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Abstract—Short-term load forecasting (STLF) has become an
essential tool in the electricity sector. It has been classically object
of vast research since energy load prediction is known to be non-
linear. In a previous work, we focused on non-residential building
STLF, an special case of STLF where weather has negligible
influence on the load. Now we tackle more modern buildings in
which the temperature does alter its energy consumption. This
is, we address here fully-HVAC (Heating, Ventilating, and Air
Conditioning) ones. Still, in this problem domain, the forecasting
method selected must be simple, without tedious trial-and-error
configuring or parametrising procedures, work with scarce (or
any) training data and be able to predict an evolving demand
curve. Following our preceding research, we have avoided the
inherent non-linearity by using the work day schedule as day-type
classifier. We have evaluated the most popular STLF systems in
the literature, namely ARIMA (autoregressive integrated moving
average) time series and Neural networks (NN), together with an
Autoregressive Model (AR) time series and a Bayesian network
(BN), concluding that the autoregressive time series outperforms
its counterparts and suffices to fulfil the addressed requirements,
even in a 6 day-ahead horizon.

I. INTRODUCTION

It is common-knowledge that progress affects all aspects
of our lives, sometimes for good and sometimes not. This
fact has become a painful truth when it comes to the way
we consume energy: just think of the new gadgets we have
acquired only in the last 5 years. Moreover, the overall change
in the regulation has drawn a new scenario in which classical
roles have been recast and new have appeared. This process,
widely known as liberalisation of the energy markets, started
in the UK in the 90s and consists of the separation of the
electricity generation and retail from the natural monopoly
functions of transmission and distribution. In this context,
last-mile electricity customers now have the possibility of
choosing their retailer (who, in turn, will buy that energy
to different producers everyday). Yet the word possibility is
always twofold, since it comprises both potential profits and
loses. For every client, not selecting the most convenient
retailer or, directly going for the worst, will definitively make
a difference, in this case in the energy bill. Moreover, finding
a suitable retailer is not an easy task due to many reasons
and this aspect has drawn quite static electricity markets, with
few clients switching from their incumbent supplier. First of
all, small clients will only get attractive offers if they do form
a notable group. On the contrary, huge consumers face the
risk of not finding a retailer able to satisfy their needs. At
this point, short-term load forecasting tools provide useful
information that may help in such challenge: knowing about

their consumption (amount, habits, etc.) enables controlling it.
Further, not only consumers profit from these tools; all

participants in the electric system do. For instance, since
the balance between generation and consumption must be
watched out constantly in the power grid, Transmission Sys-
tem Operators (TSOs) work with global demand prognoses.
Any deviation from them implies an added cost because the
consumption is not being managed efficiently. Prediction of
the demand from the clients’ side may help reduce these
deviations, minimising over-costs that the TSO must face.
Regarding retailers, they always work with client portfolios
and being able to foresee their consumption in the short term
will enable them to buy more accurately what they need
(otherwise, they must sell sparing electricity). The agents in
power derivatives markets must also tackle a similar situation
since this kind of markets that trade energy in the future must
adjust the volume of the energy acquired, specially not to buy
too much without having then enough consumption on the
clients to sell it to (which is one of the phenomenon that has
appeared lately due to the demand reduction that the global
crisis has caused). Finally, Distribution Network Operators
(DNOs) require an estimation of the natural growth of the
energy demand in their distribution grid, in order to be able to
foresee changes or extensions and the subsequent investments.
In this way, predicting the demand of their clients may help
them achieve this goal.

In a previous work [3], we focused on a very special
case of STLF, namely non-residential Buildings STLF. For
non-residential buildings we understand schools, universities,
public buildings and companies’ facilities. They all present a
similar consumption curve: stationary, seasonal and regular,
coinciding with the times the building is used. Hence, there is
no consumption at night (or it is negligible) and, anyway, there
exists a notable difference between idle and activity times.
Further, many of these buildings are not yet fully-automated.
This is, their HVAC system either is manually controlled or it
is switched on and off remotely but does not adapt to weather
changes (e.g. a sudden descent of the temperature due to a
storm).

Here, we focus on more advanced, air-conditioned buildings
(please note that we included fully-HVAC buildings under the
common “air-conditioned” banner), in which weather does
show influence on the load. Moreover, there is usually not
abundant hourly load historical data and the load profile is
sure to vary and evolve over the time. Finally, the solution
chosen for this purpose must be simple to tailor to every single



case (e.g. there should not be a Neural Network expert in the
school to control and periodically tailor the NN that predicts
their load profile).

