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ABSTRACT Origin-destination (OD) forecasting is a difficult task in urban rail transit becausemany random

factors can influence outcomes such as numerous OD pairs with few or even no flows. Therefore, treating

all OD pairs equally, which is the method adopted by all existing studies, may not only increase model

complexity and computation, but also negatively influence forecasting results. Therefore, in this study,

we propose an indicator called OD attraction degree (ODAD) to address this problem in the field of OD

forecasting. First, we introduce the ODAD indicator and five ODAD levels to describe the attraction between

OD pairs. Based on the ODAD, an OD matrix pre-processing method is presented to prepare data for the

LSTM model. Second, we use the mature long short-term memory (LSTM) network model to examine

the effects of the introduction of ODAD. The LSTM model’s advantage of dealing with variable-length

sequences by leveraging the masking layer is creatively utilized. Finally, nine cases under different time

granularities and different ODAD levels are thoroughly studied to explore their optimal combination. Based

on this analysis, we recommend a time granularity of 30 min and an ODAD level of ‘‘Low’’ for actual

subway operation. In this case, the root mean squared error, mean absolute error, and weighted mean absolute

percentage error are 2.31%, 0.66%, and 27.28%, respectively, for a network of nearly 300 subway stations.

The introduction of ODAD can provide critical insights for subway operators to conduct short-term OD

forecasting.

INDEX TERMS Long short-termmemory (LSTM) network, origin-destination attraction degree, short-term

origin-destination forecasting, urban rail transit, deep learning.

I. INTRODUCTION

With the rapid development of urban rail transit (URT),

additional features such as improved service levels, punc-

tuality, and real-time passenger flow monitoring have been

implemented. To better monitor the real-time spatiotemporal

distribution of passenger flow, short-term passenger flow

forecasting (STPFF) should be conducted. STPFF in URT

includes the forecasting of tap-in (card swipe/scan) passenger

flows, origin-destination (OD) passenger flows, and sectional

passenger flows. Of these three types of passenger flows,

research on tap-in STPFF has been relatively more advanced

and has achieved higher prediction precisions [1]–[6]. How-

ever, studies about OD STPFF and sectional STPFF remain
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relatively few in existing literatures. Additionally, OD STPFF

plays a key role as a primary connection between tap-in

STPFF and sectional STPFF. Therefore, this study focuses

primarily on OD STPFF (forecasting the destination of pas-

sengers), namely solving the problem of determining where

passengers are traveling, under the condition of knowing the

real-time tap-in volume, that is, knowing where they are at a

particular time [7].

The automatic fare collection (AFC) system of URT can

record the card number, tap-in time, tap-in station name,

tap-out time, and tap-out station name of a trip. The real-

time tap-in volume can be easily obtained because passen-

gers must swipe a card when they enter a station. Owing

to travel duration, however, the destination of a trip cannot

be determined until passengers exit the station. Therefore,

the OD STPFF, namely OD estimation, is introduced for
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forecasting the OD distribution when the real-time tap-in

volume is known. The OD forecasting can provide real-

time passenger flow distribution status to support decisions

on network management tasks, as well as implement flow

congestion control and anomaly detection [8]. Moreover, this

is essential input information for real-time route guidance and

dynamic traffic assignment [9].

OD forecasting has been used in various forecasting

domains. However, different models are utilized in different

areas because of different prior knowledge. We will present

existing studies from several areas, in which computer sci-

ence, road traffic, and URT are three main application fields.

In the area of computer science, a traffic matrix primarily

refers to Internet Protocol. Models used for Internet Pro-

tocol traffic matrix estimation include the tomography

method [10], tomogravity method [11], principal compo-

nent analysis method [12], and mathematical optimization

method [13]. With the development of machine learning,

some intelligent algorithms, such as back propagation

neural networks (BPNN) and long short-term memory

(LSTM) recurrent neural networks (RNN) were introduced.

Jiang et al. [14] and Zhou et al. [15] proposed a BPNNmodel

to estimate large-scale Internet Protocol traffic matrices.

