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Short-term load forecasting (STLF) is an essential and challenging task for power- or energy-providing companies. Recent
research has demonstrated that a framework called “decomposition and ensemble” is very powerful for energy forecasting. To
improve the effectiveness of STLF, this paper proposes a novel approach integrating the improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN), grey wolf optimization (GWO), and multiple kernel extreme learning
machine (MKELM), namely, ICEEMDAN-GWO-MKELM, for STLF, following this framework. *e proposed ICEEMDAN-
GWO-MKELM consists of three stages. First, the complex raw load data are decomposed into a couple of relatively simple
components by ICEEMDAN. Second, MKELM is used to forecast each decomposed component individually. Specifically, we use
GWO to optimize both the weight and the parameters of every single kernel in extreme learning machine to improve the
forecasting ability. Finally, the results of all the components are aggregated as the final forecasting result. *e extensive ex-
periments reveal that the ICEEMDAN-GWO-MKELM can outperform several state-of-the-art forecasting approaches in terms of
some evaluation criteria, showing that the ICEEMDAN-GWO-MKELM is very effective for STLF.

1. Introduction

Accurate load forecasting plays a significant role for the
participants in the electricity industry because it can provide
a safe and reliable automatic management for a smart grid.
According to the length of the period involved, the tasks of
load forecasting can be divided into three groups: long-term
forecasting, mid-term forecasting, and short-term fore-
casting. Among them, short-term load forecasting (STLF)
has become the hottest research topic in load forecasting
because it can not only increase the scheduling efficiency but
also reduce the costs of operations [1, 2].

In the last decades, time series-based models, such as
random walk, moving average (MA), autoregressive inte-
grated MA (ARIMA), ARIMA with explanatory variable
(ARIMAX), and generalized autoregressive conditional
heteroskedasticity (GARCH), are widely used in load
forecasting [3, 4]. Lee and Ko embedded a lifting scheme into
ARIMA models to improve the forecasting ability, and the

simulation results verified the effectiveness of STLF [3]. Cui
and Peng introduced temperature into ARIMA to propose
an improved ARIMAX to deal with the mutation data
structures [4]. However, because these time series-based
models are usually built on the assumption that the load data
are with the characteristics of linearity and stationarity,
which are not always met in practical load data, the fore-
casting accuracy is limited. In fact, recent research has
demonstrated that the load data are usually nonlinear and
nonstationary. *erefore, it is necessary to use other models
instead of time series-based models to improve load fore-
casting accuracy. Artificial intelligence (AI) models are
thought of as having the capacity to capture intrinsic features
of complicated signals. *erefore, they have become more
and more popular in energy forecasting. Typical AI models
include support-vector regression (SVR) and its extension
least-squares SVR (LSSVR) [5, 6], artificial neural network
(ANN) [7–9], extreme learning machine (ELM) [10], sparse
Bayesian learning (SBL) [11, 12], deep learning [13] (stacked
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denoising autoencoders (SDAs) [14], deep belief network
(DBN) [15], convolutional neural network (CNN) [16], and
long short-term memory (LSTM)) [17]), and nature-in-
spired optimization algorithms [18, 19]. For example, Chen
et al. put forward a new SVR model that used the tem-
perature before demand response as additional input vari-
ables for STLF [6]. Kulkarni et al. proposed a spiking neural
network to forecast short-term load with consideration of
weather variables [8]. Yoem and Kwak used an ELM with
knowledge representation for STLF, and the experimental
results indicated good performance of the approach [10].
Han et al. presented time-dependency CNN and cycle-based
LSTM for STLF by mapping the load data as pixels and
rearranging them into a 2-D image, and the extensive ex-
periments demonstrated that the proposed models were
superior to the compared models in terms of computation
complexity [13]. Some other research aims to forecast load
data accurately using hybrid models [20, 21].

As far as energy time series forecasting is concerned,
recent studies have shown that a framework called “de-
composition and ensemble” is able to improve the fore-
casting performance significantly. *e main idea of this
framework is to decompose the raw energy data series into
several simpler components, then handle each component
individually, and finally integrate the result from each
component as the final forecasting result. *is framework is
a typical form of the strategy of “divide and conquer” that is
widely used in energy price forecasting [22–24], wind speed
forecasting [25, 26], load forecasting [27, 28], biosignal
processing [29, 30], fault diagnosis [31], image processing
[32–35], and so on. *ere are many types of decomposition
methods that can be applied to decomposing energy time
series. Among them, the members of the family of empirical
mode decomposition (EMD), i.e., ensemble EMD (EEMD),
complete EEMD (CEEMD), CEEMD with adaptive noise
(CEEMDAN), and the improved CEEMDAN (ICE-
EMDAN), have become very popular in signal decompo-
sition [36–39]. With them, the complicated raw energy time
series can be decomposed into several components, some
high-frequency components and some low-frequency ones,
making it easier to forecast each component individually
than to forecast the raw energy time series directly. *e
existing research has revealed that the ICEEMDAN is better
than the other decompositionmethods in the family of EMD
[39]. *eoretically, any regression methods in AI can be
applied to forecasting each component. ELM has shown its
superpower in the tasks of both classification and regression
in recent years [40]. In particular, ELM is able to achieve
satisfactory results with time series forecasting [41–43].
When kernel trick is introduced into ELM, it has the ability
to improve the performance of STLF further [44, 45].
However, the existing kernel ELM usually uses one kernel or
a simple combination of several kernels to construct the
kernel matrix as the input of ELM, and the parameters in the
single kernel or the weights of the several kernels are op-
timized by algorithms or specified by users. *e number and
types of single kernels in such ELM may limit forecasting
effectiveness. An ideal way is to construct the kernel matrix
using multiple kernels built by different types of kernels, and

both the parameters and the weights can be optimized
adaptively. Some nature-inspired algorithms, such as ant
colony optimization [46, 47], particle swarm optimization
(PSO) [48, 49], and grey wolf optimization (GWO) [50, 51],
have the potential to optimize the parameters and the
weights for the involved kernels simultaneously. Recent
research has demonstrated that GWO outperforms some
other nature-inspired algorithms in numerical optimization
[52, 53].

Inspired by the power of ICEEMDAN in signal de-
composition, GWO in numerical optimization, and mul-
tiple kernel ELM (MKELM) in regression or prediction,
this paper proposes a novel approach that integrates
ICEEMDAN, GWO, and MKELM, so-called ICEEMDAN-
GWO-MKELM, for STLF. Specifically, the proposed
ICEEMDAN-GWO-MKELM is composed of three stages.
First, the raw load series is decomposed into a couple of
components, some showing high-frequency characteristics
while others showing low-frequency ones. Second, an in-
dependent MKELM model is built on each component. To
improve the representation ability of the kernel matrix,
GWO is applied to optimizing both the parameters and the
weight of each base kernel simultaneously. Finally, the
predicted results of all the individual components are
simply accumulated as the final forecasting result.

