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Abstract  11 

Short-term time series wind power predictions are extremely essential for accurate and efficient offshore 12 

wind energy evaluation and, in turn, benefit large wind farm operation and maintenance (O&M). However, 13 

it is still a challenging task due to the intermittent nature of offshore wind, which significantly increases 14 

difficulties in wind power forecasting. In this paper, a novel hybrid model, using unique strengths of 15 

Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), 16 

and Deep-learning-based Long Short-Term Memory (LSTM), was proposed to handle different 17 

components in the power time series of an offshore wind turbine in Scotland, where neither the 18 

approximation nor the detail was considered as purely nonlinear or linear. Besides, an integrated pre-19 

processing method, incorporating Isolation Forest (IF), resampling, and interpolation was applied for the 20 

raw Supervisory Control and Data Acquisition (SCADA) datasets. The proposed DWT-SARIMA-LSTM 21 

model provided the highest accuracy among all the observed tests, indicating it could efficiently capture 22 

complex times series patterns from offshore wind power. 23 

 24 
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NOMENCLATURE 27 

 28 

Latin symbols 29 

(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷  Seasonal difference operator 30 

(1 − 𝐵𝐵)𝑑𝑑  Regular difference operator 31 

𝐿𝐿�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎   Prediction of linear part of reconstructed approximation 32 

𝐿𝐿�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑   Prediction of linear part of reconstructed detail 33 

𝑁𝑁�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎   Prediction of nonlinear part of reconstructed approximation 34 

𝑁𝑁�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑   Prediction of nonlinear part of reconstructed detail 35 

𝑦𝑦�𝑡𝑡    Prediction of original time series power data 36 

𝑦𝑦�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎   Prediction of reconstructed approximation 37 

𝑦𝑦�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑   Prediction of reconstructed detail 38 

ℎ𝑡𝑡    Overall output at time step t 39 

ℎ𝑡𝑡−1   Cell state vector at time step t-1 40 

max(𝑥𝑥)  Maximum value of signal 41 

𝐻𝐻𝑖𝑖    Net input of neuron j 42 

𝐿𝐿𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎   Linear part of reconstructed approximation 43 

𝐿𝐿𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑   Linear part of reconstructed detail 44 

𝑁𝑁𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎   Nonlinear part of reconstructed approximation 45 

𝑁𝑁𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑   Nonlinear part of reconstructed detail 46 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   Normalized value of signal 47 

𝑤𝑤𝑖𝑖𝑖𝑖    Weight linking neuron i and neuron j 48 

𝑥𝑥𝑡𝑡    Input neuron at time step t 49 

𝑦𝑦𝑡𝑡    Original time series power data 50 
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𝑦𝑦𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎   Reconstructed approximation 51 

𝑦𝑦𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑   Reconstructed detail 52 

an    Low frequency component at n decomposition level 53 

B    Backward shift operator 54 

c(n)   Average path length of unsuccessful search in a Binary Search Tree 55 

d    Difference order 56 

D    Seasonal difference order 57 

dn    High frequency component at n decomposition level 58 

E(x)   Average value of x 59 

h    Output of neuron j 60 

h(x)   Path length of data x 61 

 m    Scaling parameter 62 

min (𝑥𝑥)  Minimum value of signal 63 

n    Number of external nodes 64 

n    Translation parameter 65 

p    Autoregressive order  66 

P    Seasonal autoregressive order 67 

q    Moving average order 68 

Q    Seasonal moving average order 69 

s    Anomaly score 70 

s    Number of time steps for a single seasonal period 71 

t    Discrete time parameter 72 

 T    Length of signal  73 

tanh   Hyperbolic tangent function 74 
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x    An observation  75 

 x(t)    Wind power signal 76 

Zt    Time series 77 

𝐿𝐿    Number of decomposition level 78 

𝑁𝑁    Length of signal 79 

𝑊𝑊    Corresponding weight connecting the input signal 80 

𝑏𝑏    Bias along with corresponding activation function 81 

 82 

Greek symbols 83 

Θ𝑄𝑄    Seasonal moving average polynomial 84 

𝜀𝜀𝑡𝑡    Estimated residual at time t 85 

𝜃𝜃𝑞𝑞    Regular moving average polynomial 86 

𝜑𝜑𝑃𝑃    Seasonal autoregressive polynomial 87 

𝜙𝜙𝑝𝑝    Regular autoregressive polynomial 88 

⊙    Element level multiplication 89 

 𝜎𝜎    Activation function 90 

 91 

ABBREVIATION 92 

ACF   Autocorrelation function 93 

AdaGrad  Adaptive gradient algorithm 94 

Adam   Adaptive Moment Estimation 95 

AIC   Akaike’s information criterion  96 

ANN   Artificial Neural Network 97 

AR    Autoregressive 98 



5 
 

ARIMA  Autoregressive integrated moving average 99 

BIC   Bayesian information criterion 100 

cA    Component of approximation at level 1  101 

cA2   Component of approximation at level 2 102 

cD/cD1  Component of detail at level 1 103 

cD2   Component of detail at level 2  104 

CWT   Continuous wavelet Transform  105 

DWT   Discrete wavelet Transform  106 

I    Integrated 107 

IDWT   Inverse discrete wavelet Transform  108 

IEC   International Electrotechnical Commission  109 

IF    Isolation Forest  110 

LSTM   Long Short-Term Memory  111 

MA   Moving average 112 

MSE   Mean square error 113 

MAPE   Mean absolute percentage error  114 

NaN   Not a number 115 

NMAE   Normalised mean absolute error 116 

NRMSE   Normalised root mean square error 117 

NWP   Numerical weather prediction 118 

ORE   Offshore Renewable Energy 119 

PACF   Partial autocorrelation function  120 

PMG   Permanent Magnet Generator 121 

R2    R-square  122 
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ReLU   Rectified Linear Unit  123 

RMSE   Root mean square error  124 

RMSProp  Root Mean Square Propagation  125 

RNN   Recurrent Neural Network  126 

SARIMA  Seasonal Autoregressive Integrated Moving Average 127 

SCADA  Supervisory Control and Data Acquisition 128 

SVM   Support Vector Machine 129 

WT   Wavelet Transform  130 

 131 

1. Introduction 132 

In recent years, renewables have been considered as an effective alternative that can replace conventional 133 

power sources. Among them, wind energy has become one of the most attractive supplies, which is 134 

expected to provide 20% of electricity for the global demand by 2030 [1]. It can be seen that wind turbine 135 

installations are growing sharply [2], especially offshore wind turbines [3], which are expected to own 136 

over 234 GW capacity worldwide in recent decades [4]. As one of the most suitable locations for wind 137 

energy developments, the United Kingdom has committed to greatly extending offshore wind capacity 138 

[5]. However, as the demand for wind energy continues to upgrade, the uncertainty of wind power 139 

integration also increases due to the intermittent, uncertainty and volatility of the wind power, and thus 140 

trigger difficulties in grid operation. Therefore, accurate wind power prediction is highly desired to 141 

effectively dispatch these issues on a reasonable schedule. 142 

 143 

1.1 Motivation and incitement 144 

The operation security of the power network relies on the stability of power generations, where the balance 145 

between electricity generation and consumption needs to be maintained, otherwise disturbances in power 146 
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quality/supply may occur and thus leads to significant financial loss. An accurate wind power prediction 147 

can optimize the integration of wind energy into the electricity grid. It showed that an increase of 10% in 148 

prediction accuracy can achieve about a 30% improvement of wind power generation [6]. Therefore, it is 149 

of great practical significance to develop a wind power prediction model of high accuracy. 150 

 151 

1.2 Literature review 152 

Over the years, various wind power prediction models have been developed, which can be coarsely 153 

categorized as a physical model, statistical model, intelligent model and hybrid model. Physical models 154 

mainly refer to numerical weather prediction (NWP) models. One advantage of physical models is the 155 

capability to make power predictions directly from real-time data. But using NWP parameters requires a 156 

large amount of historical data with high precision, increasing the difficulty in data collection as well as 157 

economic cost. On the other hand, statistical models treat weather changes as a random process, in which 158 

prediction errors can be reduced if the input signal is under normal conditions [7]. This type of model can 159 

efficiently exploit historical data and explain linear signals well [8], while it cannot effectively capture 160 

nonlinear signals. These difficulties can be addressed by using intelligent models, which are mainly based 161 

on Artificial Neural Networks (ANN). These models used non-linear methods to predict targets based on 162 

historical variables. Later, deep learning with a deeper neural network has been proposed as a powerful 163 

tool to dig out useful information in complex signals, especially for those time series data with extreme 164 

variations.   165 

 166 

Among these models, Autoregressive Integrated Moving Average (ARIMA) [9] is one of the most 167 

commonly used methods for univariate time series predictions. For example, Yatiyana et al. [10] used 168 

ARIMA to predict wind speed and direction for wind power generation, where collected signals were 169 

processed to get an hourly average data. This single ARIMA model presented Mean Absolute Percentage 170 
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Error (MAPE) of 4.9% for wind speed and 15.6% for wind direction. Additionally, Seasonal ARIMA 171 