To satisfy the equality constraint, an iterative proportional

fitting procedure and expectation maximization algorithm

were applied to their studies to adjust their respective output

of BPNN.Nie et al. [8] built a deep belief network and logistic

regression model to conduct Internet Protocol traffic matrix

prediction. Some researchers proposed a deep architecture

based on an LSTM RNN [16, 17]. They transformed the

n-order traffic matrix into an n2 vector and used the vector

as the input of the LSTM network. This type of network is

able to capture the spatiotemporal characteristics of the traffic

matrix. Because computer network traffic has self-similarity,

long-time dependence, and a highly nonlinear nature [18],

similar to road and URT traffic flow, this research can provide

critical insights for OD forecasting in URT.

There are many studies on OD forecasting of road traffic.

Typically, the actual ODmatrix is unknown, whereas the traf-

fic counts or freeway and ramp flows can be easily observed.

Some scholars seek to fully utilize this kind of information for

OD forecasting. Hitherto, entropy maximization, maximum

likelihood, generalized least squares, Bayesian inference esti-

mation techniques, state space model, and a bi-level program-

ming approach have been introduced. Several typical studies

are listed as follows. Combining the survey and traffic count

data, Bell [19], [20] built a generalized least squares (GLS)

model to conduct OD estimation that took travel time distri-

bution into consideration. Yang et al. [21], [22] established

a bi-level programming approach based on the least squares

method and equilibrium traffic assignment using link counts

data. They also introduced a concept of maximum possible

relative error to evaluate the reliability of the estimated OD

matrix [23]. Lin and Chang [9] presented a generalized state

space model based on the measured freeway and ramp flows

to dynamically estimate the freeway OD matrix; the Kalman

filtering algorithm is applied to solve this model. To capture

the drivers’ speed difference, this study also innovatively

introduced a travel time distribution function. Recently, some

researchers have started using convolution-based methods

to conduct OD forecasting [24, 25], but the effect was not

verified in wide fields. Although road OD forecasting has

been thoroughly discussed in existing studies, there is limited

similarity between road and URT application because of dif-

ferences in prior knowledge. However, some modelling ideas

and methods (e.g., GLS and state space model) can be used

for reference.

In contrast to road traffic OD forecasting, research in

URT forecasting has been relatively limited. Additionally,

while the sectional flows cannot be observed, the historical

actual OD matrix, which is completely different from road

traffic, can be accurately extracted. This makes it easier to

use intelligent algorithms in machine learning. Some of this

research is listed as follows. Zhao et al. [26] used entry-only

AFC data to estimate trip destinations of individuals and to

further estimate the OD matrix in the Chicago transit system.

However, this is different from transit systems that operate

with both entry-control and exit-control AFC systems, whose

historical OD matrix can be directly observed. Using the his-

torical OD matrix and travel time distribution, Yao et al. [27]

built a state space model and then used the Kalman filtering

algorithm to solve the model. Further, he introduced a GLS

model based on a moving-average strategy using the average

OD flows in several previous time periods [28]. Based on

Yao’s study, Chen et al. [29] considered commuter volume

in the state space model. All these studies seek to explain the

inherent relationships betweenODflows from the perspective

of mathematical optimization. However, there is few studies

utilizing deep learning based methods in OD forecasting

in URT.

Moreover, there are some other limitations in OD STPFF

in URT. First, OD flows have extremely complicated corre-

lations, so a single mathematical optimization method may

not fully capture the spatiotemporal characteristics. Second,

existing models can only be applied reliably to small-scale

networks. With the network expansion in URT, these models

become so complicated that they may not meet the require-

ment of ‘‘real-time’’. Moreover, the number of OD flows

is much greater than network nodes, specifically, n2 times,

where n is the number of nodes. In contrast, many OD pairs

may have very little flow or even no flow. Therefore, treating

all OD pairs equally, which is the method adopted by all

existing studies, may not only increase model complexity

and computation, but also negatively influence forecasting

results.

To compensate for these shortcomings, we have introduced

an OD attraction degree (ODAD) indicator. To test the effect

of introduction of ODAD indicator when conducting OD

forecasting in URT, we used research in the computer science

field [16], [17] as a reference on the use of LSTM RNN.

The main reason we selected LSTM is that it is a relatively

mature and stable method in traffic forecasting and has been
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TABLE 1. Example of raw AFC data for March 9, 2016.

TABLE 2. Example of processed AFC data for March 9, 2016.

proven to be feasible for network traffic matrix prediction.