*e novelty of this paper lies in the following two as-
pects: (1) it is the first time that the combination of ICE-
EMDAN, GWO, and ELM is used for energy forecasting,
especially for STLF. (2) A novel multiple kernel learning
(MKL) framework optimizing both the parameters and the
weight of every single kernel with GWO is proposed. We
conduct extensive experiments to compare the proposed
ICEEMDAN-GWO-MKELM with many state-of-the-art
approaches, and the results demonstrate that the ICE-
EMDAN-GWO-MKELM is able to outperform the com-
pared approaches in most cases.

*e remaining part of this paper is structured as follows.
Section 2 briefly describes ICEEMDAN, GWO, ELM, and
MKL. *e proposed ICEEMDAN-GWO-MKELM is
methodologically formulated in detail in Section 3. To
evaluate the proposed method, we conduct extensive ex-
periments, and the results are analyzed and discussed in
Section 4. Finally, the paper is concluded in Section 5.

2. Methods

2.1. &e Improved Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (ICEEMDAN). *e ICE-
EMDAN is a signal decomposition algorithm proposed by
Colominas et al. based on CEEMDAN in 2014 [39]. It is a
new member of the family of EMD.

*e EMD is a signal decomposition technique that can
decompose a data series into a set of components with
different frequencies, including intrinsic mode functions
(IMFs) and a residue [36]. *e signal must satisfy the fol-
lowing two characteristics: (1) in all data, the number of
extreme values (maximum and minimum) and zero
crossings are equal or different at most by one; (2) the local
mean must be zero at any time.
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*e EMD algorithm is described as follows:

Step 1: connect the local maxima as well as the minima
of the raw data by two cubic spines to form one upper
envelope and one lower envelope, respectively

Step 2: average the upper envelope and the lower en-
velope, and subtract the mean value from the original
signal to obtain a new sequence

Step 3: examine whether the new sequence from Step 2
meets the two characteristics listed above; if not, take
the new sequence as raw data and go to Step 1; oth-
erwise, take the new sequence as one IMF and subtract
it from the original sequence to obtain one residue (the
local mean)

Step 4: examine whether the residue from Step 3 is a
monotonic function or its value is less than a pre-
determined threshold; if not, take the residue as raw
data and go to Step 1; otherwise, end the decomposition
and output all IMFs and one residue

However, EMD is prone to mode-mixing problems
during the decomposition process [37]. *e main form of
the problem is that an IMF contains signals with large scale
differences.*emain reason for this problem is as follows: in
the case of an abnormal event, there will be an uneven
distribution of extreme points in the signal, which will affect
the shape of the envelope. *e IMF thus contains the in-
trinsic mode of the original signal and the intrinsic mode of
the adjacent time scale brought by the anomalous event.

In order to overcome the shortcomings of EMD,Wu and
Huang put forward the ensemble EMD (EEMD) method,
which is an integrated, straightforward, and adaptive de-
composition method for nonlinear and nonstationary time
series [37]. Similarly, EEMD decomposes the original data
into a couple of IMFs and one residue and each decomposed
component has the same length as the original data. In
EEMD, a certain amount of different Gaussian white noises
are firstly added to the original signal, as shown in the
following equation:

x(i) � x + ω(i), i � 1, 2, . . . , N, (1)

where x denotes the original series, w(i) is the i-th Gaussian
white noise to be added, and x(i) is the corresponding
processed signal.

*en, each processed signal is subjected to EMD pro-
cessing to get IMFs and one residue, respectively. At last, the
IMFs and residues from different processed signals are in-
tegrated and averaged correspondingly to obtain the final
decomposition results:

ck �
1

N
∑N
i�1

c(i)k , k � 1, 2, . . . , K, (2)

where ck is the k-th final decomposition result, c(i)k is the k-th
decomposition result from x(i), K is the final number of
IMFs after averaging, determined by the length M of the
original sequence of the time series, K � ⌊log2 M⌋ − 1, and
N is the realization number of decomposition.

*e method causes the extreme point distribution state
in the original signal to be changed so that the processed
signals can be continuously distributed on different time
scales and reduce the probability of generating mode-mixing
problems.

EEMD can reduce the mode-mixing problem to a certain
extent. However, because of the added white noise, after a
finite number of averaging calculations, the error is not
completely eliminated, which will affect the accuracy of the
reconstruction sequence and the accuracy of the prediction.
Although the error can be reduced by the increase of the
average number of integrations, the amount of calculation
and the calculation time are greatly increased. Based on this
phenomenon, Torres et al. designed CEEMDAN [38].

In CEEMDAN, Gaussian white noise is added to each
decomposition layer to obtain one IMF and corre-
sponding residual signal. Given the operator Ek(·) that
produces the k-th IMF by EMD, the CEEMDAN can be
simply described as follows: (1) like the EEMD, the
CEEMDAN decomposes the original data and gets the
first IMF c1 and residue r1; (2) the following k-th IMF
(k≥ 2) and residue can be obtained by

ck �
1

N
∑N
i�1

E1 rk− 1 + pk− 1Ek− 1 ω(i)( )( ),
rk � rk− 1 − ck,

(3)

where w(i) is the i-th Gaussian white noise to be added,
Ek[w

(i)] is the k-th IMF by decomposing w(i) using EMD,
and pk is the signal-to-noise ratio of the additional noise and
the original signal.

*e algorithm terminates when the residual rk satisfies
the iterative termination condition, and finally CEEMDAN
can get several IMFs and compute one residue as follows:

R � x − ∑K
k�1

rk, (4)

where R is the residue obtained from CEEMDAN, x is the
original signal, and K is the number of IMFs.

However, CEEMDAN still suffers from two main
problems: (1) residual noise contained in models and (2)
spurious mode problem. An improved CEEMDAN (ICE-
EMDAN) was proposed to solve these problems. LetM(·) be
the operator for generating local mean and Ek(·) be the
operator that produces the k-th IMF by EMD [39]. *e
specific decomposition process is as follows:

Step 1: add E1[w
(i)] to the original signal x,

x(i) � x + p0E1(w
(i))(i � 1, 2, . . . , N), where w(i) is the

i-th white noise to be added, p0 is the signal-to-noise
ratio, and N is the amount of white noise added.

Step 2: calculate the local mean of x(i) by EMD and get
the first residue r1 � (1/N)∑Ni�1M(x(i)); then, obtain
the first IMF c1 � x − r1.

Step 3: recursively use formulas ck � rk− 1 − rk(k≥ 2) to
get the k-th IMF ck, where
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rk �
1

N
∑N
i�1

M rk− 1 + pk− 1Ek w
(i)( )( ). (5)

*e results show that the residual noise problem in the
IMF is greatly reduced and also the mean value problem
caused by the different numbers of IMFs generated by
EEMD is also solved.

2.2. Grey Wolf Optimization (GWO). Grey wolf optimiza-
tion (GWO) algorithm is a new type of swarm intelligence
optimization algorithm proposed by Mirjalili et al. in 2014
[50]. It is derived from the simulation of the predation
behavior of the grey wolf population and achieves optimi-
zation through wolf group’s tracking, encirclement, pursuit,
and attack. *e advantages of the GWO algorithm include
simple principle, fewer parameters to be adjusted, easy
implementation, and strong global search ability.

