
 1

Short-Term Load Forecasting Methods:  
An Evaluation Based on European Data  

J. W. Taylor and P. E. McSharry, Senior Member, IEEE  

IEEE Transactions on Power Systems, 22, 2213-2219, 2008. 

 
Abstract-- This paper uses intraday electricity demand data 

from 10 European countries as the basis of an empirical 
comparison of univariate methods for prediction up to a day-
ahead. A notable feature of the time series is the presence of both 
an intraweek and an intraday seasonal cycle. The forecasting 
methods considered in the study include: ARIMA modeling; 
periodic AR modeling; an extension for double seasonality of 
Holt-Winters exponential smoothing; a recently proposed 
alternative exponential smoothing formulation; and a method 
based on the principal component analysis (PCA) of the daily 
demand profiles. Our results show a similar ranking of methods 
across the 10 load series. The results were disappointing for the 
new alternative exponential smoothing method and for the 
periodic AR model. The ARIMA and PCA methods performed 
well, but the method that consistently performed the best was the 
double seasonal Holt-Winters exponential smoothing method.  
 

Index Terms— Electricity demand forecasting, exponential 
smoothing, principal component analysis, ARIMA, periodic AR. 

I.  INTRODUCTION 
LECTRICITY demand forecasting is of great importance 
for the management of power systems. Long-term 

forecasts of the peak electricity demand are needed for 
capacity planning and maintenance scheduling [1]. Medium-
term demand forecasts are required for power system 
operation and planning [2]. Short-term load forecasts are 
required for the control and scheduling of power systems. 
Short-term forecasts are also required by transmission 
companies when a self-dispatching market is in operation. 
There are several such markets in Europe and the US. For 
example, in Great Britain, one hour-ahead forecasts are a key 
input to the balancing market, which operates on a rolling one 
hour-ahead basis to balance supply and demand after the 
closure of bi-lateral trading between generators and suppliers 
[3, 4]. More generally, error in predicting electricity load has 
significant cost implications for companies operating in 
competitive power markets [5]. 

It is well recognized that meteorological variables have a 
very significant influence on electricity demand (see, for 
example, [6]). However, in online short-term forecasting 

                                                           
J. W. Taylor is with the Saïd Busincess School, University of Oxford, Park 

End Street, Oxford OX1 1HP, UK (e-mail: james.taylor@sbs.ox.ac.uk). 
P. E. McSharry is with the Department of Engineering Science, University 

of Oxford, Parks Road, Oxford OX1 3PJ, UK  (corresponding author; tel: 44-
1865-273095; fax: 44-1865-273905; e-mail: patrick@mcsharry.net).  

systems, multivariate modeling is usually considered 
impractical [7]. In such systems, the lead times considered are 
less than a day-ahead, and univariate methods can be 
sufficient because the meteorological variables tend to change 
in a smooth fashion, which will be captured in the demand 
series itself. Indeed, univariate models are often used for 
prediction up to about four to six hours ahead, and, due to the 
expense or unavailability of weather forecasts, univariate 
methods are sometimes used for longer lead times.  

In a recent study [8], methods for short-term load 
forecasting are reviewed, and two intraday load time series are 
used to compare a variety of univariate methods. One of the 
aims of this paper is to validate the results of that study. It 
concluded that a double seasonal version of Holt-Winters 
exponential smoothing was the most accurate method, with a 
new approach based on principal components analysis (PCA) 
also performing well. Using time series of intraday electricity 
demand from 10 European countries, we empirically compare 
the better methods identified in [8] and also the following two 
new candidate methods: an intraday cycle exponential 
smoothing method (see [9]), and a new periodic AR approach, 
which we believe has not previously been considered for 
electricity demand forecasting. All of the methods are 
specifically formulated to deal with the double seasonality that 
typically arises in demand data. This seasonality involves 
intraday and intraweek seasonal cycles. 