First, we introduce an OD attraction degree (ODAD) indi-

cator and ODAD levels to capture the importance of OD

pairs in the entire URT network. Based on ODAD, some OD

pairs that have lower OD flows (lower ODAD) are deleted

to simplify the URT network, decrease model complexity

and computation, and increase forecasting precision. Next,

the OD matrix preprocessing method is presented in detail to

prepare the data for the LSTMmodel. Then, the LSTMmodel

is applied to verify the effect of ODAD when conducting

OD forecasting. The essential ability of the LSTM model to

operate on input sequences of variable lengths by leveraging

the masking layer is creatively utilised. Finally, several cases

under different time granularities (TGs) and ODAD levels are

studied to evaluate the model performance and to explore the

optimal combination of TG and ODAD levels.

The remaining sections of this study are organized as

follows. In Section 2, we provide the OD matrix data

extraction and preprocessing, as well as the introduction of

ODAD. The LSTM model development is briefly described

in Section 3. The case study and result discussion are pre-

sented in Section 4, and the conclusions are summarized in

Section 5.

II. DATA PREPROCESSING AND

INTRODUCTION OF ODAD

In this section, we first present automatic fare collection

(AFC) data. The definition of ODAD is then described in

detail. Finally, the OD matrix extraction procedure is intro-

duced. Based on ODAD, some OD pairs are deleted, and the

processed OD matrix is used as input to the LSTM model.

A. AFC DATA DESCRIPTION

The AFC data used in this study is taken from February 29,

2016 to April 3, 2016 in a Beijing subway. There were a

total of 17 lines and 276 stations in operation in March 2016.

Therefore, there are 76,176 OD pairs, which constitutes a

very large network structure. To extract the OD matrix, every

station is given only an index, and the entering and exiting

times are transformed into minutes, from 0 to 1080, which

represents 05:00 to 23:00 (18 h); this is done to simply divide

the time period. Examples of raw and processed AFC data are

shown in Table 1 and Table 2, respectively.

B. ODAD AND ODAD LEVEL

Existing studies have proven that OD pairs with low flow

volumes can have a significant impact on the OD forecasting

accuracy [30]. Within the URT, there are many OD pairs

that attract only a few passengers; among these, most of

the trips are randomly generated. To exclude randomness in

the prediction process and thus improve accuracy, ODAD is

introduced. ODAD is used to describe the attraction degree

of OD pairs, namely the average OD flow volume in differ-

ent time periods over a long duration. It can be calculated

according to (1).

ODADtij

=
1

n

∑n

k=1
q
k,t
ij

=





















ODADt11 ODADt12 ODADt13 · · · ODADt1j

ODADt21 ODADt22 ODADt23 · · · ODADt2j

ODADt31 ODADt32 ODADt33 · · · ODADt3j
...

...
...

. . .
...

ODADti1 ODADti2 ODADti3 · · · ODADtij





















(1)

where i is the entering station number, and j is the exit-

ing station number. The variable n is the number of days

considered in a continuous time period, k is the particular

day within this time period, t is the time period number

during the day, and q is the flow volume. From this formula,

we can infer that ODAD is a dynamic indicator. For the

same OD pairs, the ODAD might be high during peak rush-

hour periods and low in the middle of the night. Moreover,

the ODAD is an average OD flow volume, thus excluding

randomness.

In this study, i and j vary from 1 to 276, representing the

276 stations. n is 25, representing the 25 weekdays from
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TABLE 3. ODAD levels adopted in this study (15 min).

February 29, 2016 to April 3, 2016, and k thus varies from

1 to 25. If the TG used to aggregate the AFC data is 15 min,

then t varies from 1 to 72 (18 h). If the TG is 30 min

or 60 min, then t varies from 1 to 36 or from 1 to 18,

respectively.

The ODAD level when TG is 15 min is given in Table 3,

which can be used as a reference to pre-process the OD

matrix. When TG is 30 min or 60 min, corresponding values

are doubled or quadrupled, respectively.

