
Short Term Load Forecasting using Neural Network trained with Genetic
Algorithm & Particle Swarm Optimization

Sanjib Mishra Sarat Kumar Patra
National Institute of Technology, Rourkela National Institute of Technology, Rourkela

E-mail: sanjib.mishra77@gmail.com E-mail: skpatra@nitrkl.ac.in

Abstract

Short term load forecasting is very essential to the

operation of electricity companies. It enhances the
energy-efficient and reliable operation of power
system. Artificial neural networks have long been
proven as a very accurate non-linear mapper. ANN
based STLF models generally use Back propagation
algorithm which does not converge optimally &
requires much longer time for training, which makes it
difficult for real-time application. In this paper we
propose a smaller MLPNN trained by Genetic
algorithm & Particle swarm optimization. The GA
training gives better accuracy than BP training, where
as it takes much longer time. But the PSO training
approach converges much faster than both the BP and
GA, with a slight compromise in accuracy. This looks
to be very suitable for real-time implementation.

1. Introduction

Short term load forecasting is a time series
prediction problem. It analyzes the pattern of future
electrical load. The information is very crucial to
determine hydro-thermal generation mixture, to allot
transmission corridor, to decrease over all loss of grid,
and to increase operational efficiency.

The load is decomposed into two components. One
is weather dependent, and the other is weather
independent. Each component is modeled separately
and the sum of these two gives the total load forecast.
The behavior of these two controls the total load
pattern. The behavior of weather independent load is
mostly represented by Fourier series or trend profiles
in terms of the time functions. The weather sensitive
portion of the load is arbitrarily extracted and modeled
by a predetermined functional relationship with
weather variables.

Feed forward neural net structures like multi layer
perceptron, functional link, wavelet, recurrent or
feedback structures like Hopfield, Elman, Multi

Feedback & hybrid structures using fuzzy neural
networks have been proposed in many papers with
very high degree of predictive accuracy. But many of
those papers have been tested on Macky-Glass series
or some other smooth differentiable functions rather
than actual load data. Actual load data putforths many
challenges to design a predictive neural net structure
Prominent of those challenges are, data pre-processing,
input parameter selection, type of neural net structure
selection, computational complexity and training
algorithm Computational complexity is dependent on
the structural complexity and training algorithm.
Unlike back propagation genetic algorithm and particle
swarm optimization training processes are
computationally less intensive, and reason there of are
explained in subsequent sections. For real time
implementations, it is imperative that the structure
should have minimal number of neurons and procedure
of training method should have minimal number of
computations. Considering all the above facts GA and
PSO are definitely the ideal candidates for real time
implementation. All most all the papers are silent about
this.

This paper highlights the suitability of PSO over
GA for real time implementation.

 Following this introduction the remaining paper
is organized as: - Section 2 provides overview of
genetic algorithm with particular emphasis on MLP
training, while Section 3 analyzes the PSO algorithm.
Section 4 highlights the system model for load
forecast. The experimental results are presented in
Section 5, and the paper concludes in Section 6.

2. GA-ANN training approach

Genetic algorithm (GA) is a directed random search
technique [1] that is widely applied in optimization
problems [1-3]. This is especially useful for complex
optimization problems where the number of parameters
is large and the analytical solutions are difficult to
obtain. GA can help to find out the optimal solution

First International Conference on Emerging Trends in Engineering and Technology

978-0-7695-3267-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICETET.2008.94

606

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on October 6, 2008 at 6:7 from IEEE Xplore. Restrictions apply.

globally over a domain. This technique has been
applied in different areas such as fuzzy control, path
planning [4], modeling & classification [5] etc.

