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ABSTRACT In this paper, a forecasting algorithm is proposed to predict photovoltaic (PV) power generation

using a long short term memory (LSTM) neural network (NN). A synthetic weather forecast is created for

the targeted PV plant location by integrating the statistical knowledge of historical solar irradiance data with

the publicly available type of sky forecast of the host city. To achieve this, a K-means algorithm is used

to classify the historical irradiance data into dynamic type of sky groups that vary from hour to hour in

the same season. In other words, the types of sky are defined for each hour uniquely using different levels

of irradiance based on the hour of the day and the season. This can mitigate the performance limitations

of using fixed type of sky categories by translating them into dynamic and numerical irradiance forecast

using historical irradiance data. The proposed synthetic weather forecast is proved to embed the statistical

features of the historical weather data, which results in a significant improvement in the forecasting accuracy.

The performance of the proposed model is investigated using different intraday horizon lengths in different

seasons. It is shown that using the synthetic irradiance forecast can achieve up to 33% improvement in

accuracy in comparison to that when an hourly categorical type of sky forecast is used, and up to 44.6% in

comparison to that when a daily type of sky forecast is used. This highlights the significance of utilizing the

proposed synthetic forecast, and promote a more efficient utilization of the publicly available type of sky

forecast to achieve a more reliable PV generation prediction. Moreover, the superiority of the LSTM NN

with the proposed features is verified by investigating other machine learning engines, namely the recurrent

neural network (RNN), the generalized regression neural network (GRNN) and the extreme learning

machine (ELM).

INDEX TERMS PV power forecasting, machine learning, LSTM, neural network, deep learning, synthetic

weather forecast.

I. INTRODUCTION

Solar PV generation is one of the most promising renew-

able energy resources that are expected to mitigate the

climate change crisis and improve global energy security.

Atmospheric variables, such as solar irradiance, tempera-

ture, humidity and cloud properties, directly and indirectly

influence PV power generation. These variables make PV

generation intermittent and stochastic. Therefore, large-scale

PV power penetration in the utility grid requires reliable

forecasting models to operate the power grid economically

and reliably [1], [2]. The short term PV power forecast, which

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

extends from an hour ahead to 24 hours ahead, is essential for

a secured grid operation [1]. On the other hand, long-term

forecasting horizons extend from one month to one year,

which is used for long term planning [3]. The physical behav-

ior and the time series nature of PV power generation are

explored using various types of forecasting models in the

state of the art literature. Statistical models use historical

data of PV power generation, whereas physical models uti-

lize satellite imagery sources [2]. Artificial intelligence (AI)

based models use neural networks, and other machine learn-

ing techniques, to capture the stochastic nature of the PV

power time series [4]. Recently, these models are combined

together and proposed as hybrid models [5]. A prediction

performance review of machine learning, mathematical, and
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hybrid forecasting models is presented in [1]. According to

this comprehensive review, the hybrid models show superior-

ity in comparison to models that only use machine learning

or mathematical techniques [1]. A hybrid model employing

a genetic algorithm (GA) based weight optimization for a

support vector machine (SVM) is proposed for a single-step

prediction in [6]. A single-step ahead forecasting algorithm

combining meta-heuristic optimization and back propagation

neural network (BPNN) is proposed in [7]. A probabilistic

forecasting approach, which utilizes quantile regression and

an ELM, is proposed in [8] for single-step ahead PV power

forecasting. The prediction models used in [7] and [8] show

high accuracy as the PV generation sampling resolution is

only 5min, which limits their applications to certain real-time

grid operations. LSTMNNbasedmodels outperform the con-

ventional neural network based models when the sampling

resolution is more than 15-min as shown in [9]. The model

proposed in [9] employs the attention mechanism and LSTM

NN for single-step ahead forecasting of PV generation, while

exploring 7.5 min to 1 hour sampling resolutions. The tech-

niques in [6]–[9] rely mainly on the PV generation time

series, which can achieve reasonable accuracy in the case of

single-step ahead predictions. However, for multi-step ahead

predictions, reliance on the generation time series only may

result in inadequate performance.