Against this background, we advance the state of the art
in two main ways. First, we have successfully validated our
methodology to skip the non-linearity of the load in this
problem domain. Second, we have tested with real load data
the most popular STLF methods, NNs and ARIMA time series,
and Bayesian networks (though neither fulfils all requirements
put forward), as well as an Autoregressive Model (AM) (which
does fulfil all requirements). Our results show that the AR
model outperforms the all other methods (including those
that do not apply to STLF in air-conditioned non-residential
buildings). The remainder of the paper is organized as follows.
Section II provides a critical overview on the related work.
Section III describes the real-world scenario we took the data
from, details the models tested, and empirically evaluates the
importance that weather variables really have in the model.
Section IV details the experiments carried out and discusses
the obtained results. Finally, section V concludes and outlines
the avenues of future work.

II. RELATED WORK
As already mentioned, there exists a very large literature

on short-term load forecasting (see [1], [2], [4] for a com-
prehensive survey on STLF) but, comparatively, little on the
same topic applied to buildings. In both scenarios, research
presents two main branches. The first one includes different
types of statistical methods, including univariate time series,
in which the load is modelled according to historical data (e.g.
multiplicative autoregressive models [5], dynamic linear [6]
or non-linear [7] models, threshold autoregressive models [8],
Kalman filtering [9], and Gaussian Process prior [10]), and
causal models, in which the load is modelled as a function
of an exogenous factor(s) (e.g. weather). In this latter group
we can place ARMA models (also known as Box-Jenkins
[11]), ARMAX models [12], optimization techniques [13],
non-parametric regression [14], structural models [15], and
diverse curve-fitting procedures [16]. In spite of the large
number of alternatives, however, linear regressions [17] have
been the most popular election, and, most accurately, ARIMA
has been the technique showing the most promising results
[18].

In this way, lately the bulk of STLF research has been
concentrated on the second group, using several artificial
intelligence methods to deal with the non-linearity of the
historical load data. In this way, the techniques addressed
include fuzzy logic, expert systems, evolutionary algorithms,
support-vector machines [19] and, specially, all kinds of neural
networks [20]. Though being most promising, NN and SVM
must deal with a number of problems. First, either require
much more historical data than any of the statistical methods
[2]. This data set may also pose a problem to NNs since
they fail when it presents random correlations among the
inputs and the output because conventional NNs will not set
the coefficients for those junk inputs to zero. In this way,
irrelevant variables may blur the accuracy of the prediction
(for instance, [21] uses Bayesian methods to alleviate this
trouble). Moreover, they both relay on a tedious trial-and-error

process to tune them up properly. Finally, well-known issues
that arise in load forecasting, such as over-fitting and data-
ageing, remain still open.

Yet, as discussed before, STLF in buildings addresses a
different problem domain, and there have been a number of
interesting initiatives tackling the special features of this sce-
nario. For instance, [22] tried to model the hourly energy use
in commercial buildings with Fourier Series. They performed
poorer on the weekends due to the fact that they used the whole
data series for the modelling. [23] corrected this drawback
by distinguishing day types but, still, they focused on hourly
modelling rather on load forecasting itself. Regarding artificial
intelligence methods, [24] addressed a SVM for predicting the
load of a building complex, [21] proposed a NN tuned up by
Automatic Relevance Determination in order to optimise the
selected input. Moreover, [25] put forward an NN in which
the input variables where selected by a version of the Wald’s
test.

In the same spirit, [20] used the temperature data in a
feedback NN with a remarkable MAPE of the 1.945 % (for
instance, [26] included inputs about orientation, insulation
thickness and transparency ratio without improving that re-
sult). As aforementioned, NNs require much historical data
(which, in our case may not be available) and, further, a
complicated configuration process that yield them unable to be
easily adaptable to single small scenarios(say the buildings of
a school). Finally, all artificial intelligence methods squander
all their efforts on modelling the non-linearity. As we have
shown in a previous work, in our problem scenario this can be
avoided easily by using the work schedule calender. A similar
concept has been applied in [27] (one model for each type of
day) and [28] (one model for each hour of the day) to STLF
and in [23] to building STLF.