(SARIMA) has been proposed later as an extension of ARIMA, which can support signals with an 172 

additional seasonal component. This model removes characteristics of seasonal variations using seasonal 173 

differencing, improving the prediction accuracy of wind power.  174 

 175 

Recently, Long Short-Term Memory (LSTM) has also become a widely used deep learning method, which 176 

addressed the problem of gradient explosion in traditional neural networks. LSTM has the capability of 177 

learning and remembering both short and long-term information, which is suitable to be used for time 178 

series predictions. For instance, Zhang et al. [11] used LSTM models to predict wind power generation, 179 

where the first 24 historical data were used to predict the data at the next hour. It presented lower 180 

Normalised Mean Absolute Error (NMAE) and Normalised Root Mean Square Error (NRMSE) of 0.059 181 

and 0.06 than that of using Support Vector Machine (SVM) (0.087 and 0.11), respectively. 182 

 183 

Although these single methods have made a breakthrough in terms of prediction performance, they are 184 

still not sufficient for accurate wind power prediction. Wind power generation is caused by various natural 185 

factors, such as wind speed/direction, air pressure and wind turbine friction, which makes the output power 186 

of wind turbines non-stationary and volatile. When comes to times series power data mixed with both 187 

linear and nonlinear information, neither statistical models nor intelligent models can solely make an 188 

accurate prediction. That is, although ARIMA/SARIMA and LSTM models can be used to predict times 189 

series data, each of them is only suitable for either linear or nonlinear problems. In specific, 190 

ARIMA/SARIMA can effectively explain linear information, such as trends in time series power, while 191 

failing to capture nonlinear ones. On the other hand, LSTM with a deep learning neural network can 192 

address this problem while cannot process purely linear information or signal with the characteristic of 193 
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seasonality. Based on this fact, hybrid models were proposed in this paper, aiming to utilize the unique 194 

strength of each model to achieve more accuracy and robust predictions than those using a single model.   195 

 196 

Hybrid models can be further combined with decomposition strategies. Among these decomposition 197 

methods, wavelet transform (WT) has attracted the most interest nowadays [12]. WT decomposes a signal 198 

into a high-frequency component (detail) and low-frequency component (approximation), which make 199 

them more stationary and easier for further analysis. When combining WT with hybrid models, the 200 

decomposed components can be fitted into models individually. This type of hybrid model utilizes the 201 

strength of different prediction models as well as the ability of WT. Recently, Khandelwal et al. [13] have 202 

proved that using WT can enhance prediction accuracy for time series forecasting. According to the 203 

authors, time series could be decomposed into high and low-frequency components and then be 204 

reconstructed using inverse transform. The reconstructed approximation and detail are fit into ARIMA 205 

and ANN, respectively. The prediction accuracy was improved compared with using either single ARIMA 206 

or single ANN, which presented MAPEs of 1.97%, 4.11% and 3.71%, respectively. Instead of using 207 

ARIMA in a hybrid model, SARIMA could also be combined with WT and ANN [14]. Unlike the methods 208 

mentioned above, in the current proposed hybrid model, the approximation is fitted into SARIMA and 209 

detail is fitted into ANN, where a higher prediction accuracy was achieved. Besides, the proposed hybrid 210 

model has been designed without linear or nonlinear assumptions on the approximation and the detail [15]. 211 

Time series data is first decomposed by discrete WT (DWT) to obtain the approximation and the detail. 212 

Then the two decomposed components were separately analyzed by both ARIMA and ANN.  213 

 214 

1.3 Objective and methodology 215 

The major objective of this study is to utilize the unique strength of both linear and non-linear techniques 216 

to construct a hybrid model to predict wind power generation from historical turbine data collected from 217 
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a target offshore wind turbine. The proposed hybrid model is based on SARIMA and deep-learning-based 218 

LSTM without assumptions of linear and nonlinear components. Meanwhile, WT was applied to further 219 

improve the prediction accuracy, where the effect of decomposition level is critically investigated. 220 

Additionally, to improve the quality of used datasets, several techniques are used in data pre-processing, 221 

including Isolation Forest (IF), re-sampling, and interpolation. The methodology of this study is 222 

summarized in Fig. 1.  223 

 224 

Fig. 1. Diagram of the applied methodology. 225 
 226 
1.4 Contribution and paper organization 227 

The key contributions of this paper to the current knowledge gaps can be summarised as follows:  228 
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 Existing studies on wind power prediction using hybrid models have been mainly based on the 229 

assumption of using linear and nonlinear models, to process approximation and detail components 230 

of wind power data, respectively. However, time series after DWT cannot be divided into linear 231 

and nonlinear data. This study has proposed to process approximation and detail components with 232 

both linear and nonlinear models, such as ARIMA and LSTM. Besides, to date, no study has 233 

considered the seasonality effect on time series on wind power. In this paper, a novel hybrid model 234 

using the unique strength of SARIMA and LSTM is proposed, predicting both approximation and 235 

detail components for an offshore wind turbine in Scotland. 236 

 Many studies developing linear models for wind energy forecasting have not considered a 237 

thoroughly pre-process step. However, unsatisfied datasets may cause inaccurate prediction 238 

performance. For example, SARIMA models, which can be applied for time series with seasonality, 239 

require a dataset with continuous time stamps. In this study, interpolation was used to mitigate the 240 

effect of missing data, which improved the reliability and accuracy of the SARIMA model. 241 

 Besides, IF is used in pre-processing to detect and remove outliers in the used dataset after obvious 242 

outlier removal. This outlier detection algorithm has recently been proved to be suitable for wind 243 

power forecasting [16]. It can effectively and efficiently eliminate error data far away from normal 244 

points, reducing computation time and costs. 245 

 246 

The remainder of this paper is organized as follows. Section 2 provided a description of the target wind 247 

turbine and the used Supervisory Control and Data Acquisition (SCADA) database. Section 3 presented 248 

the used pre-processing strategies, including outlier detection/removal, resampling and missing data 249 

treatment. Section 4 introduced the theories and background of model development, including WT, 250 

SARIMA and LSTM. Section 5 presented results and discussion of the proposed hybrid model, where the 251 
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prediction accuracy of various models was analyzed. Section 6 concluded this study by summarizing the 252 

key findings and contributions of the current paper, and also limitations and future perspectives. 253 

 254 

2. SCADA data description 255 

The target offshore wind turbine is owned by Offshore Renewable Energy (ORE) Catapult, located at 256 

Levenmouth, Fife, Scotland, UK (see Fig. 2). It is a 7MW offshore wind turbine with a total height of 196 257 

m. As for operating regions, it has a designed cut-in speed of 3.5 m/s, a rated speed of 10.9 m/s and a cut-258 

out speed of 25 m/s, respectively. The target turbine was controlled and monitored by a SCADA system, 259 

which can deliver power outputs by default without extra costs [17]. In this study, SCADA datasets were 260 

extracted for wind power forecasting. The investigated SCADA datasets were recorded with a sampling 261 

rate of 1-s. A one-month time series database (January 2019) was selected as the used dataset for model 262 

developments. The train-test split percentage of 0.8-0.2 is selected in this study. The used dataset (744 263 

points) is split into two parts: a training set (600 points) and a testing set (144 points).  264 

 265 
Fig. 2. Schematic and major characteristics of Levenmouth offshore wind turbine, after [18]. 266 
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 267 

3. SCADA data pre-processing 268 

Although SCADA data can be used for wind turbine power prediction, it is still challenging to achieve an 269 

optimum strategy due to possible erroneous data points within the datasets. These invalid data points 270 

mainly originate from maintenance, sensor malfunction/degradation or system processing errors during 271 

wind turbine operations, which are detrimental to the prediction model. Therefore, it is expected to pre-272 

process SCADA data before using them to build a model [17]. 273 

 274 

3.1 Obvious outlier removal 275 

The histograms of wind speed, active power and blade pitch angle in the raw SCADA datasets are shown 276 

in Fig. 3, where negative values are representing obvious outliers. For example, an extremely negative 277 

value of around -1000° (in red circle) is located in the case of the blade pitch angle histogram. These 278 

negative values are physically possible but have no practical meaning in terms of wind power generation. 279 

Therefore, these obvious outliers would be removed along with the corresponding variables under the 280 

same time stamps.   281 

 282 
Fig. 3. Histograms of wind speed (left), active power (middle) and blade pitch (right) in the used 283 

SCADA database. 284 
 285 

3.2 Anomalies observation  286 
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The power curve of a wind turbine could show the relationship between the amount of generated wind 287 

power and the corresponding wind speed, which is an important metric of wind turbine performance [19]. 288 

Theoretically, the power curve should be in the shape of the sigmoid function (‘S’ shape) [20]. As shown 289 

in Fig. 4, compared to a normal ‘S’ shape, the power curve of the target offshore wind turbine still shows 290 

some outliers that deviate from normal observations after obvious outlier removal. These outliers are 291 

caused during operation and can be mainly categorized into three types of anomalies [2]: 292 

 293 
Fig. 4. Wind power curve after obvious outlier removal. 294 

 295 

 Type I: this type of anomaly are mainly caused by turbine downtime [21], where the wind speed 296 

is larger than its cut-in speed (3.5 m/s) while the wind power is about zero.  297 

 Type II: this type of anomaly is mainly caused by wind curtailment, where the output power is 298 

artificially limited by its operator due to different factors i.e., challenges in large capacity power 299 

storing or grid supply limitations. 300 

 Type III: this type of anomaly is mainly caused by sensor malfunction/degradation [22]. 301 
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 302 