Artificial neural networks (ANNs) have featured 
prominently in the load forecasting literature (see [10]). Their 
nonlinear and nonparametric features have been useful for 
multivariate modeling in terms of weather variables. However, 
their usefulness for univariate short-term load prediction is 
less obvious. Indeed, the results in [8] for the ANN were not 
competitive. Although we accept that a differently specified 
neural network may be useful for univariate load modeling, in 
this paper, for simplicity, we do not include an ANN. We 
would hope that the better performing methods in our study 
can serve as benchmarks in future studies with ANNs. 

The paper is structured as follows: Section II describes the 
electricity demand data; Section III describes the methods 
included in the study; Section IV presents the post-sample 
results of a comparison of the short-term forecasts with lead 
times up to one day ahead; and Section V summarises the 
results and concludes the paper. 
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II.  THE 10 EUROPEAN ELECTRICITY DEMAND SERIES 
Our dataset consisted of intraday electricity demand from 

10 European countries for the 30 week period from Sunday 3 
April 2005 to Saturday 29 October 2005. We obtained half-
hourly data for six of the countries, and hourly data for the 
remaining four. The first 20 weeks of each series were used to 
estimate parameters and the remaining 10 weeks to evaluate 
post-sample accuracy of forecasts up to 24 hours ahead. For 
the half-hourly series, this implies 6,720 observations for 
estimation and 3,360 for evaluation. For the hourly series, 
3,360 observations were used for estimation and 1,680 for 
evaluation. We represent the lengths of the intraday and 
intraweek cycles as s1 and s2, respectively. For the half-hourly 
demand series, s1 = 48 and s2 = 336, and for the hourly series 
s1 = 24 and s2 = 168. 

Electricity demand on “special days”, such as bank 
holidays, is very different to normal days and can give rise to 
problems with online forecasting systems. In practice, 
interactive facilities tend to be used for special days, which 
allow operator experience to supplement or override the 
standard forecasting system. In our study, we smoothed out 
these unusual observations by taking averages of observations 
from the corresponding period in the two adjacent weeks.  

 
TABLE I 

MEAN LOAD AND POPULATION FOR THE 10 COUNTRIES. 
 

 Mean load 
(GW) 

Population 
(million) 

Mean load (W) 
per capita 

Half-Hourly    

     Belgium 9.4 10.4 906 

     Finland 8.3 5.2 1,588 

     France 47.8 60.9 786 

     Great Britain 36.0 58.9 611 

     Ireland 2.9 4.1 711 

     Portugal 5.2 10.6 492 

Hourly    

     Italy 32.7 58.1 563 

     Norway 12.0 4.6 2,599 

     Spain 25.5 40.4 630 

     Sweden 14.5 9.0 1,608 

 
Table I lists the 10 countries along with the mean electricity 

demand for the 30 week period and, in order to give a feel for 
the size of the countries, we also list their respective 
populations. For illustrative purposes, in Fig. 1, we plot the 
time series for France, Finland and Ireland. The decrease in 
French demand during August is due to the summer vacation. 
The Irish series maintains a relatively constant level 
throughout the 30 week period. By contrast, the Finnish data 
shows a temporary level shift in the first half of the series. 
This was due to inactivity in the paper industry, which was 
caused by a large conflict in contract negotiations between the 
workers and employers. 
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Fig. 1.  Half-hourly electricity demand in France, Finland and Ireland from 
Sunday, 3 April 2005 to Saturday, 29 October 2005. 

 
Fig. 2 shows the French series for the fortnight in the 

middle of the 30 week period. This graph shows a within-day 
seasonal cycle of duration s1=48 periods and a within-week 
seasonal cycle of duration s2=336 periods. The weekdays 
show similar patterns of demand, whereas Saturday and 
Sunday have different levels and profiles. The intraweek and 
intraday features in Fig. 2 are typical of those in all 10 series. 
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Fig. 2.  Half-hourly electricity demand in France from Sunday, 10 June 2005 
to Saturday, 23 June 2005. 