III. SHORT-TERM LOAD FORECASTING
We have recorded the energy consumption data from a new

building of the campus that the University of Deusto owns
in Donostia-San Sebastián (Basque Country). This building
was built 2 years ago and is fully HVAC-equipped. The
construction of two new buildings started in January 2009 (our
oldest records date from February 2009) and all the electricity
is being taken from the same substation we communicate
with. This fact converts forecasting into an even more difficult
enterprise due to the noise it introduces but simultaneously
forces the tested algorithms to demonstrate their ability to
successful adapt to evolving data and to sparse training data.
Such feature may yield worse results in terms of topping
existing STLF solutions but helps us in our goal of finding a
good, simple, easy to use, and effortlessly exportable method.
Fig. 1 shows the average consumption curve of each day
recorded in May 2009.

As it can be seen, the weekly load presents quite a regular
profile in working days, with consumption from 7am to 10am
(open hours range from 8am to 9pm). On Saturdays, it shows
a peak at noon and on Sundays it is almost flat. We have
downloaded this data directly from the meter, placed by the
Spanish law (54-1997) directly at the transformer, and using
the IEC 60870-5-102 standard protocol. The meteorological
data was obtained from the Basque Meteorological Agency



(EuskalMet), measured in two points: Zizurkil (20 Km to the
South) and Zarautz (20 Km to the West).

A. Models

We will describe here briefly the models we have imple-
mented for the tests.

1) Autoregressive Model: This kind of model is commonly
used for modelling univariate time series. We have used one
for each different day type (weekday, Saturday and Sunday)
and hour:

sh,dt = c+

q∑
i=1

ϕh,d
i sh,dt−i, (1)

where c is a constant and ϕh,t
i are the model parameters.

Instead of adjusting these parameters, we have set them to
ϕh,d
1 = 1/3, ϕh,d

2 = 1/3, and ϕh,d
3 = 1/3 in order to

keep this model as simple as possible and avoid a trial-
and-error parametrisation process. Following the methodology
introduced in a previous work, we use the work-day schedule
to classify the type of day whose load was to be predicted.
Therefore, we have adjusted the prediction for each hour
applying the AR model depending on the day type and
arbitrarily setting q = 3. Hence, please note that we have
computed the 3 last values of the same day type (e.g. from
a Tuesday, the previous Monday, Friday, Thursday) and not
the three last chronological values (e.g. from a Tuesday, the
previous Monday, Sunday, and Saturday).

2) ARIMA model: The Autoregressive Integrated Moving
Average is a generalization of an autoregressive moving av-
erage (ARMA) model. It joints two steps, one for the data
periods showing stationarity and another for the non-stational
parts. It is generally referred to as an ARIMA(p,d,q) model
where p, d, and q correspond respectively of the order of the
autoregressive, integrated, and moving average parts of the
model. We tested many combinations and obtained the best
results with p = 3, d = 0, and q = 3. An ARIMA(p,d,q) is
given by:

(1−
p∑

i=1

φiL
i)(1− L)dXt = (1 +

q∑
i=1

θiLi)εt, (2)

where L is the lag operator, φi the parameters of the autore-
gressive part, θi the parameters of the moving average part,
and εt the error terms.

3) Neural network: NNs are non-linear circuits whose per-
ceptron (say simple information processors) structure adapts
according to the external or internal information that flows
through the network during the learning phase. Their output
is a linear o non-linear function of the inputs and, therefore,
they have been widely used for predicting non-linear data (as
in STLF [1], [2], [20], [21], [25], [26]). After many tests,
we obtained the best results with a NN design including the
temperature-related variables, the value of the previous hour
(independently of the day type), and the value of the same
hour in the previous same-type day. Moreover, we needed two
hidden layers of 35 and 25 perceptrons each.

4) Bayesian model (b): Bayesian Networks (BN) are proba-
bilistic models for multivariate analysis that extend the Bayes’
theorem. They combine an acyclic directed graph with a
probability distribution functions [29]: the graphical model
represents the set of probabilistic relationships among the
collection of variables modelling the specific problem, whereas
the probability function illustrates on each node the strength
of these relationships or edges in the graph [30]. The research
on BNs has mainly focused on systems with discrete variables,
linear Gaussian models or combinations of both since, except
for linear models, continuous variables pose a problem for
Bayesian networks [31] due to the inherent difficulty of
representing a continuous quantity by an estimated magnitude
and a range of uncertainty [30]. We have tackled this issue by
clustering the values of the load (the variable to be predicted)
for each hour (using Agglomerative Hierarchical clustering
[32]) and then, by calculating the average load for each of
the clusters. In this way, the BN classifies the load into one
of those categories and the exact amount predicted is the
average load of that class (and the error, the difference between
the actual load value and the average load of the assigned
cluster). As with the AR model above, we have designed three
different BNs, one for each type of day. We have included
the weather variables (see next section), type of the day,
load value in the previous hour and load value in the same
hour of the previous same-type day. Furthermore, for each
hour, we re-trained the BN again to include the value of the
last hour, and issued the prediction of the next hour. Finally,
we have performed the structural learning by applying the
PC-Algorithm [33], the Expectation-Maximisation algorithm
[34] for the parametrical learning and the Lauritzen and
Spiegelhalter method for conclusion inference over junction
trees [29] in order to achieve the Bayesian inference (i.e. the
actual prediction). Since BN forecasting is out of the scope
of this paper, we omit a more detailed description due to the
lack of space.

