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Abstract 

 
Short term load forecasting is very essential to the 

operation of electricity companies. It enhances the 
energy-efficient and reliable operation of power 
system. Artificial neural networks have long been 
proven as a very accurate non-linear mapper. ANN 
based STLF models generally use Back propagation 
algorithm which does not converge optimally & 
requires much longer time for training, which makes it 
difficult for real-time application. In this paper we 
propose a smaller MLPNN trained by Genetic 
algorithm & Particle swarm optimization. The GA 
training gives better accuracy than BP training, where 
as it takes much longer time. But the PSO training 
approach converges much faster than both the BP and 
GA, with a slight compromise in accuracy. This looks 
to be very suitable for real-time implementation. 

 
1. Introduction 
 

Short term load forecasting is a time series 
prediction problem. It analyzes the pattern of future 
electrical load. The information is very crucial to 
determine hydro-thermal generation mixture, to allot 
transmission corridor, to decrease over all loss of grid, 
and to increase operational efficiency.  

The load is decomposed into two components. One 
is weather dependent, and the other is weather 
independent. Each component is modeled separately 
and the sum of these two gives the total load forecast. 
The behavior of these two controls the total load 
pattern. The behavior of weather independent load is 
mostly represented by Fourier series or trend profiles 
in terms of the time functions. The weather sensitive 
portion of the load is arbitrarily extracted and modeled 
by a predetermined functional relationship with 
weather variables. 

Feed forward neural net structures like multi layer 
perceptron, functional link, wavelet, recurrent or 
feedback structures like Hopfield, Elman, Multi 

Feedback & hybrid structures using fuzzy neural 
networks have been proposed in many papers with 
very high degree of predictive accuracy. But many of 
those papers have been tested on Macky-Glass series 
or some other smooth differentiable functions rather 
than actual load data. Actual load data putforths many 
challenges  to design a predictive neural net structure 
Prominent of those challenges are, data pre-processing, 
input parameter selection, type of neural net structure 
selection, computational complexity and training 
algorithm Computational complexity is dependent on 
the structural complexity and training algorithm. 
Unlike back propagation genetic algorithm and particle 
swarm optimization training processes are 
computationally less intensive, and reason there of are 
explained in subsequent sections. For real time 
implementations, it is imperative that the structure 
should have minimal number of neurons and procedure 
of training method should have minimal number of 
computations. Considering all the above facts GA and 
PSO are definitely the ideal candidates for real time 
implementation. All most all the papers are silent about 
this. 

This paper highlights the suitability of PSO over 
GA for real time implementation.  

     Following this introduction the remaining paper 
is organized as: - Section 2 provides overview of 
genetic algorithm with particular emphasis on MLP 
training, while Section 3 analyzes the PSO algorithm. 
Section 4 highlights the system model for load 
forecast. The experimental results are presented in 
Section 5, and the paper concludes in Section 6. 
 
2. GA-ANN training approach 
 

Genetic algorithm (GA) is a directed random search 
technique [1] that is widely applied in optimization 
problems [1-3]. This is especially useful for complex 
optimization problems where the number of parameters 
is large and the analytical solutions are difficult to 
obtain. GA can help to find out the optimal solution 
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globally over a domain. This technique has been 
applied in different areas such as fuzzy control, path 
planning [4], modeling & classification [5] etc. 

There are two kinds of genetic operators, namely 
crossover & mutation. For crossover mechanisms, two-
point cross over, multipoint crossover, arithmetic 
crossover, & heuristic crossover have been reported 
[1], [6-8]. For mutation mechanisms, boundary 
mutation, uniform mutation, and nonuniform mutation 
can be found [1], [6-8]. Three steps are used to 
generate offspring: copying the parents, determining 
the mutations to be performed, and mutating the copy. 
In our work reported herein, GA is based on Steady-
State Algorithm with Fitness - Proportional Selection 
procedure.  The population is composed of 10 bit 
binary number chromosomes. The algorithm is 
described in figure 7 in a self explanatory manner. 
 