III.  FORECASTING METHODS 

A.  Simplistic Benchmark Methods  
We implemented two naïve benchmark methods. The first 

was a seasonal version of the random walk, which takes as a 
forecast the observed value for the corresponding period in the 
most recent occurrence of the seasonal cycle. With two 
seasonal cycles, it seems sensible to focus on the longer cycle, 
so that the prediction is constructed simply as the observed 
value for the corresponding period in the previous week. The 
forecast function is written as , where y

2
)(ˆ sktt yky −+= t is the 

demand in period t, and k is the forecast lead time (k≤ s2). The 
second simplistic benchmark that we used was the simple 
average of the corresponding observations in each of the 
previous four weeks. For this method, the forecast function is 

( ) 4)(ˆ
2222 432 sktsktsktsktt yyyyky −+−+−+−+ +++= .  
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B.  Seasonal ARMA Modeling 
Double seasonal ARMA models are often used as 

benchmarks in load forecasting studies (e.g. [1], [8], [11], 
[12]). For each of the 10 load series, we followed the Box-
Jenkins methodology to identify the most suitable model 
based on the estimation sample of 20 weeks. We considered 
differencing, but the resultant models had weaker diagnostics 
than models fitted with no differencing. The multiplicative 
double seasonal ARMA model (see [13], p. 333) can be 
written as 

( ) ( ) ( )( ) ( ) ( ) ( ) t
s

Q
s
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P
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where c is a constant term; L is the lag operator; εt is a white 
noise error term; φp, , , θ

1PΦ
2PΩ q,  and 

1QΘ
2QΨ  are 

polynomial functions of orders p, P1, P2, q, Q1 and Q2, 
respectively. The model can be expressed as 
ARMA .  

21
),(),(),( 2211 ss QPQPqp ××

We estimated the models using maximum likelihood with 
the likelihood function based on the standard Gaussian 
assumption. We considered lag polynomials up to order three. 
This choice was made arbitrarily, but it is consistent with 
other load forecasting studies, and it was supported by 
experimentation with several of the series. We based model 
selection on the Schwarz Bayesian Criterion, with the 
requirement that all parameters were significant (at the 5% 
level).  

 

C.  Periodic AR Models  
In intraday electricity demand time series, the intraday 

seasonal cycle is usually reasonably similar for the five 
weekdays, but quite different for the weekends. This implies 
that the autocorrelation at a lag of one day is time-varying 
across the days of the week. Such time-variation cannot be 
captured in the seasonal ARMA model described in the 
previous section. A class of models that can capture this 
feature is periodic ARMA models. In these models, the 
parameters are allowed to change with the seasons [14]. Such 
models have been shown to be useful for modelling economic 
data (e.g. [15]). In the electricity context, periodic models 
have been considered with some success in studies 
investigating methods for forecasting intraday net imbalance 
volume [4] and daily electricity spot prices [16].  

To assess the potential for periodic ARMA models, we 
examined whether the autocorrelation at a specified lag 
exhibited variation across the periods of the day or the week. 
For example, for the half-hourly French series, Fig. 3 shows 
how the autocorrelation at lag s1=48 varies across the s2=336 
half-hours of the week. The first period of the x-axis 
corresponds to the first period on a Sunday. The 
autocorrelation values were calculated from just the 20-week 
in-sample period. Although the sample size is not sufficiently 
large to conclude with confidence, the variation in the 
autocorrelation in this plot, and in similar graphs for the other 
series, suggested to us that there was some appeal in 
estimating periodic ARMA models for our data.  

Studies have shown that periodic MA terms are 
unnecessary (see [14], p. 28), and so for simplicity, in our 
work, we considered only periodic AR models. More 
specifically, we estimated models with periodicity in the 
coefficient of AR terms of lag s1. The formulation for this 
method is presented in the following expressions: 
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d(t) and w(t) are repeating step functions that number the 
periods within each day and week, respectively. For example, 
for the half-hourly series, d(t) counts from 1 to 48 within each 
day, and w(t) counts from 1 to 336 within each week. ω, λi, νi, 
κi, υi, 1φ  and 

2sφ are constant parameters. The periodic 

parameter, ( )ts1
φ , uses a similar flexible fast Fourier form to 

that employed in an analysis of the volatility in intraday 
financial returns [17]. For simplicity, we arbitrarily chose to 
sum from i=1 to 4 for all 10 series. The parameters were 
estimated using maximum likelihood. 
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Fig. 3.  For the in-sample period of the France series, lag 48 autocorrelation 
estimated separately for each period of the week. 