3.3 Anomalies detection and treatment 303 

The issue of power curve outlier rejections discussed above leads to degradation of forecasting model 304 

performance, which should be considered in the pre-processing stage. A novel outlier detection method 305 

of IF is used in this study. IF is an outlier detection method based on a binary tree structure, which has 306 

been proposed as an effective algorithm in wind power prediction [23]. Besides, IF can be more effective 307 

to process datasets of large size [24], where SCADA datasets usually have multiple input features and a 308 

large data size due to their high sampling rate. The principle of IF is isolating anomalies explicitly because 309 

occurrence frequencies and values of normal/abnormal data are usually significantly different so that 310 

outliers are usually far away from these normal data points. The anomaly score ‘s’ of an observation x can 311 

be defined as Eq. 1: 312 

𝑠𝑠(𝑥𝑥,𝑛𝑛) = 2−
𝐸𝐸�ℎ(𝑥𝑥)�
𝑐𝑐(𝑛𝑛) (1) 313 

where n is the number of external nodes, ℎ(𝑥𝑥) is the path length of data x, 𝐸𝐸(ℎ(𝑥𝑥)) means the average of 314 

ℎ(𝑥𝑥) from a collection of isolation tress and 𝑐𝑐(𝑛𝑛) is the average path length of unsuccessful search in a 315 

Binary Search Tree. 316 

After removing obvious outliers from the used dataset, IF is applied to detect and remove anomalies. The 317 

anomaly score ‘s’ is set to 1 for normal points and -1 for anomalies. The range of contamination ratio from 318 

1% ~ 20% was investigated. Subsequently, the contamination ratio of 14% was identified as the optimal 319 

parameter for the current dataset. As shown in Fig. 5, detected outliers are represented by red dotted points 320 

and normal points are linked via blue lines. Most detected anomalies are located at the boundaries of the 321 

pattern, which are then be removed from the used SCADA datasets. 322 
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 323 
Fig. 5. Anomaly detection and removal by using IF, where the contamination ratio is set as 0.14. 324 

 325 

3.4 Re-sampling 326 

One challenge of using high-frequency SCADA datasets is the turbulence caused by the strong volatility 327 

of wind. A relatively small time interval leads to high computation costs and makes models sensitive. This 328 

effect can be addressed by averaging the sampled data over an appropriate period [25]. Usually, the 329 

sampling rate for short time prediction is 10 minutes, 15 minutes or 1 hour. In the current study, power 330 

data were resampled over 1-hour averaging period with mean values. After resampling, the power curve 331 

of hourly data is plotted in Fig. 6. Compared to curves of other contamination ratios and the power curve 332 

of the raw dataset (without IF process), the selected power data (14%) showed a smoother power curve, 333 

in which most outliers are cleaned successfully.   334 
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 335 
Fig. 6. Comparisons of power curves after using IF with different contamination ratios. 336 

 337 

While observing the curve of selected data (see Fig. 7), its operation characteristics, such as cut-in speed 338 

(~3.5. m/s) and rated speed (~11.1 m/s), are consistent with the references (3.5 m/s and 10.9 m/s 339 

respectively). It further verified that using a contamination ratio of 14% is reasonable for the used SCADA 340 

datasets. Therefore, the hourly time series power data using IF at 14% contamination ratio is selected 341 

because it represents the ideal shape of the wind power curve, considering the proper cut-in, rated, and 342 

cut-off speeds. 343 
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 344 
Fig.7. Wind power curve after resampling (1-hour sampling rate). 345 

 346 

3.5 Interpolation 347 

Missing values in a dataset cannot meet the requirement of prediction modelling. The problem of data 348 

discontinuity should be fixed before fitting time-series data into any models. In this study, missing points 349 

in the resampled time series data were first replaced with flags named ‘not a number (NaN)’. Then the 350 

spline interpolation method in the ‘interpolate’ library was used to fill these NaN positions. In Fig. 8, one-351 

month data (744 points) in January 2019 is used, considering the number of missing values in this month 352 

is smallest compared with the others. As shown in Fig. 8, the shape of the data after interpolating (Fig. 353 

8b) is similar to that before interpolating (Fig.8a). It further verified the spline interpolation method can 354 

effectively complete the missing values in the used datasets.   355 
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 356 
Fig. 8. Time series power (a) before and (b) after using spline interpolation. 357 

 358 

4. Methodology 359 

4.1 WT 360 

Compared with the Fourier transform which is not suitable to analyse non-stationary signals [26], WT has 361 

the advantage of temporal resolution, which can analyse both time and frequency of signal simultaneously. 362 

Besides, WT has the flexibility in choosing mother wavelet types based on time series [27] while 363 

enhancing prediction accuracy. 364 

 365 

WT can be categorized into two different types, including continuous WT (CWT) and DWT. CWT can 366 

capture all information in a given time series signal, but it is of high computational complexity and 367 

implementation difficulty [26]. DWT is more suitable to time series signals in practical applications as it 368 

samples wavelets discretely. Besides, DWT can reduce the computational complexity and bypass 369 

information redundancy caused by CWT. Therefore, DWT was selected to be used in this paper, which 370 

can be represented as Eq. 2: 371 

𝑊𝑊(𝑚𝑚, 𝑛𝑛) = 2−�
𝑚𝑚
2 ��𝜓𝜓�

𝑡𝑡 − 𝑛𝑛 ∙ 2𝑚𝑚

2𝑚𝑚
�

𝑇𝑇

𝑡𝑡=0

∙ 𝑥𝑥(𝑡𝑡) (2) 372 
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where ‘t’ is a discrete-time parameter, ‘T’ is the length of signal 𝑥𝑥(𝑡𝑡), variable m is the scaling parameter 373 

and variable n is the translation parameter.  374 

  375 

Decomposed components are produced by downsampling and their length is reduced as the number of 376 

decomposition increases. Commonly, a reconstruction via inverse DWT (IDWT) [28] is applied before 377 

combining them to reproduce the original signal. The relationship of the original signal and n-level 378 

decomposed components contains approximation and details, which can be expressed in Eq. 3: 379 

𝑥𝑥(𝑡𝑡) =  𝑎𝑎𝑛𝑛 + 𝑑𝑑𝑛𝑛 + 𝑑𝑑𝑛𝑛−1 + ⋯+  𝑑𝑑1 (3) 380 

4.2 SARIMA 381 

SARIMA is an extension of ARIMA. Compared with ARIMA that cannot support seasonal data, SARIMA 382 

is sensitive to time series with seasonal components, considering seasonal features in data. Thus, it can be 383 

used for non-stationary datasets i.e., wind power, with improved prediction accuracy. The model can be 384 

represented as SARIMA (p, d, q) (P, D, Q)s. ‘AR’ stands for autoregressive, where its order ‘p’ indicates 385 

the number of time series lags. ‘I’ stands for integrated. It is differencing time series instead of taking 386 

them directly, which makes the target variable more stationary and thus allows the model to support time 387 

series with a trend.  Its order can be presented as ’d’, which is the times to difference time series. ‘MA’ 388 

stands for moving average. It uses lagged prediction errors as inputs, push the model toward actual values 389 

and thus improve prediction accuracy, where its order can be represented as ‘q’. ‘P’, ‘D’ and ‘Q’ have the 390 

same associations as ‘p’, ‘d’ and ‘q’ while they correspond with the seasonal components. ‘s’ represents 391 

the seasonality length of data. For example, the time series {𝑍𝑍𝑡𝑡|1,2, … ,𝑘𝑘}  can be presented by the 392 

SARIMA in Eq. 4 [9]: 393 

𝜙𝜙𝑝𝑝(𝐵𝐵)𝜑𝜑𝑃𝑃(𝐵𝐵𝑠𝑠)(1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷𝑍𝑍𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)Θ𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑡𝑡 (4) 394 

where p, d, q, P, D, Q are order numbers, s is season length, B is the backward shift operator, 𝜙𝜙𝑝𝑝(𝐵𝐵) and 395 

𝜑𝜑𝑃𝑃(𝐵𝐵𝑠𝑠)  are the regular and seasonal AR polynomials, (1 − 𝐵𝐵)𝑑𝑑  and (1 − 𝐵𝐵𝑠𝑠)𝐷𝐷  are the regular and 396 
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seasonal I operators, 𝜃𝜃𝑞𝑞(𝐵𝐵) and Θ𝑄𝑄(𝐵𝐵𝑠𝑠) are the regular and seasonal MA polynomials, respectively, and 397 

𝜀𝜀𝑡𝑡 is the estimated residual at time t. 398 

 399 

In this study, both ARIMA and SARIMA models were developed by Python3 using the ‘Statsmodels’ 400 

library, where one-step ahead univariate prediction with 50 iterations was implemented on each model.   401 

 402 

4.3 Deep-learning-based LSTM 403 

LSTM is a type of ANN. As a variant of Recurrent Neural Network (RNN), LSTM addresses the issue of 404 

gradient disappearance/explosion in traditional neural networks [29]. Compared with conventional models 405 

that lack the memory function of historical information, LSTM has a unique structure based on memory 406 

cells. The capability of learning and remembering both short and long-term dependent information allows 407 

it to forecast time series. As shown in Fig. 9, an LSTM unit is composed of a forget gate, an output gate 408 

and an input gate.   409 

 410 
Fig. 9. Long short-term memory unit structure. 411 

 412 

In LSTM, a recursive hidden layer includes various memory modules, where each of them has one or 413 

more self-connected memory units with three gates. The three gates (input gate 𝑖𝑖𝑡𝑡,, forget gate 𝑓𝑓𝑡𝑡  and 414 

output gate 𝑜𝑜𝑡𝑡) can control information flow into/out of cells. The cell state (𝑠𝑠𝑡𝑡) obtaining from previous 415 
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state cell state (𝑠𝑠𝑡𝑡−1) can remember previous values over arbitrary time intervals while 𝑠̃𝑠𝑡𝑡 is the newly 416 

assessed value of 𝑠𝑠𝑡𝑡.The formulations related to LSTM structure can be defined as follows (Eq. 5 ~ Eq. 417 