C. OD MATRIX EXTRACTION AND PREPROCESSING

Based on the processed AFC data and ODAD levels, the

historical OD matrix can be extracted in the form of

Equation (2). The extracted OD matrix and ODAD matrix

(Equation (1)) exhibit one-to-one correspondence. Given a

certain ODAD level (e.g., ODAD level = ‘‘Low’’), some

OD pairs, namely those whose ODAD value is less than

or equal to 1, will be deleted according to ODAD matrix.

Equation (2) is then transformed into the form of Equation

(3). Finally, because deleting OD pair results in variable-

length sequences, OD pairs are synchronously moved to the

left, and the vacant position was replaced by 0 to obtain the

final OD matrix as shown in Equation (4), which is the input

of the LSTM model.

OD
k,t
ij =



















q
k,t
11 q

k,t
12 q

k,t
13 · · · q

k,t
1j

q
k,t
21 q

k,t
22 q

k,t
23 · · · q

k,t
2j

q
k,t
31 q

k,t
32 q

k,t
33 · · · q

k,t
3j

...
...

...
. . .

...

q
k,t
i1 q

k,t
i2 q

k,t
i3 · · · q

k,t
ij



















=

















Q
k,t
1

Q
k,t
2

Q
k,t
3
...

Q
k,t
i

















(2)

OD
′k,t
ij =



















q
k,t
11 × × · · · q

k,t
1j

q
k,t
21 q

k,t
22 q

k,t
23 · · · q

k,t
2j

q
k,t
31 × q

k,t
33 · · · q

k,t
3j

...
...

...
. . .

...

× q
k,t
i2 q

k,t
i3 · · · q

k,t
ij



















(3)

OD
′′k,t
ij =



















q
k,t
11 · · · q

k,t
1j 0 0

q
k,t
21 q

k,t
22 q

k,t
23 · · · q

k,t
2j

q
k,t
31 q

k,t
33 · · · q

k,t
3j 0

...
...

...
. . .

...

q
k,t
i2 q

k,t
i3 · · · q

k,t
ij 0



















=

















Q
′k,t
1

Q
′k,t
2

Q
′k,t
3
...

Q
′k,t
i

















(4)

FIGURE 1. Diagrams of (a) conventional RNN and (b) LSTM model
architecture.

where OD
k,t
ij represents the OD matrix in the time period of

t during the day k , and q
k,t
ij is the OD flow entering station i

in the time period of t and leaving for station j. Q
k,t
ij is a row

vector.

The LSTM model has the advantage of automatically

handling variable-length sequences by leveraging the mask-

ing layer. In other words, it can automatically filter ‘‘0’’

used as position completion during model training. This fea-

ture is also one of the important features to verify whether

the introduction of ODAD can improve prediction accu-

racy. The form of OD′′k,t
ij in Equation (4) is absolutely

the input of LSTM model. It should be noted that the

location of OD pairs in the output is the same as the

input. Therefore, after determining the output, the location

of OD pairs will be relocated according to their original

place.

III. MODEL DESCRIPTION

LSTM model has been proved to be effective, mature and

stable in traffic forecast tasks. It can avoid vanishing or

exploding gradient problems, thus can capture long-term

temporal dependencies of time series and achieve satisfac-

tory results. Unlike conventional neurons in an RNN (Fig-

ure 1 (a)), the memory block (Figure 2) in an LSTM net-

work (Figure 1 (b)) is composed of four parts: input gate,

output gate, forget gate, and memory cell [30]. The three

gates can determine what can be input, output, and for-

gotten during training process. The memory cell is closely

related to the three gates and can record and pass his-

torical useful information into the present task. The data

flow can be calculated according to Equations (5) to (12)

[31]–[33].
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FIGURE 2. Diagram of a LSTM model memory block.

ft = σ
(

Wf xt + Uf ht−1 + Vf ct−1 + bf
)

(5)

it = σ (Wixt + Uiht−1 + Vict−1 + bi) (6)

c̃t = tanh (Wcxt + Ucht−1 + bc) (7)

ct = ft ⊙ ct−1 + it ⊙ c̃t (8)

ot = σ (Woxt + Uoht−1 + Voct + bo) (9)

ht = ot ⊙ tanh (ct) (10)

σ (x) =
1

1 + e−x
(11)

tanh (x) =
ex − e−x

ex + e−x
(12)

where xt , it , ot , ft , ct , and ht represent input data, input

gate, output gate, forget gate, cell state, and final output,

respectively. The variablesW , U , and V are weight matrixes,

and b is the bias vector. The back propagation through time

(BPTT) algorithm and ‘‘rmsprop’’ optimizer are utilized to

optimize these parameters. The t is the time step, and⊙ stands

for Hadamard product. The initial values of ct and ht are all

set as 0.