A deep convolutional neural network (CNN) is used in [10]

to extract features from the PV power time series. Thereafter,

the extracted features and the time series of the weather

variables are fed to a support vector regression (SVR) net-

work to forecast PV generation over intraday horizons. How-

ever, the direct use of PV power time series gradient is

not exploited in this model [11]. An effective algorithm is

implemented in [12] using deep NNs and atmospheric data to

predict the total generation of the whole next day. However,

in recent years, models that predict accumulated generation

become less popular in some countries due to the penalties

enforced by operators on producerswho fail to report accurate

generation forecast [5]. Therefore, hourly day ahead and

hourly intraday models are adopted to obtain a more accurate

prediction, and achieve the intended economic benefit in the

energy markets [13]. A hybrid model combining a wavelet

transform, a deep neural network (DNN), and an LSTM

NN, utilizes temperature data to predict next multiple time

steps of PV generation in [14]. The proposed model adopts

recursive multi-step ahead forecasting method to predict

12-hour horizons.

In recursive prediction methods, the value of the forecast

horizon first step is predicted from direct observations, and

then used recursively to predict the rest of the steps in the pre-

diction horizon. On the other hand, the entire prediction hori-

zon is estimated at once, from direct observations, in direct

multi-step prediction methods. The direct multi-step ahead

forecasting method is more efficient in short-term forecast-

ing, in comparison to the recursive one [15]. A combination

of a wavelet transformation and a feed forward neural net-

work (FNN) is used in [16] to forecast day ahead hourly PV

generation by utilizing historical weather data. Differential

evolution (DE) and particle swarm optimization (PSO) are

used to optimize a mathematical forecasting model in [17]

to predict a 4-hour horizon PV generation. In general, hybrid

models can achieve higher prediction accuracy when incor-

porating weather forecast data [18]. An LSTM NN based

PV power forecasting algorithm is proposed in [19] to pre-

dict intraday and 24-hour horizons using a time index as

an additional input feature along with the relevant weather

variables. A DNN is used in [20] to predict next 24-hour

PV generation based on historical weather information and

a rolling horizon strategy. The forecasting accuracy of the

models proposed in [14], [16], [17], [19], [20] can still be

enhanced by considering weather forecast data [18].

Therefore, recent PV power forecasting models use

weather forecast data effectively for hourly day ahead predic-

tions. A BPNN based day ahead forecasting model that uses

the weather aerosol index as an additional predictor is pro-

posed in [21]. The weather forecast data of a targeted day is

used to choose the training samples of the forecasting model.

However, the conventional feed forward NN is proven to

have its own accuracy limitations with time series prediction,

in comparison to the more advanced memory-based neural

networks, such as recurrent or LSTM networks. A day ahead

hourly prediction algorithm using SVR, self-organizing map

(SOM), and learning vector quantization (LVQ) classifiers is

proposed in [22]. The 15-hour prediction horizon is divided

into five 3-hour segments. On the other hand, a one out of

six prediction sub-models is used at a time, depending on the

weather conditions. Weather forecast data are utilized with

a fuzzy inference machine to decide the sub-model suitable

for every 3-hour horizon segment. The algorithm uses PV

generation data of previous similar days, while ignoring the

same day most recent time series trend.

A combination of a radial basis function neural net-

work (RBFNN) and a fuzzy K-means algorithm is used to

develop five models for five types of days [23]. The tem-

perature and precipitation forecast data of a targeted day are

used to choose the corresponding model to predict the day

ahead hourly PV generation. However, as will be shown in

Section II, solar irradiance is more correlated to the type of

the day, with respect to PV generation, than temperature and

precipitation. The weather classification and SVM are used

to develop four PV forecasting models corresponding to four

types of days in [24]. The type of the day is selected based

on the weather forecast of the day, such as sunny, cloudy,

etc. These weather forecasts are mostly available for large

geographical area, rather than for a specific PV plant location.

This can only give a rough insight into the type of the day

which helps in classifying the training data.