10) [30]: 418 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (5) 419 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (6) 420 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7) 421 

𝑠̃𝑠𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑎𝑎ℎ(𝑊𝑊𝑠𝑠[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑠𝑠) (8) 422 

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡−1 ⊙ 𝑓𝑓𝑡𝑡 + 𝑔𝑔𝑡𝑡 ⊙ 𝑖𝑖𝑡𝑡 (9) 423 

ℎ𝑡𝑡 = tanh(𝑠𝑠𝑡𝑡) ⊙𝑜𝑜𝑡𝑡 (10) 424 

where [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] is the input signal consisting of the input of the neuron 𝑥𝑥𝑡𝑡 at time step t and the cell state 425 

vector ℎ𝑡𝑡−1 at time step t-1; ℎ𝑡𝑡 is the overall output at time step t; 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑜𝑜and 𝑊𝑊𝑠𝑠 are the corresponding 426 

weights connecting the input signal; 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑜𝑜  and 𝑏𝑏𝑠𝑠  are bias along with corresponding activation 427 

function 𝜎𝜎 ; tanh  represents the hyperbolic tangent function and ⊙  represents the element level 428 

multiplication. 429 

 430 

In this study, TensorFlow was used as the platform for deep-learning-based LSTM development. The 431 

prediction is one-step univariate time series forecasting using walk-forward model validation with four-432 

step input.   433 

 434 

4.4 Integrated DWT-SARIMA-LSTM model 435 

In this study, a novel hybrid model named DWT-SARIMA-LSTM is presented.  The core idea of the 436 

proposed model is summarized as follows: 437 

 438 
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At the first step, DWT was applied to decompose wind power time series into approximation and detail. 439 

Then IDWT is used to reconstruct each component before developing prediction models, which can be 440 

represented as Eq. 11. Instead of using the whole time series directly, fitting approximation and detail into 441 

independent models can make signal analysis more effective, which is expected to improve model 442 

performance. 443 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑦𝑦𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 (11) 444 

where 𝑦𝑦𝑡𝑡  is the original time series power data; 𝑦𝑦𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎  is the reconstructed approximation; 𝑦𝑦𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑  is the 445 

reconstructed detail.   446 

 447 

At the second step, unlike previous studies that assumed approximation is purely linear and detail is purely 448 

nonlinear [31], this study considers that each decomposed time series contains both linear and nonlinear 449 

components, which was represented in Eq. 12 and Eq. 13.   450 

𝑦𝑦𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑁𝑁𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 (12) 451 

𝑦𝑦𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑁𝑁𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 (13) 452 

 453 

In the third step, considering wind power generation highly relies on natural factors and has potential 454 

seasonality component, SARIMA models combined with LSTM models are developed. Firstly, SARIMA 455 

models are used to estimate and analyze both approximation and detail components. The linear 456 

components in both approximation (𝐿𝐿�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 ) and detail (𝐿𝐿�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 ) are assumed as prediction results from 457 

SARIMA models. Secondly, LSTM models are used to estimate and analyze the corresponding residuals 458 

after SARIMA models. The nonlinear components in both approximation (𝑁𝑁�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎) and detail (𝑁𝑁�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑) are 459 

assumed as prediction results from LSTM models. Then the predicted linear and nonlinear signal from 460 

approximation is combined to obtain the final prediction of approximation and the predicted linear and 461 
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nonlinear signals from detail are combined to obtain the final prediction of detail. This step can be 462 

summarized as Eq. 14 and Eq. 15: 463 

𝑦𝑦�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿�𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑁𝑁�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 (14) 464 

𝑦𝑦�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐿𝐿�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑁𝑁�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 (15) 465 

 466 

Finally, the prediction is obtained by an additive combination of predicted approximation and predicted 467 

detail, which can be represented as Eq. 16: 468 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦�𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑦𝑦�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 (16) 469 

 470 

5. Results and discussions 471 

5.1 WT parameter selection   472 

For mother wavelet selection, considering the applied mother wavelet coefficients should have an easily 473 

physical interpretation and a fast computation [32], the most commonly used wavelet-Daubechies wavelet 474 

(db3) [14] was chosen in this study. For decomposition level selection, a formulation, which described the 475 

relationship between the signal length and the level number, was taken as a reference to determine the 476 

proper number of decomposition levels. The corresponding formulation is shown as Eq .17 [33],  477 

𝐿𝐿 = 𝑖𝑖𝑖𝑖𝑖𝑖(log(𝑁𝑁)) (17) 478 

where N is the length of the signal and L is the number of levels. 479 

 480 

In the current study, the time series power data has a length of 744 points so that the optimal number of 481 

decomposition levels would be L=2. Besides, data at the decomposition level of L=1 and L=3 were also 482 

studied for investigation purposes. After DWT processing, each decomposed component would be 483 

reconstructed using IDWT individually. At first, the reconstruction accuracy is verified by comparing 484 

additive combinations of reconstructed and original signals. As presented in Fig. 10, the signals can be 485 
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accurately reconstructed at level 1 (L=1) and level 2 (L=2) decomposition, while when the further 486 

decomposition (L=3) was carried out, distortion can be observed between the reconstructed signal and the 487 

original one. The forecast horizon in the plot is the sequence of data points (hours). It indicated that the 488 

reconstruction accuracy is limited at level 3, where this limitation may be related to the inherent properties 489 

of used SCADA datasets [34]. In summary, times series with decomposition level 1 and level 2 were 490 

investigated in this paper. Fig. 11 illustrates the relationship between the decomposed components and 491 

the original signal, where the approximation of the previous level is the input of a higher decomposition 492 

level in terms of multiple decomposition levels (L=2). 493 

 494 

 495 
Fig. 10. Comparison among reconstructed times series power at different decomposition levels, including 496 

(a) level 1, (b) level 2 and (c) level 3. 497 
 498 
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 499 
Fig. 11. Structure of decomposed wind power time series: (a) original signal is decomposed at level 1 to 500 

cD and cA components, and then be reconstructed separately by using IDWT; (b) original signal is 501 
decomposed at level 2 to cD1, cA2 and cD2 components, and then be reconstructed separately by using 502 

IDWT. 503 
 504 

The time series of cD and cA at level 1 is presented in Fig. 12a while cD1, cD2 and cA2 at level 2 is 505 

shown in Fig. 12b. As cD1 represented the same time series as cD, their prediction models should be the 506 

same. Therefore, four components (cA, cD, cA2 and cD2) were taken as target signals in the following 507 

sections. 508 



27 
 

 509 
Fig. 12. The original time series power signal and its decomposed components; (a) Signal under level 1 510 

decomposition is divided into approximation (cA) and detail (cD); (b) Signal under level 2 511 
decomposition is divided into approximation (cA2), detail at level 2 (cD2) and detail at level 1 (cD1). 512 

 513 
5.2 SARIMA 514 

5.2.1 SARIMA model selection   515 

In this study, Dickey-Fuller Test was used to analyse the stationarity of the time series of wind power at 516 

first, determining the order of differencing. Then, autocorrelation function (ACF) and partial 517 

autocorrelation function (PACF) are applied to make the first screening for AR and MA parameter 518 

selection for ARIMA/SARIMA models. As SARIMA models potentially have a large number of 519 

parameters as well as a combination of these terms, a range of models was investigated. The best-fitting 520 

model is selected based on the lowest value of Akaike’s information criterion (AIC) and Bayesian 521 

information criterion (BIC) as well as suitable ACF and PACF of residuals. 522 

 523 

5.2.1.1 AIC and BIC 524 
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AIC [35] and BIC [36] statistical criteria were employed in model selections. AIC is an estimator of the 525 

relative quality of statistical models and its value presents how well a model fits the given data considering 526 

the complexity of a model, which can be defined as Eq. 18: 527 

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 ln(𝐿𝐿) + 2𝑘𝑘 (18) 528 

 529 

BIC is related to the sum of squared errors (SSE) from the estimated model, which can be defined as Eq. 530 

19: 531 

𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑛𝑛 ln �
𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛
� + 𝑘𝑘𝑘𝑘𝑘𝑘(𝑛𝑛) (19) 532 

where n is the length of data, L is the maximized value of the maximum likelihood function and k is the 533 

number of parameters used in the model. 534 

 535 

In this study, AIC and BIC are used to estimate these potential models, where the model with the lowest 536 

AIC and BIC value is preferred.   537 

 538 

5.2.1.2 Dickey-Fuller Test 539 

The Dickey-Fuller test [37] is a method to measure stationarity in the given time series. It is a statistical 540 

test, which determines how strongly the time series is defined by a trend. The null hypothesis is that time 541 

series with a unit root is non-stationary. If the p-value is smaller than 0.05 and the test statistic is much 542 

smaller than the critical value of 1%, we can reject the null hypothesis and assume the time series dataset 543 

is stationary. Lower p-values and more negative statistic values mean a higher degree of stationarity.   544 