*e wolves are divided into four levels: α represents the
dominant wolf in the group and it is at the first level, β
represents the subordinate wolf at the second level who
helps α make decision, δ represents the wolf following the
instructions of α and β, and ω represents the wolves at the
lowest level. In GWO, the pursuit behavior is performed by
α, β, and δ, and ω follows the first three to track and coffer
the prey and finally completes the predation task. Suppose
the number of grey wolves is N and the dimension
of search space is d, the position of the i-th grey wolf in the
d-th dimension space can be expressed as xi � (xi1,
xi2, . . . , xi d). According to the fitness function of a specific
optimization problem, the optimal individual is recorded
as α and the corresponding individuals ranked second and
third are recorded as β and δ with the remaining indi-
viduals recorded as ω. *e position of the prey means the
global optimal solution of the optimization problem.
*ree definitions to be used in the GWO are given as
follows.

Definition 1. Distance between grey wolf and prey:

D
→
� C
→
· X
→
p(t) − X

→
(t)

∣∣∣∣∣ ∣∣∣∣∣, (6)

where X
→
p(t) indicates the position of the t-th generation

prey, X
→
(t) indicates the position of the t-th generation grey

wolf individual, and C is a swing factor determined by

C
→
� 2 · r

→
1, (7)

where r
→

1 is a random vector between 0 and 1.

Definition 2. Encircling prey.
In nature, grey wolves always hunt preys by encircling

them. Also, the mathematical model is given as follows:

X
→
(t + 1) � X

→
p(t) − A

→
· D
→
, (8)

where A
→

is the convergence factor determined by

A
→
� 2 a

→
· r
→

2 − a
→
, (9)

where r
→

2 is a random vector between 0 and 1 and a
→

de-
creases linearly from 2 to 0 as the iteration number increases.

Definition 3. Hunting and capturing prey.
An issue with Definition 2 is that the position of the

prey (the optimal solution) in practical optimization
problems is unknown. So, in order to simulate the behavior
of hunting prey, three types of wolves, namely, α, β, and δ,
are defined based on their distance to the prey, and they
have the clearest understanding of the position of the prey.
*e closer the distance, the more the wolves understand the
position of the prey. We can use their positions to find the
prey and lead the rest ω wolves to update their own lo-
cations. *e mathematical expression of hunting prey can
be explained as follows:

D
→

α � C
→

1 · X
→

α(t) − X
→
(t)

∣∣∣∣∣ ∣∣∣∣∣, (10)

D
→

β � C
→

1 · X
→

β(t) − X
→
(t)

∣∣∣∣∣ ∣∣∣∣∣, (11)

D
→

δ � C
→

1 · X
→

δ(t) − X
→
(t)

∣∣∣∣∣ ∣∣∣∣∣, (12)

X
→

1 � X
→

α − A
→

1 · D
→

α, (13)

X
→

2 � X
→

β − A
→

2 · D
→

β, (14)

X
→

3 � X
→

δ − A
→

3 · D
→

δ, (15)

X
→
(t + 1) �

X
→

1 + X
→

2 + X
→

3( )
3

.
(16)

During the hunting, it first calculates the distance be-
tween individuals within the group and α, β, and δ from
equations (10)–(15) and comprehensively determines the
direction in which the individual moves toward the prey by
using equation (16).

Finally, wolves (searching agents) finish hunting when
they capture the prey and the algorithm terminates.

*emain idea of GWOcan be described on the basis of the
following definitions: randomly generate a population of grey
wolves in the problem space; evaluate each individual wolf
based on its distance to the prey according to Definition 1, and
nominate α, β, and δ wolves and then update the location of
each wolf by Definition 3; repeat the operations of evaluation
and update the positions of wolves until the wolves capture the
prey [50].

2.3. Extreme Learning Machine (ELM). *e ELM is a new
single-hidden-layer feedforward neural network (SLFN)
[54]. *is machine randomly initializes the linking weights
and the bias, and only the number of hidden-layer nodes
needs to be determined by users. ELM can get unique op-
timal output weights by only one-step calculation and thus
gets high training speed. ELM has been proved to perform
well in both regression and classification problems.
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Given a dataset (xi, ti) of size N, where xi � [xi1, xi2, . . . ,
xin]

T ∈ Rn and ti � [ti1, ti2, . . . , tim]
T ∈ Rm, an ELM re-

gression model with Ñ hidden-layer nodes and activation
functions G can be expressed as

∑̃N
i�1

βiG ai · xj + bi( ) � oj, j � 1, . . . , N, (17)

where ai � [ai1, ai2, . . . , ain]
T is a vector of weights of the i-th

hidden-layer node and the input node, βi � [βi1, βi2,
. . . , βim]

T is another vector of weights between the i-th
hidden-layer node and the output node, bi is the bias of the i-
th hidden-layer node, ai · xj is the inner product between ai

and xj, Ñ is the number of hidden-layer nodes, and oj is the
output when input is xj. When the model fits the N samples
exactly, we can get

∑̃N
j�1

oj − tj

  � 0, (18)

∑̃N
i�1

βiG ai · xj + bi( ) � tj, j � 1, . . . , N. (19)

Equation (19) can be written as

Hβ � T,

H a1, . . . , aÑ, b1, . . . , bÑ, x1, . . . , xN( ) �
G a1 · x1 + b1( ) · · · G a

Ñ
· x1 + bÑ( )

⋮ ⋱ ⋮
G a1 · xN + b1( ) · · · G a

Ñ
· xN + bÑ( )



N×Ñ

,

β �

βT1

⋮
βT
Ñ



Ñ×m

,

T �

tT1

⋮
tTN

 
N×m

,

(20)

where H is a hidden-layer output matrix, and the output
weight can be obtained by solving the following linear
system:

‖Hβ̂ − T‖ � min
β
‖Hβ − T‖, (21)

and the solution is

β̂ � H†T, (22)

where H† is Moore–Penrose pseudoinverse of hidden-layer
output matrix H.

It is proved that equation (22) is the unique minimum
norm least-squares solution of equation (21), which can be
shown as [54]

‖Hβ̂ − T‖ � HH†T − T
  � min

β
‖Hβ − T‖,

‖β̂‖ � H†T
 ≤ ‖β‖,

∀β ∈ β: ‖Hβ − T‖≤ ‖Hz − T‖, ∀z ∈ RÑ×N{ }.
(23)

When the numbers of the hidden-layer nodes and the
samples are identical, the network can approximate the
samples very well, but in practice, the number of hidden
nodes is usually less than the number of training samples, so
the data samples may have multicollinearity problems.
When solving the Moore–Penrose pseudoinverse

H† � H†(HHT)− 1, the existence of multicollinearity may
make HHT singular. Each time the model is modeled by
ELM, the obtained matrix H† is different and the hidden
output weight β̂ of the hidden layer is also inconsistent.
*ese reasons finally cause the output of ELM prone to
random fluctuations, and the model’s stability and gener-
alization ability are not ideal.

2.4.MultipleKernel Learning (MKL). To further enhance the
generalization ability and stability of ELM, Huang et al.
introduced the kernel function into ELM by comparing the
principles of ELM and support-vector machine (SVM) and
proposed kernel extreme learning machine (KELM) [40].