There are two kinds of genetic operators, namely
crossover & mutation. For crossover mechanisms, two-
point cross over, multipoint crossover, arithmetic
crossover, & heuristic crossover have been reported
[1], [6-8]. For mutation mechanisms, boundary
mutation, uniform mutation, and nonuniform mutation
can be found [1], [6-8]. Three steps are used to
generate offspring: copying the parents, determining
the mutations to be performed, and mutating the copy.
In our work reported herein, GA is based on Steady-
State Algorithm with Fitness - Proportional Selection
procedure. The population is composed of 10 bit
binary number chromosomes. The algorithm is
described in figure 7 in a self explanatory manner.

3. PSO-ANN training approach

Particle swarm optimization is an idea based on
human social behavior. Kennedy and Eberhert [8] in
1994 presented the concept. It models problem as a set
of n particles each representing a dimension of solution
space. These particles move in solution space in search
of optimal solution. The particles follow three
principles i.e. evaluating: learning through self
experience, Comparing: learning through comparative
study and Imitating: learning through adapting the best
trend. PSO has many similarities with GA. But it does
not have genetic operators like crossover and mutation.
Particles update themselves with the internal velocity.
They also have memory, which is important to the
algorithm. One of the advantages of PSO is that it
takes real numbers as particles unlike GA, which needs
to change to binary encoding or special genetic
operators have to be used. In GAs, chromosomes share
information with each other. So, the whole population
moves like one group towards optimal area. In PSO,
only global best or local best gives information to
others. It is a one way information sharing mechanism.
Compared with GA, all the particles tend to converge
to the best solution quickly even in the local version in
most cases. In PSO, we have got a position parameter,
a velocity parameter to be updated for all the
dimensions of all the particles. The updation logic lies
with the global best parameter of all the particles and
the local best parameter of a single particle. Our PSO is
based on continuous state variables with real values.
The velocity and position updation is done as per the
following equations. Details are explained in figure 8.

Vi

k+1 = w * Vi
k + c1* rand1 * (pbesti

 - Xi
k) + c2*

rand2 * (gbest - Xi
k)

Xi
k+1 = Xik + Vi

k+1

4. Network modeling

4.1. Analysis of load pattern

In Indian context load variation with respect to
temperature variation is almost dependent upon the
seasonal change. Seasonal change is always gradual.
Since online MLPNN is trained every 24 hours to
predict next 24 hours load pattern or trained every hour
to predict next hour load, the temperature variations
due to seasonal change need not to be taken as an
explicit input parameter. Instead, surge in cooking load
in morning hours and commercial, lighting and
domestic load in evening hours should be incorporated
appropriately as parameters for prediction.

4.2. Input & output for ANN model

In our analysis, the ANN model uses nine inputs
including load at hour ‘hr-1’ , ‘hr-2’, ‘hr-3’ of same
day, ‘hr’, ‘hr-1’, ‘hr-2’ of previous day, & ‘hr’, ‘hr-1’,
‘hr-2’ of same day of previous week. Only one output
node is used representing a 24-hour ahead load forecast
at hour ‘hr’ in the lead time. Fig. 1 shows the network
topology used in case of genetic algorithm or particle
swarm optimization trained neural network model. In
case of back propagation algorithm 17 hidden neurons
are used instead of four. The reason behind taking the
specific inputs are as follows: It takes into
consideration the hour of the day effect to map hourly
load variation. Day of the week is taken into account to
map weekly pattern of industrial and commercial load
pattern on week days and weekends. Seasonal variation
is gradual so previous day load pattern as an explicit
input takes care of seasonal mapping.

4.3. Data set

For our analysis, we used daily load profile spread
over September, 2006 to August, 2007 of Orissa Power
Transmission Corporation Limited.

Figure 1. GA or PSO based ANN model

607

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on October 6, 2008 at 6:7 from IEEE Xplore. Restrictions apply.

5. Experimental results

The acceptable criteria for a particular model is
based upon the (i) minimum average percentage error
(MAPE), (ii) number of hours in which it gives
negative MAPE, (iii) time taken by the model to get
trained. The acceptable criteria (i) & (iii) are self
explanatory. The second criteria signifies the under
estimation of required load. Under estimation of load
may stress the generation units.