 545 

In this study, the stationarity of wind power data was conducted using the Dickey-Fuller test and the results 546 

are summarized in Table 1. The p-value of cA, cD cA2 and cD2 (0.006, 0, 0.013 and 0, respectively) are 547 

below the threshold of 0.05. The test statistic values of cD (-16.241) and cD2 (-12.552) are significantly 548 
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less than the value of -3.439 at 1% while the test statistic value of cA (-3.573) is slightly lower than that 549 

at 1% and that of cA2 (-3.336) is only less than the value of -2.866 at 5%. Therefore, we assume the time 550 

series of cD and cD2 are stationary and the time series of cA and cA2 are non-stationary. The following 551 

experiment will set differencing orders of cD and cD2 as zero and consider both differencing orders of 0 552 

and 1 for cA and cA2 to investigate model performance. 553 

 554 
Table 1. Stationary check for decomposed components using Dickey-Fuller Test. 555 

 cA cD cA2 cD2 

P-value 0.006 0.000 0.013 0.000 

Test statistic -3.573 -16.241 -3.336 -12.552 

Critical value 1% -3.439 -3.439 -3.439 -3.439 

Critical value 5% -2.866 -2.866 -2.866 -2.866 

Critical value 10% -2.569 -2.569 -2.569 -2.569 

 556 

 557 

5.2.1.3 ACF and PACF   558 

In this study, both ACF and PACF of each decomposed component were analyzed to select possible 559 

SARIMA models. The seasonal parameter ‘s’ is selected based on knowledge of the problem, setting 24 560 

as the initial parameter because there are 24 hours in one day and adjusting the order according to the 561 

previously possible model based on ACF and PACF plots. Potential values of p and q were estimated by 562 

looking at the correlations of recent time steps. Potential values of P and Q are estimated using a similar 563 

way as above while considering seasonality by looking at the correlations at seasonal lag time steps. 564 

Generally, increase AR order if the first several lags in both ACF and PACF are positive while increasing 565 

MA order if the first several lags in both plots are negative. After trials and errors, the possible combination 566 

of models for cA, cD, cA2 and cD2 with corresponding AIC and BIC values are summarized in Table 2. 567 

Based on the error criteria of AIC and BIC values, SARIMA(2,1,1)(1,0,0)3, SARIMA(2,0,2)(1,0,2)24, 568 
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SARIMA(1,0,1)(1,1,2)24 and SARIMA(1,0,5)(1,0,0)12 are selected for cA, cD, cA2 and cD2 component, 569 

respectively (optimal models are bolded in Table 2). 570 

 571 
Table 2. Characteristics for possible ARIMA/SARIMA models with AIC and BIC values. 572 

Signal Model parameters AIC BIC 

cA ARIMA (2,0,1) 10905.115 10923.552 

 ARIMA (2,1,1) 10829.585 10848.017 

 SARIMA (2,1,1) (1,0,0)3 10748.843 10771.863 

 SARIMA (1,1,0) (0,0,1)24 11013.362 11027.091 

cD ARIMA (1,0,2) 9495.352 9513.784 

 SARIMA (1,0,2) (1,0,1)24 9330.056 9357.507 

 SARIMA (2,0,2) (1,0,1)24 9092.683 9124.709 

 SARIMA (2,0,2) (1,0,2)24 8802.442 8838.770 

cA2 ARIMA (1,0,0) 10882.245 10891.467 

 SARIMA (1,0,1) (1,1,0)24 9894.654 9912.830 

 SARIMA (1,0,1) (1,1,2)24 9289.332 9316.375 

 SARIMA (1,0,1) (2,0,2)24 9528.168 9559.965 

cD2 ARIMA (0,0,2) 10319.402 10333.226 

 SARIMA (1,0,4) (1,0,0)24 9368.341  9400.386 

 SARIMA (1,0,4) (1,0,0)12 9381.281 9413.442 

 SARIMA (1,0,5) (1,0,0)12 9190.597 9231.946 

 573 

5.2.2 SARIMA model diagnostic   574 

The goodness-of-fit test was conducted on residuals from the selected models, as shown in Fig. 13. This 575 

step considered standardized residual, correlogram, histogram with an estimated density of standardized 576 

residual (KDE curve) and a reference curve of normal (0,1) density and normal Q-Q plot, where the blue 577 

dots are residuals of ordered distribution and a reference line of normal (0,1) distribution. 578 

 579 
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 580 
Fig. 13. Goodness-of-fit test including (a) standardized residual, (b) correlogram, (c) histogram with an estimated 581 
density of standardized residual and a reference curve of normal (0,1) density and (d) normal Q-Q plot of selected 582 

models of cA component, cD component, cA2 component and cD2 component (from left to right respectively). 583 
 584 
As for standardized residual (Fig.13a), the mean of cA, cD, cA2 and cD2 are about zero while there are 585 

some obvious patterns. This can be reflected on correlogram plots (Fig.13b) in which there are some 586 

correlations for lags that are outside the confidential levels. Their KDE curves (Fig.13c) are similar to the 587 

normal distribution, indicating the residuals are normally distributed. But some data points deviated away 588 

from the straight line in the normal Q-Q plot (Fig.13d), especially for cA and cD2 components. Therefore, 589 

we could conduct that these residuals are not purely white noise. There is still some useful information 590 

left in residuals that cannot be extracted from their corresponding SARIMA models. This assessment of 591 

models is reasonable because the time series signals used in this study are collected from the real world, 592 

where nonlinear information exists in both approximation and details. 593 

 594 

5.2.3 SARIMA model evaluation   595 
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As shown in Fig. 14, the green line represents the original time series and the red line represents the 596 

predicted values from the SARIMA model. For prediction results at level 1 decomposition, the forecasting 597 

accuracies are 96.72% for cA and 88.16% for cD, where the accuracy for cD is lower about 9% than that 598 

for cA. This indicated that there is more nonlinear information in cD than in cA because cD is the high-599 

frequency component. As for the prediction result of level 2 decomposition, the accuracy of cA2 and cD2 600 

is 98.77% and 94.26% respectively. Accordingly, the accuracy of high-frequency component cD2 is lower 601 

than that of cA2, which is similar to what occurred in level 1, while the accuracy difference is not larger 602 

than that in level 1. We suppose that this is because cA2 and cD2 are derived from the same component 603 

of cA. The difference between the portion of nonlinear information in cA2 and cD2 is smaller than that in 604 

cA and cD. Thus, the difference in prediction accuracy at level 2 is smaller. The prediction performance 605 

is summarized in Table 3. 606 

 607 
Fig. 14. Prediction results for (a) cA component, (b) cD component, (c) cA2 component and (d) cD2 component. 608 

 609 

Further investigations on prediction performance at different decomposition levels were also conducted, 610 

considering that the combination of cA2 and cD2 equals cA. The zoom-in graph Fig. 15 compares 611 
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prediction results between cA and combined cA. After summing cA2 and cD2, the accuracy of combined 612 

cA achieved 98.74% with an increase of about 2% compared with cA (96.72%), indicating the further 613 

decomposition of cA can make cA2 and cD2 more stationary. The final prediction accuracy at level 1 614 

decomposition reached 96.17% and was increased to 98.51% with level 2 decomposition, which verified 615 

the advantage of using DWT before fitting data into the model.   616 

 617 
Fig. 15. Comparisons of prediction accuracy between cA and combined cA using cA2 and cD2. 618 

 619 
Table 3. Prediction accuracy of decomposed components. 620 

Components cA cD cA2 cD2 cA2 + cD2 

R2 0.967 0.881 0.987 0.942 0.987 

 621 

5.3 LSTM 622 

This section aims to use a deep-learning-based LSTM to dig out the remained useful information that 623 

cannot be extracted by SARIMA models. Because it has been proved in the previous section that prediction 624 

accuracy at level 2 decomposition is higher than that at level 1, the following experiment is focused on 625 
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analysing data at level 2 decomposition. The three residuals of cD, cA2 and cD2 from their corresponding 626 

SARIMA are used in the following session.   627 

 628 

5.3.1 LSTM model configuration 629 

5.3.1.1 Normalization   630 

Because LSTM models are sensitive to the scale of input data, normalization was implemented before 631 

fitting data into models. The normalized predicted values are then denormalized by using inverse 632 

transformation to obtain forecasting results. In this paper, time series were rescaled to the range of 0~1. 633 

The corresponding formulation can be represented as Eq. 20: 634 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑥𝑥𝑖𝑖 − min(𝑥𝑥)

max(𝑥𝑥) − min(𝑥𝑥)
(20) 635 

where 𝑥𝑥𝑖𝑖 is the original value, 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the normalized value, max(𝑥𝑥) and min (𝑥𝑥) are the maximum and 636 

minimum values, respectively. 637 

 638 

5.3.1.2 Batch size and number of epochs   639 

Batch size and number of epochs are two hyperparameters that have a significant effect on overall 640 

computation cost and performance for forecasting models. Batch size is the number of samples that are 641 

processed before the weights are updated while the number of epochs is the iteration times that are 642 

completed through the training dataset. At each epoch, the model randomly samples series from the set 643 

that is defined by the batch size. Usually, the number of epochs is about hundreds or thousands. A 644 

sufficient number of epochs can minimize model errors. In this study, the number of epochs was initially 645 

set as 1000 for each model. 646 

 647 

5.3.1.3 Activation function   648 
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Activation functions could manipulate and propagate the summed weights through gradient processing in 649 

neural networks, which are important for training and optimizing. Nonlinear activation functions, such as 650 

sigmoid and hyperbolic tangent (tanh), allow neural networks to learn data with complex structures. But 651 

they are not suitable to be used in deep learning neural networks that have multiple layers because of the 652 

vanishing gradient problem. This problem can be addressed by using rectified linear activation functions 653 

based on stochastic gradient descent with backpropagation of errors. Among them, Rectified Linear Unit 654 