D.  Double Seasonal Holt-Winters Exponential Smoothing 
Exponential smoothing has found widespread use in 

automated applications, such as inventory control. The 
seasonal Holt-Winters method has been adapted in order to 
accommodate the two seasonal cycles in electricity demand 
series [18]. This involves the introduction of an additional 
seasonal index and an extra smoothing equation for the new 
seasonal index. The multiplicative formulation for the double 
seasonal Holt-Winters method is given in the following 
expressions: 

1)1())((
21 −−− −+= tststtt lwdyl αα         (1) 

12
)1())(( ststttt dwlyd −− −+= δδ           (2) 

21
)1())(( ststttt wdlyw −− −+= ωω          (3) 

( )( )
2121 1)(ˆ ststtt

k
kstksttt wdlywdlky −−−+−+− −+= φ      (4) 

where lt is the smoothed level; dt and wt are the seasonal 
indices for the intraday and intraweek seasonal cycles, 
respectively; α, δ and ω are the smoothing parameters; and 
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)(ˆ kyt  is the k step-ahead forecast made from forecast origin t 

(where k ≤ s1). The term involving the parameter φ, in the 
forecast function (4), is a simple adjustment for first-order 
autocorrelation. A trend term was included in the original 
formulation, but we found it not to be of use for our 10 series.  

An important point to note regarding the double seasonal 
Holt-Winters exponential smoothing approach is that, by 
contrast with ARIMA modeling and the majority of other 
approaches to short-term demand forecasting, there is no 
model specification required. This gives the method strong 
appeal in terms of simplicity and robustness. 

The initial smoothed values for the level and seasonal 
components are estimated by averaging the early observations. 
The parameters are estimated in a single procedure by 
minimizing the sum of squared one step-ahead in-sample 
errors. We constrained the parameters to lie between zero and 
one. The resultant parameters for the 10 load series are 
presented in Table II. For many of the series, the value of φ is 
very high and the value of α is very low indicating that the 
adjustment for first-order autocorrelation has, to a large 
degree, made redundant the smoothing equation for the level. 
It is also interesting to note that, for a given series, the values 
are similar for the two smoothing parameters, δ and ω , for the 
seasonal indices. We also implemented a version of the 
method with the optimized values of δ and ω  constrained to 
be identical, and with α=0 so that the level was set as a 
constant value equal to the mean of the in-sample 
observations. This formulation delivered predictions only 
marginally poorer than the full method given in expressions 
(1) to (4). This is somewhat surprising, given that this 
reformulation of the method involves just two parameters.  

 
TABLE II 

FOR EACH OF THE 10 LOAD SERIES, PARAMETERS OF THE 
HOLT-WINTERS METHOD FOR DOUBLE SEASONALITY. 

From a theoretical perspective, exponential smoothing 
methods can be considered to have a sound basis as they have 
been shown to be equivalent to a class of state space models 
[19]. The double seasonal Holt-Winters formulation of 
expressions (1) to (4) can be expressed as a single source of 

error state-space model. This model can be used as the basis 
for producing prediction intervals. The motivation that led us 
to consider periodic AR models prompted us to also consider 
periodicity in the parameters of the double seasonal Holt-
Winters method. Disappointingly, this did not lead to 
improved accuracy, and so for simplicity we do not report 
these further results in Section IV. The issue of periodicity is 
addressed in the next section in an alternative exponential 
smoothing formulation that has recently been proposed. 

E.  Intraday Cycle Exponential Smoothing Model for Double 
Seasonality 

A feature of the double seasonal Holt-Winters method is 
that it assumes the same intraday cycle for all days of the 
week, and that updates to the smoothed intraday cycle are 
made at the same rate for each day of the week. An alternative 
form of exponential smoothing for double seasonality is 
presented by Gould et al. in [9]. It allows the intraday cycle 
for the different days to be represented by different seasonal 
components. In addition, it allows the different seasonal 
components to be updated at different rates by using different 
smoothing parameters.  

