R, the dilated convolution operation F(·)
is defined as follows:

F (T ) = (X∗d f ) (T ) =
n−1
∑

i=0
f (i) · xT−d ·i (12)

where d denotes the dilated factor, n represents the filter size

and T − d · i accounts for the direction of the past.

By increasing dilation factor d and filter size n, the TCN

is able to extend the receptive field. It allows the top layer

output to receive a wider range of input information. The

principle of dilated causal convolution structure is presented

in Figure 2. The filter size n = 2, the top layer d = 1,

means that every point is sampled during input; the middle

FIGURE 2. The principle of dilated causal convolution structure.

FIGURE 3. The details of residual block in a deep TCN.

layer d = 2 denotes that one of every two points is sampled

as the input. It can be seen from Figure 2 that the deeper

the layer, the larger the dilated coefficient. The size of the

effective window in the TCN convolution structure increases

exponentially with the number of layers. Therefore, TCN can

obtain a larger receptive field with less layers.

3) RESIDUAL CONNECTION

TCN can also expand the receptive field by adding hidden

layers. In order to avoid the disappearance of the gradient

caused by the hidden layer being too deep, TCN applies the

residual block to the deep network to solve this problem [38].

More specifically, each layer of TCN contains multiple filters

for feature extraction.We replace the convolutional layer with

a general residual block. The details of the residual block and

a deep TCN structure are shown in Figure 3. It can be seen

that a deep TCN consists of several residual blocks.
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One branch of the residual block performs a transforma-

tion operation F on the input X (r−1), adding a branch for a

1 × 1Conv transformation to ensure that the element wise

addition accepts tensors of the same shape [39]. The output

X (r) of the r-th residual block can denote as:

X (r) = Activation
(

F

(

X (r−1)
)

+ X (r)
)

(13)

where activation function utilizes Rectified Linear Unit

(ReLU) [40]. F is a series of transformations, including

dilated causal convolution layer, weight normalization, acti-

vation layer and dropout layer. In details, for normalization,

we apply weight normalization [41] to the convolution filter.

In addition, a Dropout [42] is added after the activation layer

of each convolution for regularization.

FIGURE 4. The structure of GRU network.

B. GATED RECURRENT UNIT & ATTENTION MECHANISM

1) GRU MODEL

GRU network is an improved model of LSTM network.

It optimizes the three gate structures of LSTM, integrates

forget gate and input gate into a single update gate [43],

and mixes neuron state and hidden state. It can effectively

alleviate ‘‘gradient disappearance’’ of RNN and reduce the

number of parameters of the LSTM network unit. Thus, GRU

shortens the training time of the model. The structure of

the GRU network is shown in Figure 4. The mathematical

formulas are described in formulas (14)-(18).

rt = σ (Wr · [ht−1, xt ]) (14)

ut = σ (Wu · [ht−1, xt ]) (15)

h̃t = φ(Wh̃ · [rt × ht−1, xt ]) (16)

ht = (I − ut )× ht−1 + ut × h̃t (17)

yt = σ (Wo · ht ) (18)

where xt , ht−1, ht , rt , ut , h̃t and yt are respectively the

input vector, the state memory variable at previous moment,

the state memory variable at current moment, the state of

reset gate, the state of update gate, the state of the current

candidate set and the output vector at current moment; Wr ,

Wu,Wh̃,Wo are weight matrices for the corresponding inputs

of the network activation functions; I stands for Identity

matrix; [] denotes vector connection; · represents matrix dot

product; × is matrix cross product; σ represents sigmoid

activation function; φ denotes tanh activation function. The

mathematical description of σ and φ are as follows:

σ (x) = 1

1+ e−x (19)

φ(x) = ex − e−x
ex + e−x (20)

The core module of GRU network is update gate and reset

gate. The splicing matrix of the input variable xt and the state

memory variable ht−1 at previous moment is input into the

update gate after sigmoid nonlinear transformation, which

determines the degree of state variable brought into current

state at previous moment. The reset gate controls the amount

of information written to the candidate set at previous time.

The information of previous time is stored by I − ut times

ht−1, and the information of current time is recorded by ut
times h̃t , and adds the two as current time output.