(ReLU) is one of the most commonly used activation functions. It is a piecewise linear function but allows 655 

the model to account for non-linearities. It outputs zero if receiving negative input while returns any 656 

positive input back, where formulations used for the fully connected layer can be represented as Eq. 21 657 

and Eq. 22: 658 

𝐻𝐻𝑖𝑖 = �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑗𝑗

𝑚𝑚

𝑗𝑗=1

(21) 659 

ℎ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐻𝐻𝑖𝑖) (22) 660 

where 𝐻𝐻𝑖𝑖 is the net input of neuron j in the deeper hidden layer; h is the output of neuron j; 𝑥𝑥𝑖𝑖 and 𝑏𝑏𝑗𝑗 is the 661 

input and a bias for neuron j, respectively; 𝑤𝑤𝑖𝑖𝑖𝑖 is a weight that linked neuron i and neuron j. 662 

 663 

As the ReLU activation function is stress-free to train and can learn complex relationships in data, it was 664 

selected in this study.  665 

 666 

5.3.1.4 Optimizer   667 

Optimizers iteratively update weight parameters in neural networks and can minimize the loss function. 668 

Using proper optimization algorithms can lower the expense of the training process in deep learning. In 669 

this study, the commonly used Adaptive Moment Estimation (Adam) [38] was selected, which is an 670 
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extension to the stochastic gradient descent algorithm. It realized the advantages of both adaptive gradient 671 

algorithm (AdaGrad) [39] and Root Mean Square Propagation (RMSProp) [40].   672 

 673 

5.3.2 LSTM model selection 674 

In this study, hyperparameters of LSTM were selected based on the lowest Mean Squared Error (MSE) 675 

value (see Eq. 23). It computes the average of the squared differences between actual values and predicted 676 

values. To improve the accuracy of the model, the loss value is expected to be reduced as small as possible. 677 

Compared with RMSE, the squaring can punish the model for making big mistakes. 678 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ [𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖]2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
(23) 679 

where 𝑦𝑦�𝑖𝑖 is the predicted value and 𝑦𝑦𝑖𝑖 is the real value in the given dataset. 680 

 681 

Considering that random initial conditions for LSTM neural network can bring different results at each 682 

time, each experimental scenario for hyperparameter selection was run 10 times. In this paper, various 683 

deep learning structures were tested, and all LSTM neural networks are hyperparameter tuned through 684 

manual search. After trial and error, a five-layer deep learning LSTM (neuron number of 20, 50, 50, 20 685 

and 1 in each layer) was selected for cD; a five-layer deep learning LSTM (neuron numbers of 20, 50, 50, 686 

20, 1 in each layer) was selected for cD2; a four-layer deep learning LSTM (neuron numbers of 10, 20, 5, 687 

1 in each layer) was selected for cA2. The activation function for each layer was set as ReLU.  Optimizer 688 

is set as Adam for all three models, where the learning rate for each model is 0.01. Details on each model 689 

configuration are summarized in Table 4. 690 

 691 

Table 4. LSTM model configuration for each decomposed component. 692 

Signal Network structure Epochs Batch size Activation function Optimizer 

cD (20,50,50,20,1) 1000 2 ReLU Adam 

cD2 (20,50,50,20,1) 800 2 ReLU Adam 

cA2 (10,20,5,1) 800 1 ReLU Adam 

 693 
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5.3.3 LSTM model evaluation   694 

The prediction results are shown in Fig. 16. The prediction accuracy of cD residual, cA2 residual and cD2 695 

residual is 94.61%, 66.90% and 63.77% respectively, which reflects the model capability of extracting 696 

remaining information in residuals from SARIMA models. The highest accuracy of about 95% was 697 

achieved at cD residual while the accuracy of cA2 (~67%) and cD2 (~64%) are relatively lower, this can 698 

look back to their corresponding SARIMA models. Because higher accuracy of SARIMA model means 699 

less useful information left in residuals, where the prediction accuracy of cD is about 88% while higher 700 

accuracy achieves for cA2 (~99%) and cD2 (~94%). The prediction performance is summarized in Table 701 

5. 702 

 703 

 704 
Fig. 16. Comparisons of LSTM model prediction accuracy of residuals, including (a) cD residuals, (b) cA2 705 

residuals and (c) cD2 residuals. 706 
 707 

Table 5. Prediction accuracy of LSTM models. 708 

Components cD residual cA2 residual cD2 residual 

R2 0.946 0.669 0.638 
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 709 
5.4 Hybrid model prediction evaluation   710 

This section investigated the performance of the proposed hybrid prediction model. For each decomposed 711 

component, the prediction was obtained by an additive combination of forecasting from SARIMA and the 712 

corresponding residual forecasting from LSTM. The prediction accuracy for cD, cA2 and cD2 was 713 

achieved at 99.35%, 99.59% and 97.92%, respectively. It indicated that with the assistant of LSTM 714 

modelling, prediction accuracy is enhanced with an increase of 11.19% for cD, 0.82% for cA2 and 3.66% 715 

for cD2. It can be seen that major improvements were achieved in detail (both cD and cD2), which should 716 

contain more high frequency/nonlinear information. The prediction performance is summarized in Table 717 

6. 718 

Table 6. Prediction accuracy of decomposed components based on the proposed hybrid model. 719 

Components cD cA2 cD2 

R2 0.993 0.996 0.979 

 720 

The final prediction is obtained by the additive combination of approximation and detail.  As shown in 721 

Fig. 17, the blue start marker represents the prediction power at level 1 decomposition after SARIMA, the 722 

orange plus marker represents the prediction power at level 2 decomposition after SARIMA and the red x 723 

marker represents the completed hybrid model. The performance of SARIMA is enhanced by increasing 724 

the decomposition level from level 1 to level 2, where the prediction accuracy is 96.17% and 98.51%, 725 

respectively. After using LSTM models to dig out information in residuals, the prediction accuracy is up 726 

to 99.46%. It shows a further increase of 0.94% compared with that at the same decomposition level 727 

without LSTM modelling.  728 

 729 
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 730 
Fig. 17. Comparison of prediction accuracy at different stages during model developments. 731 

 732 

5.5 Mode benchmarking 733 

It is essential to build a baseline to time series prediction problem because it can provide a point of 734 

comparison. Generally, the baseline prediction should be simple, fast, and repeatable, therefore the naïve 735 

model-persistence algorithm is applied for benchmark testing. The dataset used in the benchmark model 736 

is pre-processed one considering that there are some missing points in the original time series. The 737 

accuracy using the naïve model achieves 84.4%, which has a lower of 15.1% than that using the proposed 738 

hybrid model (99.5%). The prediction performance is summarized in Table 7. 739 

 740 

 741 

Table 7. Prediction accuracy of SARIMA model at level1/2 and that of the proposed hybrid model and the naïve 742 
model. 743 

 L=1 L=2 Naïve model Hybrid model 

R2 0.962 0.985 0.844 0.995 

 744 
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 745 

5.6 Hybrid model evaluation under different weather conditions 746 

To prove the sufficient integrity of the proposed hybrid model, a dataset of different weather conditions 747 

is considered.  Because the dataset of January 2019 can be considered as in winter, another dataset (April 748 

2019) is chosen as in Spring. The time series is from 04/01 to 04/28. Using the train-test split percentage 749 

of 0.8-0.2, the used dataset (672 points) is split into two parts: a training set (540 points) and a testing set 750 

(132 points). This time series is pre-processed using the same method as above. Applying the same model 751 

building process, we present the model selection parameters and corresponding prediction results as 752 

follows. 753 

 754 

As for SARIMA model selection, SARIMA(2,1,2)(0,0,2)3, SARIMA(2,0,3)(1,0,0)24, 755 

SARIMA(1,0,1)(1,0,2)24 and SARIMA(1,0,5)(1,0,0)12 are selected for cA, cD, cA2 and cD2 component, 756 

respectively.  Their corresponding AIC and BIC value are 9699.120&9730.586, 7850.897&7882.193, 757 

8754.836&8781.434, and 8438.105&8474.031. For prediction results at level 1 decomposition, the 758 

forecasting accuracies are 96.75% for cA and 88.91% for cD. For the prediction results of level 2 759 

decomposition, the accuracy of cA2 and cD2 is 97.95% and 94.58% respectively. The combined model 760 

from level 1 decomposition (cD+cA) shows an accuracy of 96.49% and the accuracy of the combined 761 

model from level 2 decomposition (cD+cA2+cD2) achieved 98.32%. This indicates an increase of 762 

accuracy (~2%) by using level 2 decomposition. 763 

 764 

As for LSTM model selection, a four-layer deep learning LSTM (neuron number of 20, 50, 15 and 1 in 765 

each layer) was selected for cD; a five-layer deep learning LSTM (neuron numbers of 15, 50, 50, 15, 1 in 766 

each layer) was selected for cD2; a four-layer deep learning LSTM (neuron numbers of 10, 20, 50, 1 in 767 

each layer) was selected for cA2. The activation function and Optimizer for all three models are set as the 768 

same as in previous cases. The prediction accuracy of cD residual, cA2 residual and cD2 residual is 769 