Our implementation of the method of Gould et al. involves 
the seasonality being viewed as consisting of the same 
intraday cycle for the five weekdays and a distinct intraday 
cycle for Saturday and another for Sunday. The days of the 
week are thus divided into three types: weekdays, Saturdays 
and Sundays. By contrast with double seasonal Holt-Winters, 
there is no representation in the formulation for the intraweek 
seasonal cycle. Due to its focus on intraday cycles, we term 
this method ‘intraday cycle exponential smoothing’. For any 
period t, the latest estimated values of the three distinct 
intraday cycles are given as c1t, c2t and c3t, respectively. The 
formulation requires three corresponding dummy variables, 
x1t, x2t and x3t, defined as follows: 

⎩
⎨
⎧

=
otherwise0

typeofdayainoccursperiodtimeif1 jt
x jt

 

Gould et al. present their approach in the form of a state 
space model, and we follow this convention in our 
presentation of the model in expressions (5) to (7): 
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where lt is the smoothed level; εt is an error term; and α and 
the γij are the smoothing parameters. (Expressions (6) and (7) 
can easily be rewritten as recursive expressions, which is the 
more widely used form for exponential smoothing methods.) 
As with the double seasonal Holt-Winters method, we 
estimated the initial smoothed values for the level and 
seasonal components by averaging the early observations. The 
parameters were estimated in a single procedure by 
minimizing the sum of squared one step-ahead in-sample 

 α δ ω φ 

Half-Hourly     

     Belgium 0.043 0.146 0.175 0.820 

     Finland 0.000 0.083 0.153 0.996 

     France 0.004 0.249 0.231 0.987 

     Great Britain 0.002 0.316 0.168 0.970 

     Ireland 0.009 0.227 0.153 0.910 

     Portugal 0.094 0.201 0.210 0.771 

Hourly     

     Italy 0.039 0.271 0.281 0.944 

     Norway 0.039 0.126 0.151 0.863 

     Spain 0.036 0.193 0.217 0.871 

     Sweden 0.022 0.223 0.134 0.928 
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errors. All parameters were constrained to lie between zero 
and one.  

The γij can be viewed as a 3×3 matrix of parameters that 
enables the three types of intraday cycle to be updated at 
different rates. It also enables intraday cycle of type i to be 
updated even when the current period is not in a day of type i.  

Several restrictions have been proposed for the matrix of γij 
parameters (see [9]). We included in our empirical study two 
forms of the method; one involved estimation of the matrix of 
γij parameters with the only restriction being that the 
parameters lie between zero and one, and the other involved 
the additional restrictions of common diagonal elements and 
common off-diagonal elements. Gould et al. note that these 
additional restrictions lead to the method being identical to the 
double seasonal Holt-Winters method of expressions (1) to 
(4), provided seven distinct intraday cycles are used, instead 
of three, as in our study. In our discussion of the post-sample 
forecasting results in Section IV, we refer to this second form 
of the model as the restricted form. 

We found that the results were substantially improved with 
the inclusion of the adjustment for first-order autocorrelation 
that was used in expression (4) of the double seasonal Holt-
Winters method. In Section IV, we report only the results for 
this improved form of the intraday cycle method. 
 

F.  A PCA-Based Method 
PCA provides a means of reducing the dimension of a 

multivariate data set to a smaller set of orthogonal variables. 
These new variables are linear combinations of the original 
variables. They are uncorrelated and explain most of the 
variation in the data, and, for this reason, they are commonly 
refereed to as principal components. A method based on PCA 
has recently been proposed for short-term load forecasting [8]. 
The method aims to capture the intraday variation in 
electricity demand, and it can be viewed as a development of 
the approach where a separate model is built for each of the s1 
periods of the day (see, for example, [20]). The method 
exploits the similarity between intraday observations in order 
to reduce the number of models to be considered. Note that 
this approach could easily be extended to the multivariate 
case, if weather related variables were available. 