*e objective of ELM is to minimize not only the sum of
training error but also the norm of weights, which can be
presented as

minimize : LELM �
1

2
‖β‖2 +

C

2
∑N
i�1

ξi
 2

s.t.: h xi( )β � tTi − ξTi , i � 1, 2, . . . , N,

(24)

where ξi � [ξi1, ξi2, . . . , ξim]
T is the error of the m output

nodes when the input is xi,C is the penalty coefficient used to
weigh the ratio between structural risk and empirical risk, β
is the output weight vector between the hidden layer and the
output layer, ti is the true value with respect to xi, N is the

Complexity 5



amount of samples, and h(xi) is the output vector of the
hidden layer by input xi.

According to the KKT theorem, equation (24) is equal to
the dual optimization problem as follows:

LDELM �
1

2
‖β‖2 +

C

2
∑N
i�1

ξi
 2 − ∑N

i�1

∑m
j�1

αij h xi( )βj − tij + ξij( ),
(25)

where αij is the Lagrange multiplier, and KKT conditions of
equation (25) are

zLDELM

zβj
� 0⟶ βj �∑N

i�1

αijh xi( )T⟶ β � HTα, (26)

zLDELM

zξi
� 0⟶ αi � Cξi, i � 1, 2, . . . , N, (27)

zLDELM

zαi
� 0⟶ h xi( )β − tTi + ξTi � 0, i � 1, 2, . . . , N.

(28)
Equation (29) can be derived by substituting equations

(26) and (27) into equation (28):

I

C
+HHT( )α � T, (29)

where I is an identity matrix, HHT is generated by mapping
the input samples through a kernel function,
T � [t1, t1, . . . , tN]

T, αi � [αi1, αi2, . . . , αim]
T, and

α � [α1, α2, . . . , αN]
T.

From equations (26) and (29), we can get

β � HT I

C
+HHT( )− 1T. (30)

*e output function is

f(x) � h(x)HT I

C
+HHT( )− 1T. (31)

We can define the kernel matrix as

ΩKELM � HHT,

Ωi,j � h xi( ) · h xj( ) � K xi, xj( ),
 (32)

where h(x) is the hidden-layer node output function; K is a
kernel function, and its forms include RBF kernel function,
linear kernel function, and polynomial kernel function.

*e kernel matrix ΩKELM replaces the random matrix
HHT in equation (31) and uses the kernel function to map all
input of the n-dimensional space to a high-dimensional
space. After the kernel parameter setting is completed, the
mapped value of the kernel matrix ΩKELM is a fixed value.

Now, the output function can be rewritten as [40]

f(x) � h(x)HT I

C
+HHT( )− 1T �

K x, x1( )
· · ·

K x, xN( )



T

I

C
+ΩKELM( )− 1T.

(33)

In the kernel-based ELM algorithm, as long as a function
satisfies Mercer’s condition, it can be used as the kernel
function, such as radial basis kernel function (RBF) and
polynomial function (polynomial). Each kernel function
usually has its own application fields, and a single kernel
function often cannot maximize the representation ability.
*erefore, this paper presents a new kernel ELM framework
that combines different types of kernels called multiple
kernel ELM (MKELM). MKELM replaces the single kernel
function in KELM with weighted combination of different
kernel functions.*e popular single kernels used in machine
learning are as follows.

RBF kernel function:

Krbf x, xi( ) � exp −
x − xi
 2

a
 . (34)

Polynomial kernel function:

Kpoly x, xi( ) � xxi + a( )q. (35)

Linear kernel function:

Klin x, xi( ) � xxi. (36)

Wave kernel function:

Kwav x, xi( ) �∏d
i�1

cos
a x − xi( )

b
( )exp −

x − xi
 2

c
  .

(37)
So, the combined kernel function can be formulated as

Kcomb x, xi( ) �∑n1
i�1

aiKrbf x, xi( ) +∑n2
i�1

biKpoly x, xi( )k x, xi( )
+∑n3
i�1

ciKlin x, xi( ) +∑n4
i�1

diKwav x, xi( ),
(38)

where n1, n2, n3, and n4 represent the number of four kernel
functions in order, ai represents the weight of corresponding
single RBF kernel function, and the same for bi, ci, anddi.
*e coefficients satisfy ∑n1i�1 ai +∑n2i�1 bi +∑n3i�1 ci +∑n4i�1 di �
1. *ere are 1, 2, 0, and 3 parameters to be optimized for a
single RBF kernel, a single polynomial kernel, a single linear
kernel, and a single wave kernel, respectively. So, in the
combined kernel, all the number of parameters for opti-
mization are the sum of the parameters for single kernels
n1 + 2n2 + 3n4 and the weights of all the kernels
n1 + n2 + n3 + n4, which is 2n1 + 3n2 + n3 + 4n4.

3. The Proposed ICEEMDAN-GWO-
MKELM Approach

3.1. GWO-Based Multiple Kernel Extreme Learning Machine.
*is paper uses GWO to optimize the weights and pa-
rameters for MKELM, namely, GWO-MKELM, which can
be described as follows:
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Step 1: define the fitness function according to root
mean square error (RMSE):

f pi( ) �
�������������������
1

N
∑N
n�1

yi − ϕ xi, pi( )( )2
√√

, (39)

where N denotes the number of training samples, yi
denotes the actual value of input xi, p(i) is the vector of
the parameters and weights in the proposed model
which need to be optimized, and ϕ(xi, pi) is the pre-
diction value of the model with xi and pi.

Step 2: set parameters for running GWO, including
maximum number of iterations, population size, and
upper and lower boundaries for parameters of four
different types of kernel functions and the regulari-
zation parameter. Randomly initialize the position for
each wolf between the upper and lower boundaries, and
set the fitness value of the α, β, and δ wolves to be
infinite. Set the times of iteration t � 1. Initialize a, A

→
,

and C
→
.

Step 3: for each wolf, if the fitness of current wolf is less
than that of the α wolf, replace the α wolf with it; if the
fitness is between β wolf and α wolf, replace the β wolf
with it; if the fitness value is between δ wolf and β wolf,
replace the δ wolf with it.

Step 4: update a, A
→
, and C

→
by equations (7) and (9).

Update all the search agents by equation (16). Update
t � t + 1.

Step 5: judge whether t is larger than the maximum
number of iterations; if not, go to Step 3; if so, break the
iteration and output the position of α wolf pα as the
optimized parameters and weights for MKELM.

3.2. &e Proposed ICEEMDAN-GWO-MKELM Approach.
Because the electricity load time series is hard to predict for
its nonlinear and nonstationary features, this paper adopts a
forecasting framework called “decomposition and ensem-
ble.” *e framework decomposes the original time series
into several relatively simple components and predicts these
components separately, and the results are aggregated as the
final predicted value. It is worth noting that the components
obtained by the decomposition can effectively preserve the
characteristics of the original time series at different levels
and can be directly processed by relatively simple methods,
so it is possible to forecast load from the decomposed
components.

*e proposed ICEEMDAN-GWO-MKELM consists of
three stages, namely, decomposition, individual forecasting,
and ensemble, following the very popular framework of
“decomposition and ensemble.” *e details of the approach
are illustrated in Figure 1.