95.13%, 96.95% and 96.85% respectively. 770 

 771 

The prediction of each decomposed component was obtained by an additive combination of forecasting 772 

from SARIMA and the corresponding residual forecasting from LSTM, like in previous cases. The 773 

prediction accuracy for cD, cA2 and cD2 was achieved at 99.46%, 99.94% and 99.83%, respectively. It 774 

shows that with the assistant of LSTM modelling, prediction accuracy is enhanced with an increase of 775 

10.55% for cD, 1.99% for cA2 and 5.25% for cD2.  776 
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 777 

The final prediction is shown in Fig. 18.  The accuracy of the SARIMA model at level 2 decomposition 778 

(98.32%) is higher than that at level 1 decomposition (96.49%). With the assistant of LSTM models, the 779 

prediction accuracy is up to 99.92%, which indicates a further increase of 1.6%. Compared with the 780 

accuracy using the naïve model counterpart (86.7%), there is an increase of 13.2%. The prediction 781 

performance of using time series in other weather conditions (Table 8) further proves the integrity of the 782 

proposed hybrid model. 783 

 784 

 785 
Figure 18. Comparison of prediction accuracy at different stages during model developments using the dataset for 786 

another weather condition. 787 
 788 
Table 8. Prediction accuracy of SARIMA model at level1/2 and that of the proposed hybrid model, and the naïve 789 

model under the different weather condition 790 
 L=1 L=2 Naïve model Hybrid model 

R2 0.965 0.983 0.867 0.999 

 791 

6. Conclusions 792 
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This paper presented a novel hybrid model to predict wind power for a 7 MW offshore wind turbine in 793 

Scotland. The used datasets were collected from a high-frequency SCADA database with a 1-s sampling 794 

rate. To sum up, the following conclusions have been reached: 795 

 In this study, data pre-processing is applied to clean the used datasets before analysing data with 796 

a prediction model. Removal of obvious outliers and anomalies from the SCADA database by 797 

using IF can improve prediction accuracy by removing abnormal points from normal points. 798 

Resampling of 1-s samples to hourly samples can mitigate the influence of turbulence. The 799 

implementation of spline interpolation can mitigate the effect of missing values, contributing to a 800 

continuous dataset and thus enhancing prediction accuracy, especially for SARIMA models with 801 

the characteristic of periodicity. This mixed pre-processing method significantly improved the 802 

quality of the used dataset. 803 

 DWT and IDWT were used to decompose and reconstruct power signals, respectively. A proper 804 

decomposition of signals into several sub-series enables data to be more stationary and thus make 805 

further analysis with prediction models easier. The prediction accuracy of the SARIMA model is 806 

increased from 96.17% at level 1 decomposition to 98.51% at level 2 decomposition.   807 

 Without assuming approximation is purely linear signal or detail is a purely nonlinear signal, both 808 

decomposed components are treated into linear and nonlinear models. SARIMA is used as the 809 

linear model, which can support seasonal components in time series power. LSTM with a deep 810 

learning neural network is used as a nonlinear model to dig out information in residuals from 811 

SARIMA. Prediction accuracy at decomposition level 2 is 98.51% for the SARIMA model and is 812 

enhanced to 99.46% for the proposed hybrid model. 813 

 To further prove the integrity of the proposed hybrid wind power prediction model, data for 814 

another weather condition is considered.  Compared to power prediction results in winter, the 815 



43 
 

results in spring also shows high prediction accuracy.  The accuracy of the hybrid model has an 816 

increase of 13.2%, compared to that of using the naïve model (86.7%).  817 

The limitations and possible future improvements for this study are discussed as follows: 818 

 Because the used signal is collected from real-world equipment, it is unavoidable to obtain a 819 

dataset with missing values. Although spline interpolation is used to mitigate this problem, the 820 

portion of missing value about 24% in raw data is relatively high, which may lead models to 821 

deviate from the actual scenario. Second, this study investigates the wavelet transform with db3. 822 

There are various types of wavelets such as other Daubechies wavelets i.e., db2, db4, or db7, and 823 

other types i.e., harr wavelet, coiflet wavelet, which can be used in time series prediction. One 824 

paper has proposed to mitigate the problem of selecting the proper wavelet by taking the average 825 

of several wavelets [13]. This can be a solution, but it is still interesting to investigate the effect 826 

of using different wavelets on prediction models, which can be considered as one direction for 827 

future improvement for this proposed hybrid model. 828 

 Strong gust is an important factor affecting the performance of prediction models. Winds are least 829 

gusty offshore because of the large water surfaces while most gusty onshore is due to the rough 830 

land and near high constructions [41]. Therefore, we do not consider the factor of strong gust in 831 

this study while it will be discussed in an onshore study in future. 832 

 The dataset used in this study is collected in Scotland. In future, more datasets in different sites, 833 

such as in other countries, will be considered. This novel idea of building the hybrid model has 834 

the potential to advance wind power prediction models worldwide. 835 

 836 

Acknowledgement 837 

The authors thank the Offshore Renewable Energy (ORE) Catapult for provisions of the SCADA database.838 

  839 



44 
 

  840 



45 
 

References  841 

[1] Wind Power to dominate power sector growth | Global Wind Energy Council, (n.d.). 842 
https://gwec.net/wind-power-to-dominate-power-sector-growth/ (accessed April 19, 2021). 843 

[2] Z. Lin, X. Liu, Wind power forecasting of an offshore wind turbine based on high-frequency 844 
SCADA data and deep learning neural network, Energy. 201 (2020) 117693. 845 
https://doi.org/10.1016/j.energy.2020.117693. 846 

[3] Z. Lin, X. Liu, S. Lotfian, Impacts of water depth increase on offshore floating wind turbine 847 
dynamics, Ocean Eng. 224 (2021) 108697. https://doi.org/10.1016/j.oceaneng.2021.108697. 848 

[4] Global Offshore Wind Report 2020 | Global Wind Energy Council, (n.d.). https://gwec.net/global-849 
offshore-wind-report-2020/ (accessed May 5, 2021). 850 

[5] Queen’s Speech December 2019 - GOV.UK, (n.d.). 851 
https://www.gov.uk/government/speeches/queens-speech-december-2019 (accessed April 19, 852 
2021). 853 

[6] T. Ackermann, L. Söder, Wind energy technology and current status: a review, Renew. Sustain. 854 
Energy Rev. (2000). https://doi.org/10.1016/S1364-0321(00)00004-6. 855 

[7] M.Q. Raza, A. Khosravi, A review on artificial intelligence based load demand forecasting 856 
techniques for smart grid and buildings, Renew. Sustain. Energy Rev. (2015). 857 
https://doi.org/10.1016/j.rser.2015.04.065. 858 

[8] H. Liu, H.Q. Tian, X.F. Liang, Y.F. Li, Wind speed forecasting approach using secondary 859 
decomposition algorithm and Elman neural networks, Appl. Energy. (2015). 860 
https://doi.org/10.1016/j.apenergy.2015.08.014. 861 

[9] M. Geurts, G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, J. Mark. 862 
Res. (1977). https://doi.org/10.2307/3150485. 863 

[10] E. Yatiyana, S. Rajakaruna, A. Ghosh, Wind speed and direction forecasting for wind power 864 
generation using ARIMA model, 2017 Australas. Univ. Power Eng. Conf. AUPEC 2017. 2017-865 
Novem (2018) 1–6. https://doi.org/10.1109/AUPEC.2017.8282494. 866 

[11] J. Zhang, X. Jiang, X. Chen, X. Li, D. Guo, L. Cui, Wind power generation prediction based on 867 
LSTM, ACM Int. Conf. Proceeding Ser. (2019) 85–89. https://doi.org/10.1145/3325730.3325735. 868 

[12] Z. Qian, Y. Pei, H. Zareipour, N. Chen, A review and discussion of decomposition-based hybrid 869 
models for wind energy forecasting applications, Appl. Energy. (2019). 870 
https://doi.org/10.1016/j.apenergy.2018.10.080. 871 

[13] I. Khandelwal, R. Adhikari, G. Verma, Time series forecasting using hybrid arima and ann 872 
models based on DWT Decomposition, Procedia Comput. Sci. 48 (2015) 173–179. 873 
https://doi.org/10.1016/j.procs.2015.04.167. 874 

[14] M. Shafaei, J. Adamowski, A. Fakheri-Fard, Y. Dinpashoh, K. Adamowski, A wavelet-SARIMA-875 
ANN hybrid model for precipitation forecasting, J. Water L. Dev. 28 (2016) 27–36. 876 
https://doi.org/10.1515/jwld-2016-0003. 877 

[15] W. Pannakkong, V.N. Huynh, A hybrid model of ARIMA and ANN with discrete wavelet 878 
transform for time series forecasting, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes 879 
Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, 2017: pp. 159–169. 880 
https://doi.org/10.1007/978-3-319-67422-3_14. 881 



46 
 

[16] A. Kisvari, Z. Lin, X. Liu, Wind power forecasting – A data-driven method along with gated 882 
recurrent neural network, Renew. Energy. 163 (2021) 1895–1909. 883 
https://doi.org/10.1016/j.renene.2020.10.119. 884 