To estimate the OD matrix in the time period t of day k,

we use the ODmatrix in time periods t and t−1 of day k−1,

combined with the entering and exiting passenger volume as

the input of the LSTM model, as shown in Equations (13)

and (14). All these input data are real rather than forecasted

to avoid accumulated errors. Unlike Zhao et al. [16] and

Azzouni and Pujolle [17], we forecast the OD matrix using

a row of the matrix, namely a subway station, rather than

making the matrix into a vector; this method is more refined

and focused. After obtaining forecasting results of all stations

in the specific time period t , the forecasting results will be

integrated into an OD matrix, which is the final result of

the LSTM model. Because there are 276 stations, parallel

computing is used to train the LSTM network for different

stations.

Q
′k,t
i = f (Q

′k−1,t
i ,Q

′k−1,t−1
i , I

k,t
i ,O

k,t
i ) (13)

Q
′k,t
i = ( q

′k,t
i1 q

′k,t
i2 q

′k,t
i3 · · · q′k,t

ij (14)

whereQ
′k,t
i ,Q

′k−1,t
i , andQ

′k−1,t−1
i are row vectors (as shown

in Equation (5)) representing OD flows entering station i in

the specific time period t of day k , t of day k − 1, and t − 1

of day k − 1, respectively. The q
′k,t
i1 is the OD flow after OD

relocating and padded with zeros. The I
k,t
i and O

k,t
i are the

entering and exiting passenger volumes, respectively, in the

time period t of day k .

IV. CASE STUDY AND RESULT DISCUSSION

In this section, the detailed input data and output data are

first described. Then, several evaluation metrics are chosen

to evaluate model performances. Finally, cases for different

TGs are studied and the OD estimate result is presented.

A. MODEL CONFIGURATION

The training dataset comprises the former 22 workdays,

and the testing dataset is the 23rd workday (Wednesday).

In actual subway operations, the prediction time (for which

TG is adopted) should be seriously considered. A smaller

TG implies more detailed passenger flow information will

be captured, but the predictability will be worse; a larger TG

is the opposite. In this study, estimation of the OD matrix

with three TG settings will be discussed (15 min, 30 min, and

60 min) to find the appropriate TG used for actual operation.

For each TG, three ODAD levels (‘‘Lowest’’, ‘‘Low’’, and

‘‘Middle’’) are applied to evaluate model performance, thus

giving a total of 9 studied cases.

We then use Keras to build the LSTM model. By trial

and error, the architecture includes a masking layer, two

LSTM layers, a dense layer with linear activation, as shown

in Figure 3. Because the four types of input data have different

sequence lengths, they will be padded into the same length

of 276 with zeros. Therefore, in every time step, there are

276 features. Fortunately, the masking layer before the LSTM

layer has the advantage of masking the padded zeroes, thus

allowing the variable-length sequences to be input into the

LSTM model, as well as decreasing model complexity and

computation. Moreover, it is noteworthy that the epoch in

every model with a TG of 15 min, 30 min, and 60 min is set

as 50, 100, and 200, respectively. The batch size is set as 72.

B. EVALUATION METRICS

To evaluate forecasting performance, the root mean squared

error (RMSE), mean absolute error (MAE), and weighted

mean absolute percentage error (WMAPE) in different time

FIGURE 3. Architecture of LSTM mode.
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FIGURE 4. Variation of OD pair numbers for each TG case for one day.

periods, as calculated according to Equations (15) to (17), are

applied in this study. Corresponding average indicators for a

whole day, weighted by total passenger volume in different

time periods, are calculated according to Equations (18) to

(20).