In this section, we present only an overview of the method, 
as details are provided in [8]. The method proceeds by 
arranging the observations as an (nd×s1) matrix, Y, where nd is 
the number of days in the estimation sample. Each column 
contains observations for a particular intraday period. PCA is 
applied to the columns of Y to deliver components that are 
columns of a new (nd×s1) matrix. For each component, a 
regression model is built using day of the week dummies and 
quadratic trend terms. The models are then used to deliver a 
day-ahead forecast for each component. Load predictions are 
created by projecting forecasts of the components back onto 
the Y space. The method is refined, and speeded up, by 
focusing attention on just the principal components. Cross-
validation is used to optimise two parameters: the number of 

principal components and the length of the training period 
used in the PCA. In our study, the cross-validation employed 
the first half of the 20 week in-sample period for estimation 
and the second half for evaluation. We set, as optimal 
parameters, those delivering the minimum sum of squared one 
step-ahead forecast errors for the training data.  

The errors resulting from this method exhibit serial 
correlation. As for the Holt-Winters exponential smoothing 
method, the method benefits by the addition of an AR model 
of the error process. It is worth noting that in [20] an error 
model was also employed in order to correct for serial 
correlation resulting from the use of separate models for each 
hour of the day. Let Et(k) be the prediction error associated 
with a k step-ahead forecast made from origin t. The error-
correction model is of the following form: 

    )1()()()()()( 1210 1 −− ++= tstt EkkEkkkE ααα  

where the αl(k) are parameters estimated separately for each 
lead time, k, using LS regression applied to the estimation 
sample. Finally, with this model specification that now 
includes the error correction term above, cross-validation is 
used to optimise the number of principal components and the 
length of the training period used in the PCA. For each of our 
10 load series, the optimal values are presented in Table III.  
 

TABLE III 
FOR THE PCA METHOD, THE OPTIMAL NUMBER OF TRAINING WEEKS AND 

NUMBER OF PRINCIPAL COMPONENTS FOR THE 10 LOAD SERIES. 
 

 Number of training 
weeks 

Number of principal 
components  

Half-Hourly   

     Belgium 7 12 

     Finland 9 9 

     France 4 9 

     Great Britain 8 12 

     Ireland 8 10 

     Portugal 8 9 

Hourly   

     Italy 3 5 

     Norway 8 6 

     Spain 10 7 

     Sweden 8 6 

IV.  POST-SAMPLE FORECASTING RESULTS 
We evaluated post-sample forecasting performance from 

the various methods using the mean absolute percentage error 
(MAPE) and the mean absolute error (MAE). Having 
calculated the MAPE for each method at each forecast 
horizon, we then summarized each method’s performance by 
averaging the MAPE across the 10 load series. For the half-
hourly series, MAPE values were available for 48 half-hour 
lead times, while, for the hourly data, forecasts were 
obviously only available for 24 hourly lead times. In order to 
average across all the series, we focused only on the 24 hourly 
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lead times. The resulting Mean MAPE values are presented in 
Fig. 4. Averaging MAE values across the 10 series did not 
seem sensible because the values tended to be substantially 
higher for the series corresponding to higher levels of 
electricity demand. In view of this, for each method, we 
summarized the MAE performance across the 10 series by 
averaging, for each lead time, the ratio of the method’s MAE 
to the MAE of the seasonal random walk benchmark method. 
The relative performances of the methods according to this 
measure were very similar to those for the Mean MAPE. In 
view of this, we do not plot this additional measure here. We 
also evaluated the methods using the root mean squared 
percentage error and root mean squared error, but we also do 
not report these results because the relative performances of 
the methods for these measures were very similar to those for 
the MAPE. 

Fig. 4.  For the 10 load series, mean MAPE plotted against lead time. 
 
The first point to note is that Fig. 4 does not show the 

results for the second simplistic benchmark method that 
involved the simple average of the corresponding observations 
in each of the previous four weeks. The results for this method 
were poorer than those for the seasonal random walk, and so 
for simplicity we opted to omit the results from the figure. 
Turning to the more sophisticated methods, the figure shows 
the double seasonal Holt-Winters method performing the best, 
followed by the PCA method and then seasonal ARMA. Of 
the two versions of the intraday cycle exponential smoothing 
method, the restricted form appears to be better, which is 
consistent with the results in [9]. However, the results for both 
forms of this method are disappointing. This is also the case 
for the periodic AR method. Our view is that there is strong 
potential for the use of some form of period model, but that a 
longer time series may be needed to estimate the periodicity in 

the parameters. With regard to Fig. 3, the use of only 20 
weeks of data implies that only 19 observations were available 
to estimate the intraweek cyclical pattern in the 
autocorrelation for a given lag. In a similar way, 20 weeks of 
data is perhaps too little to provide adequate estimates of 
periodic model parameters.  