Inspired by the previous research efforts, an algorithm is

proposed in this paper to leverage the powerful time series

processing features of LSTMNNswith a synthesized approx-

imate weather forecast, to predict intraday and day-ahead

horizons. The statistical knowledge gained from the historical

irradiance data of a PV plant location is integrated with the
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publicly available type of sky forecast to create a synthetic

solar irradiance forecast. A K-means algorithm is used to

classify the historical irradiance data into dynamic type of

sky groups that vary from hour to hour in the same season.

In other words, the types of sky are defined for each hour

uniquely, using different levels of irradiance, depending on

the hour of the day, and the season. The synthetic weather

variables, the historical weather and PV generation time

series, the time of the day index and the month of the season

index are used as input features for the LSTM NN. The

performance of the synthetic weather forecast variables as

input features is compared to that of the categorical hourly

and daily city type of sky forecast. It is shown that using the

synthetic irradiance forecast can achieve up to 33% improve-

ment in accuracy in comparison to that when an hourly type

of sky forecast is used, and up to 44.6% in comparison

to that when a daily type of sky forecast is used. Finally,

the proposed algorithm is implemented using other forecast-

ing engines, namely the RNN, the GRNN, and the ELM,

to verify the superiority of LSTMNNwith the proposed input

features.

The rest of the paper is organized as follows. The prob-

lem statement and data mining approach are discussed in

Section II. The forecasting framework based on LSTMNN is

presented in Section III. Section IV presents the performance

evaluation metrics. The simulation results are presented and

discussed in Section V. Finally, Section VI concludes the

paper.

II. PROBLEM STATEMENT AND DATA MINING

APPROACH

As mentioned earlier, recent PV power forecasting models

take advantage of available weather forecasting utilities. The

weather forecast for a city area is available, in hourly and

daily resolutions, on public weather websites. The weather

variables including temperature, humidity and wind speed are

almost homogeneous around the city areas. However, solar

irradiance varies from a location to another in the same city

due to the cloud effect. Moreover, most weather channels

provide hourly and/or daily type of sky categories, rather

than the time series of the numerical irradiance forecast. This

categorical variable can only give a rough and static insight

into the irradiance level since the same sky type can refer to

different levels of irradiance depending on the hour of the day,

and on the season. Accordingly, the categorical type of sky

forecast for a city may not result in an accurate PV generation

forecast for a specific plant location. Creating a synthetic

numerical irradiance forecast, that can be associated with

dynamic types of sky, can be a good starting point towards

improving the prediction accuracy. The creation of synthetic

weather profiles is considered as a part of the data mining

approach of the proposed model. Data mining is very popu-

lar in solving time series regression and classification types

of problems [25]. In this paper, the data mining approach

includes a data-set preparation, a correlation analysis, a sta-

tistical analysis, and a synthetic weather forecast preparation.

The prepared data set is used with an LSTMNN to predict the

PV power generation.

A. APPROACH OVERVIEW

Collecting historical PV generation and weather data, for the

considered PV plant, is the first step of the data preparation.

The hourly historical weather data, of the Desoto solar farm

(25MW) and the city of Arcadia in Florida, are collected from

the national renewable energy laboratory (NREL) website

for the period of 2012-2018 [26]. The data-set comprises

solar irradiance, temperature, wind speed, precipitable water,

pressure and relative humidity. The historical generation and

weather data are divided into four seasons, marked as spring

(Mar-May), summer (Jun-Aug), autumn (Sep-Nov), and win-

ter (Dec-Feb). A correlation analysis is conducted to choose

the suitable predictors for the proposed model. This is created

using statistical analysis of the available historical data in this

step.

To achieve this, it is proposed to classify the historical

irradiance data into dynamic types of sky for every hour of the

day in the same season. Therefore, the types of sky are defined

for each hour uniquely, using different levels of irradiance,

based on the hour of the day and the season. Accordingly,

every hour of the day, e.g. 10:00 AM-11:00 AM, has multiple

irradiance clusters that are different from the other hours of

the day. This is executed using a K-means algorithm.