RMSE t =

√

1

n ∗ n

∑n

i=1

∑n

j=1

(

q
k,t
ij − q̂

k,t
ij

)2
(15)

MAE t =
1

n ∗ n

∑n

i=1

∑n

j=1

∣

∣

∣
q
k,t
ij − q̂

k,t
ij

∣

∣

∣
(16)

WMAPE t =
∑n

i=1

∑n

j=1

q
k,t
ij

∑n
i=1

∑n
j=1 q

k,t
ij

∣

∣

∣

∣

∣

q
k,t
ij − q̂

k,t
ij

q̂
k,t
ij

∣

∣

∣

∣

∣

(17)

RMSE =
∑m

t=1

∑n
i=1

∑n
j=1 q

k,t
ij

∑m
t=1

∑n
i=1

∑n
j=1 q

k,t
ij

RMSE t (18)

MAE =
∑m

t=1

∑n
i=1

∑n
j=1 q

k,t
ij

∑m
t=1

∑n
i=1

∑n
j=1 q

k,t
ij

MAE t (19)

WMAPE =
∑m

t=1

∑n
i=1

∑n
j=1 q

k,t
ij

∑m
t=1

∑n
i=1

∑n
j=1 q

k,t
ij

WMAPE t (20)

where q
k,t
ij is the prediction value, q̂

k,t
ij is the actual value, t

is the time period during a day k , n is the number of stations,

and m is total number of time periods in a day.

C. DISCUSSION OF RESULTS

After the application of ODAD, the number of OD pairs is

significantly decreased because of the deletion of OD pairs

that actually have little impact on the system, as shown

in Figure 4. It can be seen that regardless of which TG is

adopted, the number of OD pairs has a similar variation trend.

Applying the ‘‘Lowest’’ ODAD level, the number of OD

pairs remains steady from morning peak hours to evening

peak hours; nearly 10,000 OD pairs with no passengers. Early

in the morning and late at night, these values decline sharply,

indicating that there are more OD pairs (from about 10,000 to

60,000) with no passengers at all during in these periods.

Therefore, if these OD pairs are taken into consideration in

the prediction process, significant computing resources will

be wasted, and model performance will also be negatively

affected.

Going from ‘‘Lowest’’ to ‘‘Low’’ level, the biggest decre-

ment occurs, signifying that more than half of the OD pairs

have very few passengers, i.e., less than or equal to 1, 2,

and 4 passengers in 15 min, 30 min, and 60 min, respec-

tively. It is specifically these OD pairs that have a signifi-

cant impact on the prediction performance. Additionally, the

number variations are related to passenger volume, showing

obvious double peaks. Even in peak periods, only approxi-

mately half of the OD pairs have a higher ODAD level than

‘‘Low’’.

For the ‘‘Middle’’ ODAD level, the number of OD pairs

show a similar trend as that of the ‘‘Low’’ level. However,

more OD pairs are deleted when the ‘‘Middle’’ level is

applied. These observations indicate that the choice of which

ODAD level to apply should also be seriously considered to

avoid ignoring some important OD pairs.

The model performance under different TG and ODAD

levels is highlighted in Figure 5. As clearly shown, nearly

all indicators under the three TG settings decrease as ODAD

level increases, which strongly indicates that the introduc-

tion of ODAD level can significantly improve forecast-

ing precision. In addition, all three indicators are closely

related to passenger volume, with the same or the opposite

variation trend. Moreover, the decrement from ‘‘Lowest’’

level to ‘‘Low’’ level is larger than that from ‘‘Low’’ to

‘‘Middle’’; this shows similar regularity with that of the

OD pair numbers in Figure 5. Therefore, we recommend

the ‘‘Low’’ ODAD level be adopted for subway operation.

This will not only ensure forecasting performance to some

extent, but also allow as many OD pairs as possible to be

considered.

The average model performance for a whole day is pre-

sented in Figure 6 and Table 4 to Table 6. The average RMSE

with the different TGs of 15 min, 30 min, and 60 min is

approximately 1.3, 2.3, and 4.4, respectively. Although the

RMSE for the same TG is approximately the same, there also

exists a slight decline. By contrast, the average MAE and

WMAPE vary greatly with the same TG. The smallest MAE

(0.36921) occurs when a TG of 15 min and ODAD level of

‘‘Middle’’ are adopted.
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FIGURE 5. Model performance in different time periods.

FIGURE 6. Average model performance for a whole day.

TABLE 4. Average RMSE for a whole day.