2) ATTENTION MECHANISM

Attention mechanism [44] is the simulation of biological

attention through the algorithm, which can dynamically

adjust the attention degree of a deep neural network to dif-

ferent features according to the needs of different prediction

tasks. It mainly changes the attention to information, thereby

increasing important and useful information, suppressing and

ignoring useless information. The attention mechanism is

used to effectively highlight the key features that affect the

power load in the prediction results of the GRU layer, and

improve the prediction performance of the model. These

features are processed through formula (21) and are used as

a standard to measure the importance of different features.

Then through equation (22), they are quantified as attention

weight value between 0 and 1, finally through formula (23),

summing all the products of attention weights and features,

we get the final output features. Compared with the original

features, features processed by the above steps will be more

direct and effective. The above steps are carried out in a

dynamic loop, so as to realize the highlight of important fea-

tures, and then make more effective use of different features

in different prediction situations. The formula is expressed as

follows:

zki = u tanh(Whk + Uhi + b) (21)

αki =
exp(zki)

∑n
j=1 exp(zkj)

(22)

H =
∑n

i=1
αkihi (23)

where zki denotes themeasure standard of feature importance;

u, W , U stand for the weight parameter matrices; b accounts

for the bias; hk stands for the hidden layer state corresponding
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TABLE 2. Correlation coefficient comparison.

to the last input; hi stands for the hidden layer state corre-

sponding to the i-th element of the input sequence; tanh is

activation function; αki represents the attention weight of the

hidden state of historical input to the current input; H is final

output feature.

FIGURE 5. The short-term load forecasing framework based on TCN-GRU
model.

C. THE LOAD FORECASTING FRAMEWORK BASED

ON TCN-GRU MODEL

Due to the combination of CNN’s extraction capabilities and

RNN’s time-domain modeling capabilities, TCN can extract

the temporal correlation of features [45]. Besides, consid-

ering the load data scale of the whole area, GRU not only

increases the depth of the model but also processes big data

more accurately and quickly than LSTM. Thus, the model

can forecast load data with multiple features according to the

extracted feature information. The short-term load forecast-

ing framework based on the TCN-GRU model is illustrated

in Figure 5. The framework is established by four main steps:

missing data processing, distance correlation analysis, feature

engineering, and load forecasting based on the TCN-GRU

model. The first three steps together are the data prepro-

cessing. Each step in the framework is described in detail as

follows:

1) MISSING DATA PROCESSING

The raw data usually have a large amount of missing data

because of interrupted signal transmissions or acquisition

equipment failures. There are not many missing values in the

dataset used in this paper. To avoid the adverse impact of

missing data on load forecasting, missing data are filled with

data from the same moment of the previous day.

2) DISTANCE CORRELATION ANALYSIS

In this paper, we analyze the correlation between the data

and compare the Pearson coefficient and distance correla-

tion coefficient between the meteorological features and the

predicted load. Among them, because some features and the

predicted quantity are not simply linear, the distance correla-

tion coefficient that can measure the non-linear relationship

is better than the traditional Pearson correlation coefficient in

the correlation analysis. Table 2 analyzes the correlation coef-

ficient comparison of meteorological features. Each weather

feature is the value obtained after the weighted average.

The original weather data is from the hourly data of five

major cities in Spain (Madrid, Barcelona, Valencia, Seville,

Bilbao) [46].

From Table 2, although the DCC score of the same fea-

ture is significantly better than PCC, the overall correla-

tion coefficients are still low for the following reasons.

It is difficult and tedious to collect and process the national

weather data. We select data of major cities to reflect the

overall national weather changes because large cities with

large populations account for a larger share of the national

power generation. These five major cities make up one-third

of Spain’s total population. The correlation coefficient of

weather features after weighted average is relatively low

(<0.8), but it can still reflect the correlation with the total

power generation to a certain extent. We retain the three

weather features of temperature, humidity, and wind speed

(DCC values are relatively high), removing other weather fea-

tures (DCC values are about 0.1) that have little impact on the

results [47], [48].

TABLE 3. Forecasting results of proposed model with different features.

Further, Table 3 analyzes the forecasting results of the pro-

posed model with or without irrelevant weather features. It is

proved that the weather variables selected via the Distance

correlation coefficient are able to bring better forecasting

performance and faster prediction speed.
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FIGURE 6. Load and electricity price for one month in 2015.

3) FEATURE ENGINEERING

Ourworkmainly conducts feature engineering on five aspects

of data: historical load data, electricity price data, meteoro-

logical features, date features, and other features. Electricity

price is also considered to be a vital relevant factor affect-

ing load changes. Load and electricity price for one month

in 2015 is described in Figure 6. It can be seen that the

total load is positively correlated with the electricity price.