[17] L. Ziegler, E. Gonzalez, T. Rubert, U. Smolka, J.J. Melero, Lifetime extension of onshore wind 885 
turbines: A review covering Germany, Spain, Denmark, and the UK, Renew. Sustain. Energy 886 
Rev. (2018). https://doi.org/10.1016/j.rser.2017.09.100. 887 

[18] J. Serret, C. Rodriguez, T. Tezdogan, T. Stratford, P. Thies, Code comparison of a NREL-fast 888 
model of the levenmouth wind turbine with the GH bladed commissioning results, in: Proc. Int. 889 
Conf. Offshore Mech. Arct. Eng. - OMAE, 2018. https://doi.org/10.1115/OMAE2018-77495. 890 

[19] V. Sohoni, S.C. Gupta, R.K. Nema, A Critical Review on Wind Turbine Power Curve Modelling 891 
Techniques and Their Applications in Wind Based Energy Systems, J. Energy. 2016 (2016) 1–18. 892 
https://doi.org/10.1155/2016/8519785. 893 

[20] How effectively a Sigmoid function curve can be fitted with a scaled Weibull Cumulative 894 
Distribution Function (CDF)? | by Neeraj Dhanraj | Medium, (n.d.). 895 
https://neerajdhanraj.medium.com/how-effectively-a-sigmoid-function-curve-can-be-fitted-with-896 
a-scaled-weibull-cumulative-6f3a3dd7f19f (accessed April 15, 2021). 897 

[21] Y. Zhu, C. Zhu, C. Song, Y. Li, X. Chen, B. Yong, Improvement of reliability and wind power 898 
generation based on wind turbine real-time condition assessment, Int. J. Electr. Power Energy 899 
Syst. (2019). https://doi.org/10.1016/j.ijepes.2019.05.027. 900 

[22] T. Yuan, Z. Sun, S. Ma, Gearbox fault prediction of wind turbines based on a stacking model and 901 
change-point detection, Energies. (2019). https://doi.org/10.3390/en12224224. 902 

[23] Z. Lin, X. Liu, M. Collu, Wind power prediction based on high-frequency SCADA data along 903 
with isolation forest and deep learning neural networks, Int. J. Electr. Power Energy Syst. 118 904 
(2020) 105835. https://doi.org/10.1016/j.ijepes.2020.105835. 905 

[24] L. Puggini, S. McLoone, An enhanced variable selection and Isolation Forest based methodology 906 
for anomaly detection with OES data, Eng. Appl. Artif. Intell. (2018). 907 
https://doi.org/10.1016/j.engappai.2017.09.021. 908 

[25] E. Roslan, H. Mohamed, L. Chan, M.R. Isa, Effect of averaging period on wind resource 909 
assessment for wind turbine installation project at UNITEN, in: AIP Conf. Proc., 2018. 910 
https://doi.org/10.1063/1.5066898. 911 

[26] Wavelet methods for time series analysis, Choice Rev. Online. 38 (2001) 38-4508-38–4508. 912 
https://doi.org/10.5860/choice.38-4508. 913 

[27] A. Araghi, M. Mousavi Baygi, J. Adamowski, J. Malard, D. Nalley, S.M. Hasheminia, Using 914 
wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran 915 
based on gridded reanalysis data, Atmos. Res. 155 (2015) 52–72. 916 
https://doi.org/10.1016/j.atmosres.2014.11.016. 917 

[28] S. Al Wadi, M.T. Ismail, M.H. Alkhahazaleh, S.A.A. Addul Karim, Selecting wavelet transforms 918 
model in forecasting financial time series data based on ARIMA model, Appl. Math. Sci. (2011). 919 

[29] X. Liu, Z. Lin, Z. Feng, Short-term offshore wind speed forecast by seasonal ARIMA - A 920 
comparison against GRU and LSTM, Energy. 227 (2021) 120492. 921 
https://doi.org/10.1016/j.energy.2021.120492. 922 

[30] C.A. Martín, J.M. Torres, R.M. Aguilar, S. Diaz, Using deep learning to predict sentiments: Case 923 



47 
 

study in tourism, Complexity. 2018 (2018). https://doi.org/10.1155/2018/7408431. 924 
[31] P.G. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, 925 

Neurocomputing. 50 (2003) 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0. 926 
[32] An Introduction to Wavelets and Other Filtering Methods in Finance and Economics - 1st Edition, 927 

(n.d.). https://www.elsevier.com/books/an-introduction-to-wavelets-and-other-filtering-methods-928 
in-finance-and-economics/gencay/978-0-12-279670-8 (accessed April 13, 2021). 929 

[33] W. Wang, J. Ding, Wavelet Network Model and Its Application to the Prediction of Hydrology, 930 
Nat. Sci. (2003). 931 

[34] Critically-Sampled Wavelet Reconstruction - MATLAB & Simulink - MathWorks United 932 
Kingdom, (n.d.). https://uk.mathworks.com/help/wavelet/gs/wavelet-reconstruction.html 933 
(accessed April 13, 2021). 934 

[35] S. Ng, P. Perron, A Note on the Selection of Time Series Models, Oxf. Bull. Econ. Stat. 67 (2005) 935 
115–134. https://doi.org/10.1111/j.1468-0084.2005.00113.x. 936 

[36] G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (1978) 461–464. 937 
https://doi.org/10.1214/aos/1176344136. 938 

[37] D.A. Dickey, W.A. Fuller, Distribution of the Estimators for Autoregressive Time Series with a 939 
Unit Root, J. Am. Stat. Assoc. 74 (1979) 427–431. 940 
https://doi.org/10.1080/01621459.1979.10482531. 941 

[38] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: 3rd Int. Conf. Learn. 942 
Represent. ICLR 2015 - Conf. Track Proc., International Conference on Learning 943 
Representations, ICLR, 2015. https://arxiv.org/abs/1412.6980v9 (accessed April 14, 2021). 944 

[39] M. Chandra Mukkamala, M. Hein, Variants of RMSProp and Adagrad with Logarithmic Regret 945 
Bounds, PMLR, 2017. http://proceedings.mlr.press/v70/mukkamala17a.html (accessed April 14, 946 
2021). 947 

[40] Y. Ida, Y. Fujiwara, S. Iwamura, Adaptive Learning Rate via Covariance Matrix Based 948 
Preconditioning for Deep Neural Networks, IJCAI Int. Jt. Conf. Artif. Intell. 0 (2016) 1923–1929. 949 
https://doi.org/10.24963/ijcai.2017/267. 950 

[41] What causes wind gusts? | The Weather Guys, (n.d.). 951 
https://wxguys.ssec.wisc.edu/2012/01/09/what-causes-wind-gusts/ (accessed December 3, 2021). 952 

[42] B. Kosovic, S.E. Haupt, D. Adriaansen, S. Alessandrini, G. Wiener, L.D. Monache, Y. Liu, S. 953 
Linden, T. Jensen, W. Cheng, M. Politovich, P. Prestopnik, A comprehensive wind power 954 
forecasting system integrating artificial intelligence and numerical weather prediction, Energies. 955 
16 (2020). https://doi.org/10.3390/en13061372. 956 

[43] J. Sun, N.A. Crook, Dynamical and microphysical retrieval from doppler radar observations using 957 
a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective 958 
storm, J. Atmos. Sci. 55 (1998) 835–852. https://doi.org/10.1175/1520-959 
0469(1998)055<0835:DAMRFD>2.0.CO;2. 960 

[44] A. Yamaguchi, T. Ishihara, Maximum instantaneous wind speed forecasting and performance 961 
evaluation by using numerical weather prediction and on-site measurement, Atmosphere (Basel). 962 
12 (2021). https://doi.org/10.3390/atmos12030316. 963 

[45] L.S. Seregina, R. Haas, K. Born, J.G. Pinto, Development of a wind gust model to estimate gust 964 
speeds and their return periods, Tellus A Dyn. Meteorol. Oceanogr. 66 (2014) 22905. 965 



48 
 

https://doi.org/10.3402/tellusa.v66.22905. 966 
 967 


	Enlighten Accepted coversheet.pdf
	261552
	1. Introduction
	1.1 Motivation and incitement
	1.2 Literature review
	1.3 Objective and methodology
	1.4 Contribution and paper organization

	2. SCADA data description
	3. SCADA data pre-processing
	3.1 Obvious outlier removal
	3.2 Anomalies observation
	3.3 Anomalies detection and treatment
	3.4 Re-sampling
	3.5 Interpolation

	4. Methodology
	4.1 WT
	4.2 SARIMA
	4.3 Deep-learning-based LSTM
	4.4 Integrated DWT-SARIMA-LSTM model

	5. Results and discussions
	5.1 WT parameter selection
	5.2 SARIMA
	5.2.1 SARIMA model selection
	5.2.1.1 AIC and BIC
	5.2.1.2 Dickey-Fuller Test
	5.2.1.3 ACF and PACF
	5.2.2 SARIMA model diagnostic
	5.2.3 SARIMA model evaluation

	5.3 LSTM
	5.3.1 LSTM model configuration
	5.3.1.1 Normalization
	5.3.1.2 Batch size and number of epochs
	5.3.1.4 Optimizer
	5.3.2 LSTM model selection
	5.3.3 LSTM model evaluation

	5.4 Hybrid model prediction evaluation
	5.5 Mode benchmarking
	5.6 Hybrid model evaluation under different weather conditions

	6. Conclusions
	References