We should also comment that the ranking of the methods 
was really quite stable across the 10 series, and that the double 
seasonal Holt-Winters method was consistently the best 
regardless of the error measure used for evaluation. For the 
Finland load series, which, as shown in Fig. 1, contains level 
shifts in the estimation period, the post-sample MAPE values 
were relatively high for all methods. However, it is interesting 
to note that, for this series, the ranking of the methods was 
similar to that shown in Fig. 4. 

As we explained in Section I, univariate methods tend to 
only be used for predicting load up to lead times of about four 
to six hours. In Fig. 5, we focus more closely on the post-
sample three hour-ahead results for the three methods that 
performed the best in Fig. 4. Fig. 5 shows the three-hour 
ahead Mean MAPE results plotted against time of day. The 
largest Mean MAPE values occur for all three methods around 
8am, and this is because, around this time of day, demand 
tends to be changing more rapidly than at other periods of the 
day. The plot shows the double seasonal Holt-Winters method 
dominating at almost all periods of the day. The results for the 
other two methods are much closer, with the seasonal ARMA 
method matching the PCA method except for the periods 
around 8am. 0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 3 6 9 12 15 18 21 24
Forecast horizon (hours)

Mean MAPE

Seasonal Random Walk

Intraday Cycle Exp Sm - unrestricted

Periodic AR

Intraday Cycle Exp Sm - restricted

Seasonal ARMA

PCA

Double Seasonal Holt Winters Exp Sm

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time of Day

Mean MAPE

Seasonal ARMA

PCA

Double Seasonal Holt Winters Exp Sm

Fig. 5.  For three hour-ahead prediction, Mean MAPE for the 10 load series 
plotted against time of day. 

V.  SUMMARY AND CONCLUDING COMMENTS 
In this paper, we have used 10 time series of intraday 

electricity demand to compare empirically a number of 
univariate short-term forecasting methods. One of the aims of 
the paper has been to validate the findings in [8] using a 
substantially larger dataset. In addition to the methods that 
performed well in that study, we have also considered the 
intraday cycle exponential smoothing method (see [9]) and a 
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new periodic AR approach. Our results confirm the findings 
in [8]. All the sophisticated methods outperformed the two 
naïve benchmark methods, and the best performing method 
was double seasonal Holt-Winters exponential smoothing, 
followed by the method based on PCA, and then seasonal 
ARMA. The results for the new intraday exponential 
smoothing method and for the periodic AR model were a little 
disappointing. We suspect that the performance of the 
periodic AR model may improve with use of a longer time 
series. Our reasoning is that just 20 weeks of data may well be 
insufficient to capture the intraweek periodicity in a 
parameter. The same comment can also be applied to the 
intraday cycle exponential smoothing method because the 
approach involves the estimation of a relatively complex 
parameterization, which enables a form of periodic smoothing 
parameter. 

The success of the double seasonal Holt-Winters 
exponential smoothing method is impressive, particularly in 
view of the method’s simplicity. Ongoing work is aiming to 
gain insight into the method, with particular focus on the 
implication of including the autoregressive error correction 
term within the formulation. In terms of advising practitioners, 
the double seasonal Holt-Winters method would seem to be 
very attractive, as it is simple to understand and implement, 
and it has been shown to be accurate for short-term load 
prediction. Furthermore, the method is also appealing because 
of the existence of an underlying statistical model, which 
enables the calculation of prediction intervals. Finally, we 
should acknowledge that, if weather predictions are available, 
weather-based load forecasting methods may well be more 
accurate beyond about four to six hours ahead. However, for 
shorter lead times, the better of the univariate methods 
considered in this paper should be competitive. In addition, 
the univariate methods have strong appeal, in terms 
robustness, for online load prediction.  
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