Meanwhile, the distance correlation coefficient also proves

the correlation between electricity price and load, and the

correlation coefficient score is 0.577. In this paper, this cor-

relation coefficient score is higher, so we choose the price

feature as an important feature of load forecasting.

FIGURE 7. Actual electricity load (monthly frequency) and 1-year lagged
load.

This research mainly considers the date features such as

week, month and holiday. Figure 7 presents the actual elec-

tricity load (Monthly frequency) and 1-year lagged load.

From this point, we can find that the load has seasonal

pattern on a monthly scale. At the same time, we not only

consider whether a given time belongs to a weekend, but also

specifically distinguish between Saturday and Sunday. It is

appropriate to take the date features as the relevant factor for

total load forecasting.

Finally, we generate some important features. After see-

ing that there is a high correlation among the temperatures

of the different cities, we will also try creating a weighted

temperature features by taking into account each city’s pop-

ulation. The specific formulas are as follows:

wx =
px

P
(24)

Temp =
∑

wx · Tempx (25)

where wx is the temperature weight of each city, px stands for

the population of each city, P stands for total population of

5 cities, Tempx is the temperature in each city and Temp is the

temperature features input into the model.

We have also generated a very useful feature based on the

peculiarities of Spain, that is, whether a given period is in

business time. Not all companies have weekdays between

9 a.m. and 5 p.m., because there is a siesta. The most com-

mon business hours are from Monday to Saturday, 9:30 a.m.

to 1:30 p.m., and then from 4:30 p.m. to 8:00 p.m.

In this paper, we adopt the one-hot encoding process for

category features. Due to the different feature dimensions of

the collected discrete data, to improve the robustness of the

model, the data is normalized, and the formula is as follows:

Xn =
X − Xmin

Xmax − Xmin
(26)

where Xn is the normalized data, X is the original data,

Xmax and Xmin are the maximum andminimum values of each

feature in the sample.

TABLE 4. Classification and processing methods of input features.

The classification and processingmethods of input features

are described in Table 4. Owing to a large number of feature

types, we also use 24 previous time steps [49] to extract

or generate features in order to avoid redundancy during

data operation and reduce model performance. Since the past

features may have a significant impact on the current load
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FIGURE 8. The principle of sliding time window.

forecasting, the network can understand the past deeply and

extract time-varying features. The principle of the sliding

time window is shown in Figure 8 below. The step size is

set to 24, which means that each time the sliding window

in Figure 8 moves 24 steps to the right to reconstruct fea-

tures. In other words, we perform day-ahead short-term load

forecasting (direct multistep-ahead forecasting) with 24 steps

of historical data [50], [51].

4) LOAD FORECASTING BASED ON TCN-GRU MODEL

With the input of multi-features, the difficulty of load fore-

casting has been improved a lot. Fortunately, the TCN net-

work can effectively extract the input feature X. The data

reconstructed by sliding time window is divided into a train-

ing set, a validation set and a testing set. The training set

is utilized to train the TCN-GRU model, and the validation

set is used for parameters tuning by the TPE algorithm.

After several iterations, the testing set is input into the opti-

mized TCN-GRU model to predict the short-term load and

evaluate the model performance.

Otherwise, to further improve the performance of the

model, this article also uses two techniques to make inno-

vations: AdaBelief optimizer and Attention mechanism.

We have added different optimizer comparison experiments,

compared the performance of Adam, SGD (stochastic gradi-

ent descent) [52], and AdaBelief in terms of training loss and

prediction accuracy. The Attention mechanism is also added

to the neural network structure to help us better predict the

fluctuation of the load at details [48]. The structure of our

proposed TCN-GRU model is shown in Figure 9.

5) PERFORMANCE EVALUATION

In this paper, mean absolute percentage error (MAPE), root

mean squared error (RMSE) and mean absolute error (MAE)

are selected as evaluation metrics of load forecasting model.

The formulas are as follows:

XMAPE =
1

n

n
∑

i=1

|yi − ŷi|
yi

× 100% (27)

XRMSE =

√

√

√

√

1

n

n
∑

i=1
(yi − ŷi)2 (28)

XMAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (29)

where n represents the number of testing samples. yi and ŷi
respectively denote the actual load value and model predicted

load at time T.