WMAPE increases to 46.9% when a TG of 15 min and

ODAD level of ‘‘Lowest’’ is adopted, signifying that the

model performance is slightly worse in this setting. Even

when the ODAD level of ‘‘Middle’’ is adopted, WMAPE

exceeds 30%. There are several reasons leading to this sit-

uation. One is that the trip regularity is lower from a sta-

tistical perspective when passenger flow is aggregated in

a smaller TG. Another is the uncertainty of travel time.

TABLE 5. Average MAE for a whole day.

For example, the starting travel times of passengers are often

not limited to a specific 15-min interval (e.g., 7:00 to 7:15).

This may change with a slightly longer interval (e.g., 30 min).

When a TG of 30 min and an ODAD level of ‘‘Low’’ is

adopted, WMAPE (27.28%) begins to be less than 30%.

When the TG is 60 min, WMAPE is always less than 30%.

However, a bigger TG is not beneficial for real time con-

trol of subway systems, and more detailed passenger flow
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FIGURE 7. Comparison of actual values and predicted values when TG equals 15 min.

FIGURE 8. Comparison of actual values and predicted values when TG equals 30 min.
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FIGURE 9. Comparison of actual values and predicted values when TG equals 60 min.

TABLE 6. Average WMAPE for a whole day.

TABLE 7. Description of OD pairs.

information will be ignored. Therefore, a TG of 30 min and

an ODAD level of ‘‘Low’’ is recommended for actual subway

operation.

In addition, we have chosen three OD pairs, namely from

4 to 11, 34 to 45, and 45 to 225, to show the actual values

and predicted values in different time periods. The station

numbers of 4, 11, 34, 45, and 225 represent Yuquanlu, Fux-

ingmen, Xizhimen, Dongzhimen, and Wangjingxi stations,

respectively. Moreover, the three OD pairs represent stations

with large, medium, and small passenger volumes as well as

different passenger flow characteristics as shown in Table 7;

this facilitates a more general representation, as shown

in Figure 7 to Figure 9. It can be clearly seen that whichever

the case, the LSTM model is able to capture the passenger

flow variation trend; this demonstrates the feasibility of the

LSTM model.

V. CONCLUSION

This study innovatively proposed an ODAD indicator to

conduct short-term OD forecasting in URT. The mature and

stable LSTM model is selected to verify the effect of ODAD.

First, we introduced an ODAD indicator to capture the

attraction degree of OD pairs. The ODAD level with different

TG values was also given. Based on the ODAD, a detailed OD

matrix preprocessing method was presented to prepare data

for the LSTMmodel. Second, the theory of the LSTMmodel

was clearly described to conduct short-term OD forecasting.

Finally, nine cases were studied, covering three TGs and

three ODAD levels, to verify the effect of introducing the

ODAD indicator; the best optimal combination of TG and

ODAD levels was also explored. Several critical findings are

summarized as follows:
1. The introduction of the ODAD can effectively improve

forecasting model performance. Moreover, the ideal

adopted ODAD level depends on actual operational

requirements.

2. It is feasible that the LSTM model can be applied

to conduct short-term OD forecasting in URT with a

large-scale network. In addition, LSTM can skilfully

operate on input sequences of variable lengths by

leveraging the masking layer, which facilitates the
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application of the ODAD. Furthermore, the LSTM

model can clearly capture passenger flow variations

throughout a day.

3. A smaller TG can decrease OD matrix predictability.

A larger ODAD level will cause many OD pairs to

be ignored. Using case study results, we recommend

a TG of 30 min and an ODAD level of ‘‘Low’’, which

can ensure satisfactory forecasting results. In this case,

the RMSE, MAE, andWMAPE are 2.31%, 0.66%, and

27.28%, respectively, in a network of nearly 300 sub-

way stations.
Overall, these findings can provide insights for subway

operators to conduct short-term OD forecasting in URT

using LSTM or other deep learning methods. However, there

are also some limitations. For example, only OD flows on

weekdays were studied, and weekends were not included.

In addition, other factors that influence OD flows, such as the

weather and precipitation, were not considered. Moreover,

we did not use more complicated deep learning models.

We only chose a relatively simple, mature, and stable LSTM

model to verify the effect of introducing ODAD, which is

the main contribution of this study. Therefore, we did not

compare LSTM with other models. Future work can conduct

additional research in these areas.
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