3. PSO-ANN training approach 
 

Particle swarm optimization is an idea based on 
human social behavior. Kennedy and Eberhert [8] in 
1994 presented the concept. It models problem as a set 
of n particles each representing a dimension of solution 
space. These particles move in solution space in search 
of optimal solution. The particles follow three 
principles i.e. evaluating: learning through self 
experience, Comparing: learning through comparative 
study and Imitating: learning through adapting the best 
trend. PSO has many similarities with GA. But it does 
not have genetic operators like crossover and mutation. 
Particles update themselves with the internal velocity. 
They also have memory, which is important to the 
algorithm. One of the advantages of PSO is that it 
takes real numbers as particles unlike GA, which needs 
to change to binary encoding or special genetic 
operators have to be used. In GAs, chromosomes share 
information with each other. So, the whole population 
moves like one group towards optimal area. In PSO, 
only global best or local best gives information to 
others. It is a one way information sharing mechanism. 
Compared with GA, all the particles tend to converge 
to the best solution quickly even in the local version in 
most cases. In PSO, we have got a position parameter, 
a velocity parameter to be updated for all the 
dimensions of all the particles. The updation logic lies 
with the global best parameter of all the particles and 
the local best parameter of a single particle. Our PSO is 
based on continuous state variables with real values. 
The velocity and position updation is done as per the 
following equations. Details are explained in figure 8. 

 
Vi

k+1  = w * Vi
k  + c1* rand1 * (pbesti

 -   Xi
k ) + c2* 

rand2 * (gbest -   Xi
k ) 

Xi
k+1 = Xik  + Vi

k+1    
 
4. Network modeling 
 
4.1. Analysis of load pattern 
 

In Indian context load variation with respect to 
temperature variation is almost dependent upon the 
seasonal change. Seasonal change is always gradual. 
Since online MLPNN is trained every 24 hours to 
predict next 24 hours load pattern or trained every hour 
to predict next hour load, the temperature variations 
due to seasonal change  need not to be taken as an 
explicit input parameter. Instead, surge in cooking load 
in morning hours and commercial, lighting and 
domestic load in evening hours should be incorporated 
appropriately as parameters for prediction. 
 
4.2. Input & output for ANN model 
 

In our analysis, the ANN model uses nine inputs 
including load at hour ‘hr-1’ , ‘hr-2’, ‘hr-3’ of same 
day, ‘hr’, ‘hr-1’, ‘hr-2’ of previous day, & ‘hr’, ‘hr-1’, 
‘hr-2’ of same day of previous week. Only one output 
node is used representing a 24-hour ahead load forecast 
at hour ‘hr’ in the lead time. Fig. 1 shows the network 
topology used in case of genetic algorithm or particle 
swarm optimization trained neural network model. In 
case of back propagation algorithm 17 hidden neurons 
are used instead of four. The reason behind taking the 
specific inputs are as follows: It takes into 
consideration the hour of the day effect to map hourly 
load variation. Day of the week is taken into account to 
map weekly pattern of industrial and commercial load 
pattern on week days and weekends. Seasonal variation 
is gradual so previous day load pattern as an explicit 
input takes care of seasonal mapping. 
 
4.3. Data set 
 

For our analysis, we used daily load profile spread 
over September, 2006 to August, 2007 of Orissa Power 
Transmission Corporation Limited. 

 

 
 

Figure 1. GA or PSO based ANN model  
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5. Experimental results 
 

The acceptable criteria for a particular model is 
based upon the (i) minimum average percentage error 
(MAPE), (ii) number of hours in which it gives 
negative MAPE, (iii) time taken by the model to get 
trained. The acceptable criteria (i) & (iii) are self 
explanatory. The second criteria signifies the under 
estimation of required load. Under estimation of load 
may stress the generation units.  

The Mean average percentage error (i.e MAPE) in 
case of MLP-BP was found to be 3.5543 % with logsig 
activation function, 17 nos. of hidden neurons, learning 
rate of 0.1, & Guyen-Widrow parameter initialization.  
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Figure 2.  BP – MLPNN result 

 
Instaed of 17 hidden neurons, when the MLP was 

trained with 4 hidden neurons the error shoot up to 
unacceptable level. Implementing a MLP with 17 
hidden neurons with back propagation training method 
in real time is very  resource consuming. So, the the 
MLP was tried with GA & PSO. It was found that PSO 
and GA gives better performance  details are as 
follows. 

In case of GA-MLP the best result was found to be, 
MAPE of 3.1943 %, with 4 nos. hidden neurons, and 
tansig activation function as shown in figure 3. 
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 Figure 3.  GA – MLPNN result 
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Figure 4.  GA – MLPNN MSE plot 
 

     In figure 4. the top most curve shows the 
absolute mean square error and other curves show the 
contribution of hidden neurons. The error contributions 
are calculated from the back propagated Jacobian 
matrix. 
 