Fig. 1. Average daily load in may 2009.



TABLE I
INFORMATION GAIN ALGORITHM RESULTS OF THE WEATHER VARIABLES.

Variable InfoGain result
dayOfTheWeek 0.667

dayType 0.482
THIZZA 0.216

THIZI 0.216
AirTemperatureZA 0.215
AirTemperatureZI 0.215

WCIZA 0.151
WCIZI 0.151

Rest of weather variables 0

B. Weather influence
We had the following variables to extract the correlations

(please note that, we had 2 weather data sources, Zizurkil
(ZI) and Zarautz (ZA)): DayOfTheWeek, TypeOfDay, Season,
WindDirectionZA, HumidityZA, PrecipitationZA, SigmaDirec-
tionZA, SigmaSpeedZA, AirTemperatureZA, AverageSpeedZA,
WindDirectionZI, HumidityZI, PrecipitationZI, SigmaDirec-
tionZI, SigmaSpeedZI, AirTemperatureZI and AverageSpeedZI.
Moreover, we have calculated two composite variables, namely
the Temperature Humidity Index (THI, also known as dis-
comfort index or effective temperature) and the Wind Chill
Index (Wind Chill Index), which are broadly used by utility
companies in forecasting [4].

THI = Ta − (0.55− 0.55RH)(Ta − 58), (3)

WCI = (10
√
v − V + 10.5)(̇33− Ta), (4)

where Ta is the air temperature in ◦F , RH the relative
humidity in percent, and V the wind speed. In order to weight
the importance of the weather variables in our model, we have
evaluated them with the Information Gain method [35] (widely
used for this purposes [36]), which measures, for each variable,
the expected reduction in entropy that the presence of that
variable causes. Tab. I shows the results obtained; variables
that do not appear in the table obtained a result of 0 (i.e.
not importance at all). As it can be seen, only temperature
and temperature-related variables have a non-negligible weight
but, still, not very important if compared with the non-weather
variables. Anyway, as we will present in the next section,
an statistical method that does no take into account weather
variables, outperforms artificial intelligence models that do.

IV. EXPERIMENTS AND DISCUSSION

We carried out the experiments on a Core 2 SU4100 CPU
with 4GB RAM and a Gentoo Linux up to date. We used 2
different programs: R 2.12.1 compiled from sources with GCC
4.5.2 (Gentoo), and Weka 3.6.4 compiled from sources with
GCC 4.5.2 (Gentoo). We have applied the introduced models
to two different datasets representing the hourly load profile of
1 year. The first one (data set 1), showed quite a non-regular
profile, mostly on Saturdays, with frequent noisy values due
to the construction of the new buildings. The second one
(dataset 2), was much regular and homogeneous. We trained
the ARIMA with all the existing previous data, starting from
the first 12 days of the same type, and forecasted the rest
of the values until the end of the year. The AR didn’t need
training and the NN, contrary to what the literature claims [1],
[2],needed surprisingly exiguous training data: only the last 3

TABLE II
MAPE RESULTS IN DAY-AHEAD FORECASTING WITH DATASET 1 (%).

DataSet 1 Sundays Saturdays Weekdays Average
AR model 12,23 8,53 5,81 8,14
ARIMA 20,21 21,38 17,32 19,13
Neural N 2 5,43 4,45 4,11

Bayesian N 15,99 33,35 18,93 22,75

TABLE III
MAPE RESULTS IN DAY-AHEAD FORECASTING WITH DATASET 2 (%).