IV. CASE STUDY

A. EXPERIMENTAL SETTINGS

In this paper, the electricity and energy data of Spain from

January 1, 2015 to December 31, 2018 (1h sampling inter-

val) is used as the research object. The data is retrieved

from ENTSOE, which is a public portal of Transmission

Service Operator (TSO) data. The electricity price data is

from TSO Red Electric Espana. Weather data is open-source

on Kaggle [46], obtained from the open meteorological API

of the five largest cities in Spain. The datasets are split into

a training set, a validation set and a testing set according

to the proportion of 8:1:1, i.e., the training set accounts

for 28052 hours, the validation set and test set each con-

tain 3506 hours of data.

In this paper, firstly Experiment 1 is set up to prove the

improvement effect of the proposed model, and the effects

of different optimizers and Attention mechanism on the

learning performance and prediction error of TCN-GRU are

compared.

Then, in order to verify the effectiveness and superiority

of the proposed model, we compared the prediction results

of TCN-GRU on the dataset with other comparative mod-

els in Experiment 2. It is noted that the proposed model

is compared and analyzed with various single prediction

models (SVR, XGBoost, LSTM, GRU, TCN) and hybrid

models (CNN-LSTM, CNN-GRU, TCN-LSTM). In Exper-

iment 3, the proposed model is tested on PJM power sys-

tem load data to verify the forecasting effectiveness in

other scenarios. All models adopt the TPE algorithm for

parameter tuning, and the prior distribution of hyperparam-

eters is set according to prior experience to ensure that

the compared models have relatively consistent complexity.

All experimental models run in the Python 3.7 program-

ming environment. The deep learning architecture is based

on the Tensorflow framework, the version is tensorflow-

gpu 2.2.0, the hardware is a laptop with Intel Core i5-4210,

the GPU is NVIDIA GeForce GTX 840M, and 16GB of

memory.

B. EXPERIMENT 1: THE INFLUENCE OF AdaBelief

OPTIMIZER AND ATTENTION MECHANISM

ON LOAD FORECASTING

In this experiment, we use the same learning rate (lr = 1e-2)

and the same training epoch (n = 60) to test the changes of

loss function of TCN-GRU in the states of AdaBelief, Adam,

and SGD. It is noted that mean squared error (MSE) is used as

the loss function to compare the performance of the Adabelief

optimizer with other optimizers. The formula is:

Loss = 1

n

n
∑

i=1
(yi − ŷi)2 (30)
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FIGURE 9. The proposed TCN-GRU model structure.

FIGURE 10. MSE loss trend of TCN-GRU on training set with different
optimizers.

where n represents the number of samples. yi stands for the

actual value. ŷi stands for the predicted value of the model.

Figure 10 shows theMSE loss trend of TCN-GRU on train-

ing set with different optimizers. It is obvious that compared

with Adam and SGD, AdaBeilief has the lowest loss on the

training set and validation set, and the learning speed is also

the fastest.

TABLE 5. Load forecasting evaluation on the testing set with different
optimizers.

The comparison of prediction error of different optimizers

on testing set is presented in Figure 11. It is obvious that

AdaBelief has the largest number of samples of small errors.

In addition, combined with the results of various metrics

in Table 5, Adam has a large prediction error at this learning

rate (RMSE>2000MW), and the training effect is obviously

inferior to AdaBelief and SGD. On the one hand, from the

trend of the loss curve, it can also be seen that Adamoptimizer

has encountered a barrier in this case. The val_loss fluctuates

around 0.04, and the learning rate needs to be reduced to

ameliorate. On the other hand, the calculation speed of each

epoch of AdaBelief is also significantly faster than the other
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FIGURE 11. Comparison of prediction error of different optimizers.

two optimizers (computation time is reduced by 24.8% and

6.9% respectively compared with Adam and SGD). In gen-

eral, in this load forecasting task, the AdaBelief optimizer

has only 1.24% on MAPE, which brings a very outstanding

performance improvement.

TABLE 6. Short-term load forecasting evaluation with or without
attention mechanism.

After determining AdaBelief as the optimizer of the pro-

posed method, this article also sets up an experiment to judge

whether the Attention mechanism can improve the perfor-

mance of the model. While ensuring the same other param-

eters and experimental environment (especially, the same

optimizer), we compared the performance of TCN-GRU

with or without the Attention layer. The selected three-day

(8.8-8.11 in 2018) short-term load prediction experimental

results are shown in Table 6, and the prediction curve results

are shown in Figure 12. It is clear that the model with Atten-

tion layer is superior to the model without Attention layer in

various statistical metrics. The progress inMAPE, RMSE and

MAE are 16.0%, 21.1%, 13.8% respectively. But after adding

the attention mechanism, the calculation time of each Epoch

is slightly increased. We are able to draw a conclusion that

the TCN-GRU load predictionmodel with Attention layer has

improvement in prediction accuracy compared to the model

without the Attention layer, but the time required for each

Epoch increases.