In the first stage, i.e., decomposition, the scheme uses
ICEEMDAN to decompose the raw load data into a set of
components (n − 1 IMFs and one residue). *e decomposed
components will show simpler characteristics than the raw
data, making it easier to forecast the fluctuation of the

components than to forecast the raw data directly. After that,
an individualMKELMmodel is built on each component. To
improve the forecasting accuracy, GWO is applied to op-
timizing both the parameters and weights adaptively. In the
last stage, the forecasting results of all the components are
simply summated as the final result.

From the figure, it can also be seen that the proposed
ICEEMDAN-GWO-MKELM is a typical strategy of
“divide and conquer.” *at is to say, the tough and
challenging task of STLF is now divided into some
subtasks of forecasting the decomposed components
individually. Because the decomposed components show
relatively simple features compared with the raw load
data, the forecasting accuracy with such components
might be significantly improved.

4. Experimental Results

4.1. Data Description. *e data of electricity load demand
can be accessed from Australian Energy Market Operator
(AEMO) [55]. Especially, we use the hal-fhour demand data
of 2014 from New South Wales (NSW), Tasmania (TAS),
Queensland (QLD), Victoria (VIC), and South Australia
(SA) to test and verify the proposed method. For each re-
gion, to reflect the difference of season, four months in-
cluding three solar months of 31 days (January, July, and
October) and one lunar month of 30 days (April) were
chosen. *e statistics of the used datasets are shown in
Table 1. We use the first 80% observations as training data
and the rest as testing data for each month. *e size of
datasets from a solar month is 1488, so the numbers of
training and testing samples are 1190 and 298, respectively.
Likewise, the size for a lunar month is 1440, so the numbers
of the two parts are 1152 and 288.

We use the previous 48 data to predict the next data, so
the horizon is 1 and the lag is 48, which can be formulated as

x̂t+h � f xt− (l− 1), xt− (l− 2), . . . , xt− 1, xt( ), (40)

where x̂t+h is the prediction of horizon h at time t, xt is the
actual data at time t, and l is the lag.

4.2. Evaluation Criteria. We use several widely used indices
to evaluate the proposed approach: the mean absolute error
(MAE), the mean absolute percent error (MAPE), and the
root mean squared error (RMSE), as defined in equations
(41)–(43), respectively:

MAE �
1

N
∑N
n�1

xt − x̂t
∣∣∣∣ ∣∣∣∣, (41)

MAPE �
1

N
∑N
n�1

xt − x̂t
xt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (42)

RMSE �

�������������
1

N
∑N
n�1

xt − x̂t( )2
√√

, (43)
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where N is the number of testing data and xt and x̂t are the
true value and the prediction value at time t. Obviously, the
lower the three criteria, the better the predict method.

Meanwhile, the Nemenyi test is also conducted to show
that the proposed method is significantly superior to the
other methods [56]. *e basic idea of the Nemenyi test is to
determine whether the algorithm is similar to each other
according to the average performance of the algorithm on
different datasets. First, it sorts different algorithms from
good to bad on each dataset according to the evaluation
criteria so that the ordinal value is the position of the

algorithm on the dataset, and 1 is the best. If the position is
the same, the ordinal value is the same, and it can be cal-
culated by k + ((n − 1)/2), where k is the position and n is the
number of algorithms in the same position.*en, it averages
all the ordinal values of each algorithm to get the average
ordinal value. Under a certain level of significance, the
critical difference of the average ordinal value difference can
be calculated by

CD � qα

�������
k(k + 1)

6N

√
, (44)

ICEEMDAN

Addition

…

…

…

Raw load data

Residue

Final forecasting
result

Start

Initialize grey wolf
population

Initialize a, A, and C

Calculate objective function
for each search agent,

Xα = best agent,
Xβ = second best agent,
XΩ = third best agent.

Iteration <
Iteration_max

End

Update the position of
the current search agent 

Count = Count + 1 

Count <
Size_search

_agent

False

True

True

FalseUpdate a, A,
and C

Calculate objective
function for each

search agent

Update Xα, Xβ, XΩ 

Iteration = Iteration + 1

IMF1 IMF2 IMFn–1

GWO-MKELM1 GWO-MKELM2 GWO-MKELMnGWO-MKELMn–1

Forecasting result1 Forecasting result2 Forecasting resultn–1 Forecasting resultn

Stage 1
Decomposition

Stage 2
Individual forecasting

Stage 3
Ensemble

Figure 1: *e flowchart of the proposed ICEEMDAN-GWO-MKELM.

Table 1: Statistics of the used datasets.

Dataset Month Length Min Median Mean Max Std

NSW

Jan 1488 5484.19 8020.36 8072.02 11845.77 1399.20
Apr 1440 5507.79 7490.73 7473.87 9563.73 999.90
Jul 1488 6157.55 8754.69 8668.21 11282.96 1162.95
Oct 1488 5489.52 7588.19 7433.56 9930.88 892.49

TAS

Jan 1488 770.96 1038.53 1037.21 1282.24 90.31
Apr 1440 844.41 1110.49 1111.48 1437.70 118.15
Jul 1488 902.13 1245.24 1244.60 1624.12 148.61
Oct 1488 809.92 1049.90 1054.96 1407.43 102.11

QLD

Jan 1488 4458.42 6146.61 6067.62 8364.63 872.03
Apr 1440 4279.21 5699.76 5596.11 6925.55 688.97
Jul 1488 4073.00 5613.99 5678.53 7288.08 706.08
Oct 1488 4312.69 5550.25 5520.67 7376.08 703.10

VIC

Jan 1488 3576.27 5262.46 5657.32 10240.22 1451.69
Apr 1440 3616.14 5152.89 5177.05 7697.72 772.45
Jul 1488 3923.27 5831.98 5762.46 7573.03 828.18
Oct 1488 3470.86 4984.60 4951.61 6517.63 662.85

SA

Jan 1488 844.01 1430.33 1578.44 3245.92 502.79
Apr 1440 868.00 1314.88 1313.63 2103.43 214.83
Jul 1488 922.86 1504.01 1509.43 2344.03 285.94
Oct 1488 801.79 1284.20 1299.10 2162.02 204.07
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where α is the level of significance, k is the number of al-
gorithms, and N is the number of datasets.

If the average ordinal value difference between the two
algorithms exceeds CD, then the assumption that the two
algorithms have the same performance is rejected at the level
of significance of 1 − α. Here, we take a significant level of
0.05 and divide all prediction methods into two parts: one is
without decomposition and the other one is with decom-
position.*e two parts of the algorithms take RMSE,MAPE,
and MAE as the criteria for measuring performance to
conduct the Nemenyi test, respectively, so a total of 6 tests
were performed finally.