DataSet 2 Sundays Saturdays Weekdays Average
AR model 4,12 5,54 3,52 4,26
ARIMA 10,31 25,81 8,09 13,54
Neural N 1,69 5,22 3,33 3,46

Bayesian N 5,58 9,13 5,90 6,87

same day-type and hour values. We believe that the reason
for this phenomenon is that we skipped non-helpful training
data by feeding the NN only with same day-type and hour
values. Regarding the BN, we used 11 of the months in order
to conduct the training (please note that BNs use this process
first to build their graph, and then, to obtain the values for
each node’s probability tables) and the 12th month to issue the
forecasting and evaluate it’s performance (which is common
usus in this field). We acknowledge that this methodology
may bias the results positively (if that 12th month happens
to be a regular average one) or negatively (if heterogeneous
and odd). In order to achieve a proper comparison with the
other models, the BN should be trained and then tested with
predictions over a whole year (we will accomplish this when
we have the data). Finally, we re-trained the corresponding
BN after each forecast to include the last predicted value and
the actual one, in order to keep it constantly up-to-date. In
any case, we issued the predictions hour by hour, comparing
the predicted results with the real consumption values and
computing the Mean Absolute Percentage Error (MAPE). We
have selected this error measure to evaluate the performance of
the models since it is unit free; this is, it allows comparing the
forecasting errors from different measurement units. Moreover,
it is the most widely used error measure in forecasting [20].
It is calculated as follows:

MAPE =
1

N

N∑
i=1

‖Cr(i)− Cp(i)‖
Cr(i)

× 100, (5)

where N is the total number of samples, in this case 24 hours,
Cp(i) is the predicted value of the load and Cr(i) the actual
one. Tab. II shows the results of the day-ahead forecasting with
dataset 1. Please note that we predicted hour by hour a day,
computing the corresponding MAPEs, and the one presented
in the table is the average value of all the forecasts. Similarly,
Tab. III presents the results for the day-ahead forecasting with
dataset 2.

As it can be seen, the results with data set 1 are poor
everywhere, except for the performance achieved by the AR
model in weekdays (5,81%) and the exceptionally good marks
of the NN in Sundays (2%). The AR manages to capture the
typical consumption curve and only fails in the very odd values
(i.e. those 5,81%); the nice results of the NN responds to
the following reason: the construction works took place on
Sundays only in some months and it succeeded to somehow
distinguish which month did have works and which not.



TABLE IV
MAPE RESULTS IN 2-DAYS-AHEAD FORECASTING WITH DATASET 1 (%).

DataSet 1 Sundays Saturdays Weekdays Average
AR model 19,79 14,10 9,43 13,26
ARIMA 19,24 13,26 9,76 13,05
Neural N 15,88 19,40 11,01 14,46

TABLE V
MAPE RESULTS IN 2-DAYS-AHEAD FORECASTING WITH DATASET 2 (%).

DataSet 2 Sundays Saturdays Weekdays Average
AR model 8,11 10,29 6,17 7,86
ARIMA 12,04 24,47 9,14 14,62
Neural N 8,28 12,18 7,63 9,12

The ARIMA model shows overall a very poor performance,
specially with the noisy data period (dataset 1). The Bayesian
network performs acceptably good with a regular dataset but
fails when predicting the heterogeneous one. The reason is
the clustering of the values to be predicted: data too scarce
and different is more difficult to be grouped into a number
of homogeneous clusters. The Neural network suffers less
from the noisy data or, at least, it shows less difference in
the performance with both datasets. Moreover, it obtains on
Sundays of dataset 2 a value (1,69%) that stays very close from
the best record in the literature (1,51%), showing that it is the
best choice when modelling data with slight changes (as it is
the case in this dataset). Finally, the AR model shows the best
overall performance, with very acceptable marks, specially
with normal data.

The best record to our knowledge in short-term load fore-
casting presented a MAPE of the 1.53 % [37]. According to
[1], simply the reduction of the 1% in the average forecast
error may save hundreds of thousands or even millions of
dollars. In our problem domain, non-residential buildings,
this possibility is not plausible since an 1% error may be a
deviation of some kW. Hence, [20] accomplished a 1,945%
(two points above the AR model in dataset 2, only a 1,31%
difference if we take just weekdays) using a neural network
(as in the case of [37]), with all the problems aforementioned
that NN present (for instance, [37] uses a fuzzy set-based
classification algorithm to improve the classification ability of
their NN). Still, Neural networks (also Bayesian networks)
offer a worse trade-off between the difficulty of design,
parametrisation, etc., and the performance, in comparison, for
instance, with time series.

In the next experiment, we have tested the models when
predicting not the next hour but for the next hour of the next
day (i.e. day ahead prediction). Tab. IV shows these results
with dataset 1 and Tab. V with dataset 2 (since the BN model
performed poorly, we skip it’s results).