C. EXPERIMENT 2: LOAD FORECASTING OF DIFFERENT

MODELS ON SPAIN LOAD DATASET

In this experiment, according to the aforementioned split

rule, the training set time ranges from January 1, 2015 to

FIGURE 12. Short-term load forecasting with or without attention
mechanism.

March 14, 2018, and the validation set is from March 15,

2018 to August 7, 2018. The rest (August 8, 2018 to Decem-

ber 31, 2018) is the testing set. All models are trained with

the training set and the validation set is utilized for parameter

tuning.

The parameters in this article are tuned by the TPE algo-

rithm provided by Hyperopt [53]. The prior distribution of

hyperparameters are as follows: learning rate is set as loga-

rithmic uniform distribution between 0 and 1, the batch size is

set to [8, 16, 32, 64], and the distribution set by dropout [54]

is [0.2, 0.3, 0.4, 0.5], the number of epochs is set to an integer

uniform distribution from 50 to 200, and the number of nodes

in hidden layer of neural network is distributed as [32, 64,

128, 256]. The remaining parameters are set according to past

experience. It is worth noting that the deep learning models

all utilize the AdaBelief optimizer and Attention mechanism.

Finally, the parameters of each model optimized by TPE

are summarized as follows.

(1) TCN: The algorithm is built using the Keras library in

Tensorflow framework. The number of filters is 64, the kernel

size in every convolution layer is 2, and the dilation factor is

set to [1, 2, 4, 8, 16]. The stack number of the residual block

is 2, activation function using ‘‘ReLU’’.

(2) GRU: The number of hidden layers is 2 and the number

of nodes in hidden layer is set to 256/128, activation function

using ‘‘tanh’’.

(3) LSTM: The number of hidden layers is 3 and the num-

ber of nodes in hidden layer is set to 128/128/64, activation

function using ‘‘tanh’’.

(4) CNN: The number of convolution layers is 1, the num-

ber of filters in convolution layer is 64, the kernel size in every

convolution layer is 2, the number of fully connected layers

is 2 and the number of neurons in fully connected layer is set

100/1, activation function using ‘‘ReLU’’.

(5) XGBoost: The learning rate is 0.01, the max depth of

trees is 8, iteration is set to 60, colsample equals 0.8, alpha

is 0.1, lamda is 0.2, gamma is 0.1 and the minimum child

weight is 3.
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FIGURE 13. Load forecasting profiles of all models on the testing set.

(6) SVR: The kernel function is ‘‘rbf’’, the penalty factor

is set to 5 and other parameters are default settings.

The prediction results of all models on the testing set are

shown in Figure 13. In order to better display, we process the

forecast results every 24 hours into the average hourly load of

the day. Definitely, there is volatility in the load on different

days.

TABLE 7. Load forecasting evaluation on the testing set.

Load forecasting evaluation of all models on the testing

set is presented in Table 7. Distinctly, the TCN-GRU hybrid

neural network model proposed in this paper has achieved

the best results in MAPE, RMSE, and MAE. Compared with

the comparison models, the proposed method has a signifi-

cant improvement in performance, and the forecasting load

error is smaller. In the individual models, GRU has the best

performance, while SVR model performs relatively poorly

(RMSE>2000MW). When comparing in the hybrid models,

it can be seen that the extraction ability of TCN is superior to

that of CNN. As far as MAPE is concerned, TCN is 35.6%

lower than CNN in LSTM, and TCN is 60.4% lower than

CNN in GRU. Among all comparison models, the method

proposed in this paper combines the best performanceGRU in

a single prediction model and the TCN with better extraction

capability. The MAPE is reduced to 1.24%, our proposed

model obtains the best prediction performance as a result.

TABLE 8. Calculation time of each epoch for all neural network models.

Further, we also researched the calculation time of all

neural network models on the testing set. The calculation

time for each epoch of different models is shown in Table 8.