4.3. Experimental Settings. First of all, some state-of-the-art
prediction models will be introduced as comparative ap-
proaches to verify the validity of the proposed method
ICEEMDAN-GWO-MKELM. According to whether the
original data are decomposed and how they are decomposed,
benchmarkmethods can be divided into three parts.*e first
part is methods without decomposition: SVR, ANN, random
forest (RF), deep belief network (DBN) [15], ELM, kernel
extreme learning machine with single RBF kernel (KELM),
and GWO-MKELM. *e second part is methods with EMD
decomposition: EMD-SVR, EMD-ANN, EMD-RF, EMD-
DBN, EMD-ELM, EMD-KELM, and EMD-GWO-MKELM.
*e third part is methods with ICEEMDAN decomposition:
ICEEMDAN-SVR, ICEEMDAN-ANN, ICEEMDAN-RF,
ICEEMDAN-DBN, ICEEMDAN-ELM, ICEEMDAN-
KELM, and ICEEMDAN-GWO-MKELM. Comparison
between each part can reflect the impact of decomposition
on the prediction effect of the model, and the comparison
within each group can reflect the impact of different pre-
diction methods on the effectiveness.

*e parameters for the proposed approach and the
compare methods are as follows. For ANN with back
propagation, we set 10 and 5, 000 as the number of neurons
in the hidden layer and the iteration epochs, respectively.
We set 100 as the number of trees in RF. For DBN, the
batch size is 6 and the epoch number is 100. For ELM, the
number of hidden neurons is 20 and we use the sigmoid
function as the activation function. For KELM and
MKELM, the regularization coefficient is 1. For the ICE-
EMDAN, the standard deviation of the white noise and the
number of ensembles are 0.2 and 100, respectively. *e
decomposition results of the electricity load demand of
NSW in January of 2014 by ICEEMDAN are shown in
Figure 2. Also, for GWO, the parameters are shown in
Table 2.

We apply the min-max normalization to preprocessing
the data before being fed into the models, as formulated by
using the following equation:

xnorm �
x − xmin

xmax − xmin

, (45)

where xnorm is the normalized data, x is the original data, and
xmin and xmax are corresponding minimal and maximal of
each data dimension.With this normalization, every data are
mapped into a value in the range of [0, 1].

We conduct all the experiments by MATLAB R2016b on
64-bit Windows 10, and the main hardware includes a
3.6GHz CPU as well as 32GB RAM.

4.4. Results and Analysis. To validate the proposed
ICEEMDAN-GWO-MKELM, we conduct two groups of
experiments: single models, which mean performing STLF
with the raw load data, and ensemble models, which mean
performing STLF with the decomposed components.

4.4.1. Single Models. *e results of MAPE, RMSE, andMAE
by single models on the different datasets are listed in
Table 3, where we use bold and italics to mark the best and
the worst results, respectively.

From Table 3, we can find that ELM and KELM obtain
the worst results in 43 and 17 out of 60 cases, respectively. It
reveals that the kernel trick can improve the forecasting
results for ELM to some extent. We can also see that none of
the other models obtain the worst results, indicating that the
nonkernel ELM and ELM with a single RBF kernel (KELM)
underperform the other models. It may owe to both the
forecasting ability of ELM and the representation ability of a
single RBF which are still poor for STLF. However, when we
use multiple kernel ELM optimized with GWO (GWO-
MKELM) for STLF, it achieves the best results in 29 out of 60
cases, which indicates that GWO-MKELM outperforms
other single models significantly. *e possible reason is that
GWO-MKELM can optimize the weights and parameters of
the multiple kernels for ELM to improve the representation
ability of the kernels. SVR and DBN achieve the best results
22 and 10 times, ranked second and third, respectively. ANN
and RF obtain similar results in most cases.

We further use the Nemenyi test with RMSE,MAPE, and
MAE to compare the models, as shown in Figures 3–5,
respectively. Regarding Figure 3, the proposed GWO-
MKELM is ranked first, with a value of 2, followed by DBN
and SVR with 2.2 and 2.4, respectively. *e ELM is ranked
last, with a value of 6.6. *erefore, the results show that
GWO-MKELM is the best single model in terms of the
Nemenyi test of RMSE. When we look at the Nemenyi tests
of MAPE and MAE, we can see that both tests are almost the
same. Specifically, SVR is ranked first with a value of 2,
followed by GWO-MKELM and DBN with values of 2.1 and
2.15 in both tests, respectively. Once again, the ELM is
ranked last in both tests.

All the experimental results with single models show that
none of the single models can always outperform others,
although GWO-MKELM achieves the best results the most
times.*erefore, to improve the accuracy of STLF, a possible
way is to adopt the “decomposition and ensemble”
framework.

4.4.2. Ensemble Models. To demonstrate the performance of
ICEEMDAN, we utilize EMD as a compared decomposition
method. We still applied the seven forecasting approaches in
single models to conduct individual forecasting for both
decomposition methods, so there are a total of 14 ensemble
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forecasting models.*e results of ensemble models are listed
in Table 4.

From the table, it can be seen that the ensemble models
with EMD and ICEEMDAN obtain the worst results, i.e., 51
and 9 out of 60 times, respectively, while all the best results of
the 60 cases are achieved by the models associated with
ICEEMDAN. Among the ensemble models with EMD,
EMD-ELM and EMD-KELM obtain the worst results 23 and
28 times, respectively. *e possible reason is that nonkernel
ELM and ELM with a single RBF kernel lack good fore-
casting ability, so it is necessary to use multiple kernels to
improve such ability. If we further investigate each

individual forecasting method, we can find that the results
with ICEEMDAN usually outperform those with EMD,
confirming that the components decomposed by ICE-
EMDAN are more powerful than those by EMD for STLF.

*e best results of all cases are associated with ICE-
EMDAN, among which GWO-MKELM achieves the best
results in 57 out of 60 cases while the remaining three best
results are achieved by SVR. Regarding the individual
forecasting models, DBN and RF obtain neither the best nor
the worst results and their performance is at an intermediate
level. ANN obtains the worst results 3 times. Note that
although KELM with a single RBF cannot improve the
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Figure 2: An example of load data and their decomposed components by ICEEMDAN.
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Table 2: Parameters for GWO.

Description Symbol Range/Value

Population size P 50
Maximal iterations T 20
RBF kernel number n1 40
Polynomial kernel number n2 1
Linear kernel number n3 1
Wave kernel number n4 1
Particle dimension D 88
Kernel weight a, b, c, d [0, 1]
Parameter in Krbf p1 [2− 4, 212]
Constant in Kpoly p2 [0, 10]
Exponent in Kpoly p3 [1, 4]
Parameters in Kwav p4, p5, p6 [1, 10]

Table 3: Results of single models.