In 2-days-ahead prediction, all maintain their day-ahead be-
haviour: very bad in the case of ARIMA, and better in ARIMA
and AR, with a meritorious 5,75% MAPE in weekdays (it fails
in weekends, specially in Sundays). According to these results,
it seems that the NN degrades quite quickly (MAPE average
with dataset 1 from 6,35 to 14,46%, dataset 2 from 4,86 to
9,12%), where the AR model holds better. In order to further
test it’s performance, we have further tested it with dataset
2 to predict 3, 4, 5, and 6 days ahead. Tab. VI shows these
results.

As we see, the degradation is much worse in Saturdays

TABLE VI
AR MODEL PERFORMANCE (MAPE) IN >2 DAY-AHEAD FORECASTING.

Sundays Saturdays Weekdays
3 days ahead 16,03 17,21 9,53
4 days ahead 17,91 18,83 11,69
5 days ahead 19,32 19,10 11,54
6 days ahead 22,89 19,96 12,32

and Sundays than in weekdays where, even 6 days ahead,
remains acceptably accurate (obviously, depending on the
actual scenario). Therefore, taking into account the results
shown in Tabs. II,III, IV, V, and Tab.VI, we can conclude
that the time series model fits the requirements we set out in
Section I.

V. CONCLUSION

The old picture in which generation, distribution, and retail
of energy (sometimes even transport) was under the auspices
of a single company belongs to the past century in many
countries. In Europe, the Directive 96/92/EC provided for the
legal unbundling of the Transmission Systems and Distribution
Systems operations and designed a clear route-map to establish
a wholesale electricity market for electricity generation and a
retail electricity market for electricity retailing. Allegedly, it
would contribute to cheapen the overall cost of energy (the
same Directive for the gas sector was approved two years later,
98/30/EC). Moreover, energy cannot be stored or held in stock
(as tangible goods can) and the power grid must maintain a
balance on real-time between the amount electricity produced
and consumed. Otherwise, the risk of a blackout cannot by
overseen, both caused by defect or excess of energy in the
grid (i.e. production does not equal consumption). In this way,
being the demand of energy stochastic per se, all participants
in this new scenario must deal with the problem of forecasting
at least at the short-run the amount of energy they will have
to generate, transport, distribute, and so on.

Research on STLF usually follows two different paths.
On the one hand, it handles the demand as a global aspect
associated to a territory or country; therefore, this branch
is specially suited for generators and Transmission System
Operators. On the other hand, it focuses on predicting the
demand of minor units (say a company, a village, a building
or group of. . . ), which, as we have seen, may help the whole
electricity chain, from producers to the client itself. Our work
goes in this latter direction, centred in non-residential buildings
due to their stable and activity-dependent load profile. We
have shown that the activity, which is the stochastic fact that
introduces the non-linearity on the load (and which yields it
so difficult to forecast), can be best represented by the work
day schedule. Further, we have also demonstrated that weather
has negligible influence on the load, since a method that does
not take it into account outperformed the rest who did.

In our experience, a forecasting method for non-residential
buildings should be simple and require no difficult trial-and-
error customisation. Moreover, it should be able to work with
any or sparse historical data, taking into account that the
load data is also susceptible to evolve over time. Finally,
it should be as accurate as possible. Under these premises,
we have tested several statistical and artificial intelligence
methods, namely an Autoregressive model, an ARIMA model,



a Neural network, and a Bayesian network. Our experiments
have shown that a classification using the work day schedule,
and a curve adapting by means of an autoregressive time
series suffices to answer the proposed requirements with an
acceptable prediction accuracy maintained if we extend the
prediction horizon even to 6 days.

Future works will focus first on testing other statistical
methods that explicitly includes exogenous variables (to add
temperature or THI values) such as ARMAX (Autoregressive
moving average model with exogenous inputs model) or
NARX (nonlinear autoregressive exogenous model), as well as
SVMs (Support Vector Machines), though they usually show
poorer results than NNs in this domain [1]. Moreover, we will
investigate why the performance of the BN is much worse
with noisy data and will use a different clustering technique
(most likely a dynamic one) to this end. We will also test the
BN with one whole year data, so the results are comparable to
the rest. We will also explore the possibility of combining the
NN with the AR model, applying one or another depending
the day-type and the nature of the load profile. Finally, we
plan tackle (normal) short-term load forecasting by applying
the same strategy as here to avoid the non-linearity (i.e. use
the work-day schedule to predict the day type). In STLF there
is no concern for simplicity but new problems arise (such as
computing resources required, computing time, etc.).
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