The results present that the TCN model has the fastest load

prediction speed in the individual models, and the GRU

prediction speed is better than LSTM [14]. In the hybrid

models, whether CNN or TCN is adopted as the extraction

method, the calculation time of GRU and LSTM is undoubt-

edly increased. Among them, the model combined with TCN

is more time-consuming, but TCN-GRU still has a shorter

calculation time than TCN-LSTM. Although the calculation

time of the proposed model is relatively higher than single

models, with the development of cloud computing and the
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FIGURE 14. Short-term load forecasting of all models on three-day
working day.

FIGURE 15. Short-term load forecasting of all models on three-day
holiday.

advancement of GPU computing power in future, it is still

satisfactory in practical applications.

In order to evaluate the performance of the model more

comprehensively, we used different time periods (three days

in August, 8.15-8.17 and three days during the Christ-

mas holiday, 12.25-12.27) for short-term load forecasting

and further analysis. The forecast results are shown in

Figure 14 and Figure 15. The results show that all models

can roughly fit the rising and falling trend of load whether

it is during normal working days or during the peak period

of holiday power consumption. In terms of the peak, valley,

stable or fluctuation range of the actual load in the testing

set, the model proposed in this article has the smallest bias.

Comparedwith several comparativemodels, it can best fit and

capture the changing trend of the actual load.

Considering that there is a large difference in electricity

consumption between weekdays and holidays, we compared

and analyzed short-term load forecasting metrics for the

three days of normal working days (mid-August) and Christ-

mas holidays. Table 9 shows two representative short-term

load forecasting results during working days and holidays.

Obviously, in normal working days, the proposed model has

achieved the best prediction results in all statistical metrics,

and the MAPE is only 1.24%. In holiday short-term load

forecasting, TCN-LSTM is slightly better than TCN-GRU on

MAPE, and TCN-GRU is slightly better than TCN-LSTM

on MAE. When comparing RMSE, the proposed model fore-

casting error is distinctly lower than other models. Generally

speaking, the proposed model has apparent advantages and

strong robustness in load forecasting performance.

D. EXPERIMENT 3: LOAD FORECASTING OF DIFFERENT

MODELS ON PJM POWER SYSTEM

In this experiment, to evaluate our proposed model perfor-

mance over different scenarios, a set of hourly load data are

added from PJM, which is a famous benchmark. According

to the data source information, the market region is EAST

and the time is from 2017-7-3 00:00 to 2018-7-3 00:00. The

specific data is shown in Figure 16.

FIGURE 16. PJM hourly metering load data.

Similarly, the dataset is split into a training set, a validation

set and a testing set according to the proportion of 8:1:1. The

parameters of each model are set as follows.

(1) TCN: The algorithm is built using the Keras library in

Tensorflow framework. The number of filters is 64, the kernel

size in every convolution layer is 2, and the dilation factor is

set to [1, 2, 4, 8]. The stack number of the residual block is 2,

activation function using ‘‘ReLU’’.

(2) GRU: The number of hidden layers is 1 and the number

of nodes in hidden layer is set to 128, activation function using

‘‘tanh’’.

(3) LSTM: The number of hidden layers is 1 and the

number of nodes in hidden layer is set to 128, activation

function using ‘‘tanh’’.
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TABLE 9. Short-term load forecasting evaluation for each model in two representative period.

(4) CNN: The number of convolution layers is 1, the num-

ber of filters in convolution layer is 16, the kernel size in every

convolution layer is 2, the number of fully connected layers

is 2 and the number of neurons in fully connected layer is set

32/1, activation function using ‘‘ReLU’’.

(5) XGBoost: The learning rate is 0.05, the max depth of

trees is 6, iteration is set to 60, colsample equals 0.8, alpha

is 0.1, lamda is 0.2, gamma is 0.1 and the minimum child

weight is 3.

(6) SVR: The kernel function is ‘‘rbf’’, the penalty factor

is set to 10 and other parameters are default settings.

TABLE 10. Calculation time of each Epoch for all neural network models.

The prediction results based on different models for

PJM load data on 2018-6-21 are shown in Figure 17.

Similar to experiment 2, the computational speed and sta-

tistical metrics of each model are computed and shown

in Table 10 and Table 11. From these results, although PJM

load dataset does not contain meteorological features and

electricity price data, the proposed model still achieves the

best forecasting performance. Based on TCN-GRU model,

the MAPE is only 1.16% with less features. In terms of

MAPE, TCN-GRU is 59.7% lower than CNN-GRU. It can be

concluded that our proposed is competent for different STLF

situations. Among all the comparison models, our proposed

model is mediocre in prediction speed but has obvious advan-

tages in forecasting accuracy.