Dataset Month Metric ANN DBN ELM KELM RF SVR GWO-MKELM

NSW

JAN
MAE 154.6764 64.4121 182.5331 182.6954 133.8832 70.5883 64.1313
MAPE 0.0195 0.0084 0.0231 0.0230 0.0179 0.0088 0.0082
RMSE 187.7779 81.9792 224.1725 220.6236 169.3942 87.3505 79.0744

APR
MAE 137.1602 61.7357 191.6156 126.8218 85.8328 72.4596 52.0814
MAPE 0.0188 0.0083 0.0262 0.0170 0.0115 0.0097 0.0071
RMSE 178.4644 78.0035 239.2961 165.7563 119.9159 94.7145 68.1083

JUL
MAE 171.4667 97.4067 248.7272 214.9098 162.6317 83.8706 82.8769
MAPE 0.0206 0.0115 0.0305 0.0255 0.0203 0.0103 0.0101
RMSE 216.4860 134.9842 317.5506 286.6340 216.4821 110.6867 109.9804

OCT
MAE 115.5595 75.2309 201.0932 184.3484 131.0651 61.1197 55.3547
MAPE 0.0149 0.0096 0.0261 0.0232 0.0163 0.0080 0.0072
RMSE 153.4577 107.2169 250.8892 252.1916 206.4041 77.8372 72.6525

TAS

JAN
MAE 18.3073 14.1093 23.6164 20.4768 16.4694 13.3090 17.9694
MAPE 0.0173 0.0133 0.0221 0.0190 0.0156 0.0124 0.0171
RMSE 24.4586 18.7513 31.4773 26.8768 21.3632 18.3332 24.5034

APR
MAE 24.3973 20.9139 38.0553 46.1968 23.8966 15.8858 27.3674
MAPE 0.0206 0.0178 0.0319 0.0372 0.0196 0.0135 0.0230
RMSE 31.6557 27.7336 47.5372 59.9119 33.1396 22.0547 35.3487

JUL
MAE 26.3055 21.9166 39.0484 34.6745 26.3530 19.0973 22.1679
MAPE 0.0217 0.0183 0.0320 0.0281 0.0225 0.0156 0.0185
RMSE 32.6556 27.7648 49.5600 45.3531 34.5904 25.2990 28.5182

OCT
MAE 21.4702 16.4177 27.8931 20.7424 19.1465 15.3503 21.0459
MAPE 0.0203 0.0153 0.0261 0.0194 0.0179 0.0142 0.0196
RMSE 27.5290 22.4137 35.8661 28.5251 25.1375 21.0999 28.1134

QLD

JAN
MAE 99.5483 55.2755 121.3485 107.8171 87.4767 52.7251 43.4113
MAPE 0.0177 0.0100 0.0221 0.0195 0.0162 0.0094 0.0076
RMSE 87.4767 68.5140 152.3092 141.7001 116.6662 65.7924 56.2672

APR
MAE 73.4552 39.0620 118.0295 79.0556 65.4980 51.2859 38.8761
MAPE 0.0133 0.0071 0.0220 0.0142 0.0120 0.0094 0.0071
RMSE 97.5407 50.8372 147.9867 115.9868 93.4801 64.4567 49.7598

JUL
MAE 101.6366 52.7022 133.5809 103.8697 70.2883 53.6579 44.8970
MAPE 0.0183 0.0092 0.0238 0.0181 0.0126 0.0096 0.0079
RMSE 134.0305 67.8439 175.2375 142.6298 100.6117 69.3967 57.3941

OCT
MAE 171.5361 97.9332 102.6511 374.9998 180.8467 47.4042 88.3029
MAPE 0.0289 0.0158 0.0172 0.0584 0.0278 0.0079 0.0150
RMSE 211.1436 127.1105 133.9282 470.6390 260.8355 62.8133 120.4800
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forecasting ability of ELM, the proposed GWO-MKELM can
significantly outperform both ELM and KELM, showing that
the proposed multiple kernel learning framework and the
GWO-MKELM are very effective for STLF.

When we look at the best result of each evaluation
criterion, we can find that the proposed ICEEMDAN-GWO-
MKELM is obviously advantageous over the compared
methods in most cases. We take NSW data in JAN as an
example, the ICEEMDAN-GWO-MKELM achieves the best

MAPE 0.0037, which is far below the second best result
0.0076 achieved by the EMD-SVR and the ICEEMDAN-
SVR. Likewise, the best MAE by the ICEEMDAN-GWO-
MKELM is 30.2777, and it is less than half of the second best
MAE by the ICEEMDAN-SVR.*e results of MAE by some
other methods are an order of magnitude larger than the
MAE by the ICEEMDAN-GWO-MKELM. *e results on
RMSE show a similar trend.

Again, we use the Nemenyi test to compare all the in-
volved ensemble models. *e results regarding RMSE,
MAPE, and MAE can be found in Figures 6–8, respectively.
In all the figures, the proposed ICEEMDAN-GWO-MKELM
is ranked first with a fixed value of 1.05, followed by ICE-
EMDAN-SVR. In addition, EMD-KELM is still ranked last
in all cases, showing that it has the worst ability for STLF
when compared with the other ensemble models.

From the above analysis, we can see that (1) ensemble
models outperform single models for STLF; (2) regarding
the decomposition in ensemble models, ICEEMDAN is
superior to EMD; (3) GWO is very useful for optimizing
weights and parameters in MKELM simultaneously; and (4)

Table 3: Continued.

Dataset Month Metric ANN DBN ELM KELM RF SVR GWO-MKELM

VIC

JAN
MAE 173.2485 89.5098 223.1598 250.0737 162.1459 75.5767 89.5373
MAPE 0.0298 0.0154 0.0369 0.0390 0.0261 0.0131 0.0147
RMSE 228.9064 118.8186 284.7641 362.5156 214.6654 100.3084 127.9768

APR
MAE 114.6478 63.5387 156.0478 131.2278 100.3078 63.7165 53.1056
MAPE 0.0226 0.0125 0.0307 0.0252 0.0198 0.0126 0.0106
RMSE 142.7216 85.6728 196.3560 171.3722 139.6513 89.2660 71.1012

JUL
MAE 142.8986 75.2688 208.8160 151.0656 151.2386 64.0587 65.3535
MAPE 0.0271 0.0146 0.0388 0.0279 0.0299 0.0122 0.0123
RMSE 178.0544 99.4085 285.9721 200.6208 198.9308 88.7265 83.1036

OCT
MAE 91.9358 51.8505 137.4309 110.5691 63.8513 62.1709 45.7309
MAPE 0.0189 0.0105 0.0279 0.0229 0.0130 0.0125 0.0092
RMSE 117.3665 67.4336 174.8739 150.3012 87.4146 87.5464 59.0015

SA

JAN
MAE 66.1579 53.5970 76.1489 94.2302 55.8282 33.1162 38.1895
MAPE 0.0389 0.0311 0.0436 0.0505 0.0318 0.0195 0.0219
RMSE 83.6863 77.3360 94.3229 125.3239 71.4316 53.5724 53.3662

APR
MAE 40.1770 25.0730 55.5536 43.7650 33.8890 29.4414 29.6150
MAPE 0.0312 0.0196 0.0437 0.0337 0.0259 0.0223 0.0230
RMSE 58.4774 33.1353 73.5395 57.3714 47.3599 59.0514 38.8852

JUL
MAE 52.9771 28.4243 66.5991 57.4608 49.0961 34.8949 30.5323
MAPE 0.0370 0.0196 0.0464 0.0394 0.0344 0.0238 0.0215
RMSE 71.5559 36.2251 86.2606 73.8378 64.8605 62.2525 40.5406

OCT
MAE 44.4122 22.1417 49.4206 54.4296 32.4702 28.6027 23.1714
MAPE 0.0334 0.0166 0.0376 0.0417 0.0244 0.0211 0.0174
RMSE 59.6492 29.3357 64.9982 68.7959 44.5576 51.2978 30.7468
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Figure 3: *e Nemenyi test results of RMSE for STLF with single
models.
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models.
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Figure 5: *e Nemenyi test results of MAE for STLF with single
models.
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the proposed ICEEMDAN-GWO-MKELM is very effective
for STLF.