The Mean average percentage error (i.e MAPE) in
case of MLP-BP was found to be 3.5543 % with logsig
activation function, 17 nos. of hidden neurons, learning
rate of 0.1, & Guyen-Widrow parameter initialization.

0 5 10 15 20 25
1600

1700

1800

1900

2000

2100

2200

2300

2400
Network Output

Output

M
ag

ni
tu

de

Desired Output
Trained Network Output

Figure 2. BP – MLPNN result

Instaed of 17 hidden neurons, when the MLP was

trained with 4 hidden neurons the error shoot up to
unacceptable level. Implementing a MLP with 17
hidden neurons with back propagation training method
in real time is very resource consuming. So, the the
MLP was tried with GA & PSO. It was found that PSO
and GA gives better performance details are as
follows.

In case of GA-MLP the best result was found to be,
MAPE of 3.1943 %, with 4 nos. hidden neurons, and
tansig activation function as shown in figure 3.

0 2 4 6 8 10 12 14 16 18 20
1700

1800

1900

2000

2100

2200

2300

2400
Network Output

Output

M
ag

ni
tu

de

Desired Output

Trained Network Output

 Figure 3. GA – MLPNN result

0 5 10 15 20 25 30 35 40 45 50
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Error Square Plot

Iteration

dB

Figure 4. GA – MLPNN MSE plot

 In figure 4. the top most curve shows the
absolute mean square error and other curves show the
contribution of hidden neurons. The error contributions
are calculated from the back propagated Jacobian
matrix.

Table 1. Performance of MLPNN-GA training

tansig logsig tanh

89.3791 86.109 74.3246 Total Abs. % Error

14 4 2 No. of Min. % Error

11 9 10 Negative % Error

11 5 7 Error less than 3%

3.1934 4.3054 3.7162 MAPE %

131.5843 131.5808 109.1135 Computation Time

In case of PSO-MLP the best result was found to
be, MAPE of 4.2118 %, with 4 nos. hidden neurons
and logsig activation function.

MAPE: 3.5543 %

MAPE: 3.1943 %

608

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on October 6, 2008 at 6:7 from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10 12 14 16 18 20
1700

1800

1900

2000

2100

2200

2300

2400
Network Output

Output

M
ag

ni
tu

de

Desired Output

Trained Network Output

Figure 5. PSO – MLPNN result

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

Figure 6. PSO – MLPNN MSE plot

Table 2. Performance of MLPNN-PSO training

tansig logsig tanh

89.3791 84.3767 89.3791 Total Abs. % Error

9 12 9 No. of Min. % Error

8 10 8 Negative % Error

6 5 6 Error less than 3%

4.469 4.2118 4.469 Avg. hourly % Error

6.437982 6.262582 3.790151 Computation Time

6. Conclusion

The paper has demonstrated the use of GA & PSO
algorithm for optimizing weights and biases of an
ANN short term load forecasting model. The
bottlenecks observed in the use of BP algorithm can be
overcome by using GA or PSO, which shows
improvement in convergence time, & simpler
modeling. The GA approach gives better accuracy but
takes little more time for training. Where as PSO is
much faster in training but accuracy is bit lower. So,
while designing a mission critical real time application
for STLF, we should choose either GA or PSO training
as per requirements of accuracy and speed. Further
study will focus mainly on developing STLF models,
requiring simpler structure and faster speed of
convergence.