Table 1. Performance of MLPNN-GA training 
 

tansig logsig tanh   

89.3791 86.109 74.3246 Total Abs. % Error 

14 4 2 No. of Min. % Error 

11 9 10 Negative % Error 

11 5 7 Error less than 3% 

3.1934 4.3054 3.7162 MAPE % 

131.5843 131.5808 109.1135 Computation Time 
 

In case of PSO-MLP the best result was found to 
be, MAPE of 4.2118 %, with 4 nos. hidden neurons 
and logsig activation function. 

MAPE: 3.5543 % 

MAPE: 3.1943 %
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Figure 5. PSO – MLPNN result 
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Figure 6.  PSO – MLPNN MSE plot 

 
Table 2. Performance of MLPNN-PSO training 

 
tansig logsig tanh   

89.3791 84.3767 89.3791 Total Abs. % Error 

9 12 9 No. of Min. % Error 

8 10 8 Negative % Error 

6 5 6 Error less than 3% 

4.469 4.2118 4.469 Avg. hourly % Error 

6.437982 6.262582 3.790151 Computation Time 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusion 
 
The paper has demonstrated the use of GA & PSO 
algorithm for optimizing weights and biases of an 
ANN short term load forecasting model. The 
bottlenecks observed in the use of BP algorithm can be 
overcome by using GA or PSO, which shows 
improvement in convergence time, & simpler 
modeling. The GA approach gives better accuracy but 
takes little more time for training. Where as PSO is 
much faster in training but accuracy is bit lower. So, 
while designing a mission critical real time application 
for STLF, we should choose either GA or PSO training 
as per requirements of accuracy and speed. Further 
study will focus mainly on developing STLF models, 
requiring simpler structure and faster speed of 
convergence. 
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Figure 7. Procedure for Genetic Algorithm 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Procedure for Particle Swarm Optimization 

 
initialize P   // P: initial population  

iter           // iter: number of iteration 

      begin 

batch   //batch: total no. of inputs   

begin 

   calculate the MLP output and thus error 

  end 

 calculate MSE and thus fitness function ƒ(P(iter)) 

 P(iter) is sorted in decreasing fitness order of ƒ(P(iter)) 

               iter = iter + 1  

select some pairs of parents p1 and p2 from P(iter-1) with higher fitness value in the fitness    

order 

  perform genetic operations (crossover and mutation) to produce p1’ and p2’ 

   replace p1 and p2 with p1’ and p2’ and thus reproducing a new generation P(iter) 

     end 

     best individual from population P is chosen as the output 

 
initialize S with random V and X // S: initial swarm, V: velocity, X: position 
initialize w, c1, c2                            //  w: weighting function, c1 = c2: weighting factors  
k         // k: number of iteration 
      begin 
              Xi

k: position of a particle 
              pbesti : personal best position of  ith particle 
              Vi

k
 : velocity of   ith particle 

               gbest: global best of all the particles of S 
                 

batch   //batch: total no. of inputs   
begin 

   calculate the MLP output and thus error 
  end 
 calculate MSE  for each particle in swarm 
 For each particle i in swarm 
                             If  (   Xi

k
     <  pbesti ) 

                                            Then   pbesti =    Xi
k 

                             If  (  pbesti   <  gbest ) 
                                             Then  gbest =   pbesti 
 
                 Position and velocity are then updated as per the following equations: 
                Vi

k+1  = w * Vi
k  + c1* rand1 * (pbesti

 -   Xi
k ) + c2* rand2 * (gbest -   Xi

k ) 
                 Xi

k+1 =  Xi
k  + Vi

k+1    
        end 
best individual from swarm S is chosen as the output 
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Table 3. Parameters of GA & PSO used for training the MLP 
 

 
 

 
 
 
 
 

Population size:  60 
Crossover probability: 80 percent 
Mutation probability: 20 percent 
Selection:                 fitness-proportional   
Number of generations: 150 
Chromosome:  10 bit binary number 
Initialization method: Gaussian random 
Fitness function:   1 / (1+MSE2) 

 

Swarm size:  10 
Particle dimension:  45 
Initial weight (w1):  0.9 
Final weight (w2):  0.4 
Constriction factor:  0.7298 
Weighting factor (c1 = c2):  1.4962 
Particle position range:  0 – 0.1 
Particle velocity range: 0 – 0.001 
Number of iterations (kmax): 100 
Initialization method: Gaussian random 
Weighting function:   w1-((w1-w2)/ kmax) * k 
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