4.5. Discussion. In this subsection, we will study the influ-
ence of parameter settings of ICEEMDAN, lag order, GWO,
and KELM. We will also discuss the running time of the
forecasting models associated with ICEEMDAN. All the
discussion is with the NSW dataset in JAN.

4.5.1. &e Influence of Parameters for ICEEMDAN. *e
realization number and the noise strength are two key
parameters for the ICEEMDAN. Here, we study their
influence on STLF. First, we investigate the influence
of the realization number in the set of 10, 25, 50, 75,{

100, 300, 500, 1000, 1500, 2000} while fixing the other pa-
rameters as set in Section 4.3. *e results are shown in
Figure 9.

CD

14 13 12 11 10 9 8 7 6 5 4 3 2 1

1.05 ICEEMDAN-GWO-MKELM
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5.5 EMD-SVR
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12.35EMD-ELM

13.15EMD-KELM

Figure 6: *e Nemenyi test results of RMSE for STLF with ensemble models.
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Figure 7: *e Nemenyi test results of MAPE for STLF with ensemble models.
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Figure 8: *e Nemenyi test results of MAE for STLF with ensemble models.
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From this table, it can be seen that when the realization
number is less than 75, all the evaluation criteria are poor,
while when it is equal to or greater than 75, all the results are
rather stable. Especially when it equals 1000, all the evalu-
ation criteria obtain the best values.*erefore, to balance the
computation cost and effectiveness, a value equal to or
greater than 75 is reasonable for the realization number of
the ICEEMDAN.

For the white noise strength, when the value is less than
0.09, the results are rather bad. However, when the value falls
in the range of [0.09, 0.4], the results show obvious stability,
as shown in Figure 10. More specifically, the proposed
approach achieves the best results when the white noise
strength equals 0.2.

4.5.2. &e Influence of the Lag Order. *e lag order deter-
mines the length of the input data. A large lag order means
more computation resources, while a small one may result in
bad forecasting results. We test the lag orders in the range of
12, 24, 36, 48, 72, 96, 120, 144{ }, and the results are shown in
Figure 11.

We can see that when the lag orders are equal to or less
than 48, the results are very close, while after that, the results
become worse and worse with the increase of the lag order.

Because the experiments use half-hour load data and it just
has 48 data points for one day, 48 is a reasonable lag order to
balance the computation resource and forecasting results.

4.5.3. &e Influence of GWO-MKELM’s Parameter Settings.
In the proposed approach, the combined kernel is built by
four types of kernels, among which the number of RBF kernels
is usually large. Here, we explore the influence of different
numbers of RBF kernels, say 5, 10, 20, 30, 40, 50,{

60, 80, 100, 150, 200}, as shown in Figure 12. It is shown that
the proposed approach achieves similar results when the
number of RBF kernels is less than 60, and after that, the
results become worse with the increase in the number of RBF
kernels. *e ideal value for such parameter is in the range of
[5, 50].

*e iteration number and search agent number (pop-
ulation size) are two key parameters for GWO, whose im-
pacts are shown in Figures 13 and 14, respectively.

From Figure 13, we can see that when the number of
iteration varies from 5 to 15, the experimental results be-
come better and better. When the iteration number is equal
to 20, the results become slightly worse, and then the results
remain stable with the increase of the iteration number.
Likewise, the number of search agents has a relatively stable
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Figure 9: *e influence of the realization number of the ICEEMDAN.
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impact on the forecasting results. *e optimal number of
search agents is 50, and for other numbers of search agents,
the forecasting results are very close, as shown in Figure 14.

4.5.4. Running Time. We report the running time of the
methods associated with ICEEMDAN in Table 5. It can be

seen that ELM and DBN take the least time for training and
testing, respectively.*eGWO-MKELM takes themost time
to train the forecasting model and test the samples because it
has to perform matrix operations many times when eval-
uating each individual in the wolf pack. Fortunately, the
training process can be conducted offline, and it needs to be
performed only once. With the optimal weights and
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Figure 11: *e influence of the lag order.
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parameters optimized by GWO, the running time for testing
the 298 samples is 0.5156 seconds. In other words, it takes
about 0.0017 seconds to test one sample, which is acceptable
in real-world applications.

5. Conclusions

STLF plays an important role in smart grids. Because of the
nonstationary and nonlinearity, it is a challenging task of
STLF from the raw load data. To address this issue, we
propose a novel approach for STLF based on the well-known
“decomposition and ensemble” framework. We firstly
present a novel multiple kernel learning approach that uses
GWO to optimize the weights and the parameters of every
single kernel in the combined kernel for ELM simulta-
neously. After that, a new approach integrating ICE-
EMDAN, GWO, and Multiple Kernel ELM, namely,
ICEEMDAN-GWO-MKELM, is proposed for STLF. We
also compare the proposed approach with some state-of-the-
art forecasting methods on publicly accessible datasets
containing half-hour load data of 4 months from 5 regions in
Australia. From the experimental results, we can draw the
following conclusions:

(1) Ensemble models significantly outperform the cor-
responding single models because the decomposed
components can better express the intrinsic nature of
the load data than the raw signal

(2) ICEEMDAN is superior to EMD for the decom-
position of the load data

(3) *e GWO-MKELM outperforms ELM with a single
kernel (KELM) as well as nonkernel ELM for load
forecasting

(4) *e proposed ICEEMDAN-GWO-MKELM ap-
proach is advantageous over the state-of-the-art
competitive methods in terms of the evaluation
criteria, showing that the ICEEMDAN-GWO-
MKELM is very promising for STLF.

One limitation of the proposed ICEEMDAN-GWO-
MKELM is that it has to evaluate each wolf and many kernel
matrices must be computed. Hence, more time is needed
during the training phase. Fortunately, the training process
can be performed offline. *erefore, once the forecasting
model is built, the running time for testing is acceptable.

In the future, we will apply the ICEEMDAN-GWO-
MKELM to forecasting other energy time series, such as
electricity prices, natural gas prices, and wind speed.
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Figure 14: *e influence of the search agent number of GWO.

Table 5: *e running time of the methods associated with
ICEEMDAN.

Models (ICEEMDAN) Training time (s) Testing time (s)

ANN 73.2102 0.2937
DBN 335.2610 0.0028
ELM 0.0450 0.0079
KELM 0.4614 0.0514
RF 0.4673 0.0722
SVR 10.2546 0.3431
GWO-MKELM 1264.3547 0.5156
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(“https://www.aemo.com.au/Electricity/National-Electricity-
Market-NEM/Data-dashboard#aggregated-data”) on March
14, 2019. *e EXCEL file contains 21 sheets. Please refer to
README sheet for detailed information. Each of the other
sheets contains half-hour load data of one region in one
month. For example, the sheet “NSW-Jan” contains half-hour
load data of New South Wales in January 2014. (Supple-
mentary Materials)
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