7. References

[1] J. H. Holland, Adaptation in Natural and Artificial
Systems, Ann Arbor, MI: Univ. Michigan Press, 1975.
[2] D. T. Pham and D. Karaboga, Intelligent Optimization
Techniques, Genetic Algorithms, Tabu Search, Simulated
Annealing and Neural Networks, New York: Springer-
Verlag, 2000.
[3] H. Juidette and H. Youlal, “Fuzzy dynamic path planning
using genetic algorithms”, Electron. Lett. vol. 36, no. 4, pp.
374-376, Feb. 2000.
[4] M. Setnes and H. Roubus, “GA-fuzzy modeling and
classification: Complexity and performance”, IEEE Trans.
Fuzzy Syst., vol. 8, pp. 509-522, Oct. 2000.
[5] X. Wang and M. Elbuluk, “Neural network control of
induction machines using genetic algorithm training”,
IAS Annual Meeting, vol. 3, 1996, pp. 1733-1740.
[6] L. Davis, “Handbook of Genetic Algorithms”, New York:
Van Nostrand Reinhold, 1991.
[7] M. Srinivas and L. M. Pattanaik, Genetic Algorithms: A
survey, IEEE Computer, vol. 27, pp. 17-27, June 1994.
[8] R. C. Eberhert and J. Kennedy, “A new optimizer using
particle swarm theory”, Proceeding of the Sixth International
Symposium on Micro Machine and Human Science, page 39-
43,, Nagoya, Japan, 1995, IEEE Service Center, Piscataway,
Nj.
[9] K. Jhon, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, Cambridge, MA:
The MIT Press.

MAPE: 4.2118 %

609

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on October 6, 2008 at 6:7 from IEEE Xplore. Restrictions apply.

Figure 7. Procedure for Genetic Algorithm

Figure 8. Procedure for Particle Swarm Optimization

initialize P // P: initial population

iter // iter: number of iteration

 begin

batch //batch: total no. of inputs

begin

 calculate the MLP output and thus error

 end

 calculate MSE and thus fitness function ƒ(P(iter))

 P(iter) is sorted in decreasing fitness order of ƒ(P(iter))

 iter = iter + 1

select some pairs of parents p1 and p2 from P(iter-1) with higher fitness value in the fitness

order

 perform genetic operations (crossover and mutation) to produce p1’ and p2’

 replace p1 and p2 with p1’ and p2’ and thus reproducing a new generation P(iter)

 end

 best individual from population P is chosen as the output

initialize S with random V and X // S: initial swarm, V: velocity, X: position
initialize w, c1, c2 // w: weighting function, c1 = c2: weighting factors
k // k: number of iteration
 begin
 Xi

k: position of a particle
 pbesti : personal best position of ith particle
 Vi

k
 : velocity of ith particle

 gbest: global best of all the particles of S

batch //batch: total no. of inputs
begin

 calculate the MLP output and thus error
 end
 calculate MSE for each particle in swarm
 For each particle i in swarm
 If (Xi

k
 < pbesti)

 Then pbesti = Xi
k

 If (pbesti < gbest)
 Then gbest = pbesti

 Position and velocity are then updated as per the following equations:
 Vi

k+1 = w * Vi
k + c1* rand1 * (pbesti

 - Xi
k) + c2* rand2 * (gbest - Xi

k)
 Xi

k+1 = Xi
k + Vi

k+1
 end
best individual from swarm S is chosen as the output

610

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on October 6, 2008 at 6:7 from IEEE Xplore. Restrictions apply.

Table 3. Parameters of GA & PSO used for training the MLP

Population size: 60
Crossover probability: 80 percent
Mutation probability: 20 percent
Selection: fitness-proportional
Number of generations: 150
Chromosome: 10 bit binary number
Initialization method: Gaussian random
Fitness function: 1 / (1+MSE2)

Swarm size: 10
Particle dimension: 45
Initial weight (w1): 0.9
Final weight (w2): 0.4
Constriction factor: 0.7298
Weighting factor (c1 = c2): 1.4962
Particle position range: 0 – 0.1
Particle velocity range: 0 – 0.001
Number of iterations (kmax): 100
Initialization method: Gaussian random
Weighting function: w1-((w1-w2)/ kmax) * k

611

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on October 6, 2008 at 6:7 from IEEE Xplore. Restrictions apply.