FIGURE 17. The prediction results based on different models for PJM load
data on 2018-6-21.

TABLE 11. Load forecasting evaluation on the testing set.

E. DISCUSSION AND ANALYSIS

In this paper, the load data considering electricity price,

weather and date are utilized to simulate the experiment.

Experimental results from all aspects present that the
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proposed model is superior to the comparison models in

terms of prediction accuracy and efficiency. Furthermore,

the following information can be analyzed from the results:

(1) Experiment 1 proved that the proposed model was

further improved with the blessing of two technologies.

Compared with the traditional Adam in load forecasting

tasks, the AdaBelief optimizer has a faster convergence rate,

better stability, obvious accuracy advantages and stronger

normalization. Theoretically, AdaBelief mainly modifies the

adaptive learning rate tuning item in Adam and considers

curvature information. Although the change is little, it is very

prominent in the prediction effect of the time series. Besides,

the accuracy is slightly improved with the added Attention.

In principle, Attention solves the problem that RNN can-

not be operated in parallel. Meanwhile, Attention can grasp

the key points of information and avoid the weakening of

long-distance information to some extent. Although adding

attention mechanism inevitably increases the calculation time

slightly, we mainly focus on prediction accuracy. In terms of

load forecasting, the optimization of neural networks is still

worthy of study.

(2) In the individual models, GRU fits the actual load

best, and the convergence rate is faster than LSTM. In the-

ory, GRU merges the input gate and forget gate in LSTM

into one update gate, eliminating redundant gate mechanism.

Moreover, the GRU has fewer parameters, and when the data

set is not particularly large, it can improve the prediction effi-

ciency and alleviate the problem of gradient disappearance.

(3) In the hybrid models, the performance of the proposed

model is better than CNN-LSTM, CNN-GRU and TCN-

LSTM. And the prediction error of TCN-LSTM is lower

than that of CNN-LSTM. These demonstrate that TCN is

superior to CNN in feature extraction. In principle, TCN has

a wider receptive field due to dilated convolution and can

capture historical data and time relationships in a long-term

range. TCN also introduces residual block to avoid gradient

disappearance. Due to the limited receptive field, the CNN

model has a poor ability to capture long-distance features,

and even the prediction accuracy of the CNN-GRU hybrid

model is worse than that of the single GRU model. This

paper proposes a model that combines the advantages of

TCN andGRU to achieve the best prediction effect. However,

in terms of calculation time, due to features extraction, fore-

cast requires more time than single models, but the pre-

diction accuracy is improved. In the practical application

of load forecasting, forecast accuracy should be primarily

considered.

(4) In this article, we also discuss the short-term load

forecasting during working days and holidays. No matter

what the load fluctuation is, the proposed model achieves the

best prediction results. It can be summarized that the model

maintains a high precision prediction effect from the overall

period to the local time, and the model has a certain capability

to adapt to the fluctuation of the load. Moreover, the proposed

model is tested on PJM power system to verify the forecast-

ing effectiveness in other STLF scenarios. Finally, Table 3

also shows the importance of data preprocessing in load

forecasting.

V. CONCLUSION

This paper proposes a hybrid TCN-GRUmodel for short-term

load forecasting. First, the correlation between meteorologi-

cal features and short-term load are analyzed, using fixed-

length sliding time windows to reconstruct various features

as input features of TCN. Next, the historical information

and time relationship hidden in features can be extracted well

by TCN, and then use the prediction advantages of the GRU

model. With the support of AdaBelief optimizer and Atten-

tion mechanism, the proposed TCN-GRU model improves

the accuracy and efficiency of short-term load forecasting.

Finally, the model parameters tuning adopts the TPE algo-

rithm which consumes less time. The experimental results

in this paper present that the model has good adaptability to

short-term load forecasting in different periods and different

types of load data, in other words, the proposed model has

strong robustness. It can be concluded that the combination of

more new technologies and neural networks is a tendency for

the improvement of short-term load forecasting in the future.

In future work, it is necessary to consider more detailed

weather data and higher-dimensional data features on the

performance of the predictionmodel and verify the prediction

effect of this method in other scenarios. In addition, some

novel load data preprocessing methods that can improve the

prediction accuracy should be explored.
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