The irradiance clusters are associated with the categorical

types of sky provided by weather channels, which correspond

to the standard sky condition categories set by the National

Oceanic and Atmospheric Association (NOAA) [27]. For

each hour of the prediction horizon, the categorical type of

sky forecast, for the whole city area, is used to determine the

corresponding irradiance cluster. The cluster center points,

calculated from the historical data, represent the numerical

value of the approximate synthetic forecast for that specific

location at that specific hour. The city weather forecast vari-

ables including temperature, wind speed and humidity are

used directly in the synthetic weather forecast profile. Finally,

the historical weather data, the synthetic weather forecast

data, the historical PV power time series, and other categor-

ical indices are used as input features for the LSTM NN,

as will be discussed in detail in Section III.

B. CORRELATION BETWEEN ATMOSPHERIC VARIABLES

AND PV POWER GENERATION

PV power generation is influenced, at different levels,

by atmospheric parameters such as solar irradiance (GHI ),

temperature (T ), wind speed (WS), precipitable water (PW ),

relative humidity (RH ) and pressure (P). The Pearson product

moment correlation coefficient (PPMCC) method is adopted

to calculate the correlation between each of the weather

variables and the PV power (PPV ) generation [21]. The corre-

lation coefficient (ξ ) of two vectors, e.g. x and y, is calculated

as

ξ =

1
n

∑n
k=1(xk − x)(yk − y)√

1
n

∑n
k=1(xk − x)

2

√
1
n

∑n
k=1(yk − y)

2

(1)
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TABLE 1. Correlation between PV power generation and weather
variables.

Time series of the PV power and the aforementioned atmo-

spheric variables are considered as vectors, and the correla-

tion coefficients are calculated using Equation (1). As can

be seen from Table 1, solar irradiance, temperature, relative

humidity and wind speed show a strong correlation with PV

power generation, which makes them a good choice for the

model input features.

C. STATISTICAL ANALYSIS

The solar irradiance is a stochastic time series signal with

characteristics that vary hourly, daily, and seasonally. The

NOAA categorizes sky conditions, into five types, as sunny,

mostly sunny, partly sunny/partly cloudy, mostly cloudy and

cloudy [27]. The aforementioned types of sky are provided by

most weather forecast utilities for each hour. The objective of

the statistical analysis is to translate these categories into their

corresponding solar irradiance clusters using the historical

data collected from the geographic location under consider-

ation. The solar irradiance time series of each season, given

as X = [x1, x2, . . . , xnm], is rearranged to create an n × m

matrix by grouping and aligning same time step data points

as follows:

X̂ =




x1 x2 . . . xm
xm+1 xm+2 . . . x2m
. . . . . . . . . . . .

x(n−1)m+1 x(n−1)m+2 . . . xnm


 (2)

where, m represents the total time steps in a day, i.e. 24 in

this paper, and n represents the number of days in a season.

Thereafter, theK-means algorithm is applied to the irradiance

data subset of every hour to cluster the observations. The

K-means algorithm clusters the data according to the min-

imum distance of each data point from randomly selected

k number of center points [25]. The algorithm assigns each

observation to its nearest cluster with a center point Ck which

is calculated as follows:

Ck =
1

n

n∑

j=1

zkj (3)

where, zkj is the jth observation of the k th cluster which

contains n number of data points. In this paper, the number

of clusters is five, corresponding to the NOAA’s five classes.

The five center points for each hour in a day are deter-

mined and kept in record. The data preparation is detailed in

Algorithm 1. TheK-means center points vary with the hour of

the day as shown in Fig. 1. Each hour of a day has different

five center points that are associated with the five types of

sky. To clearly show the dynamic variation of the clusters for

different hours of the day, the probability distribution of the

irradiance is estimated for each cluster of each hour of the

Algorithm 1 Data Preparation and K -Means

Input: X ∈ R
nm contains the irradiance data of a season

Output: Q ∈ R
m×k is a (m × k) matrix with k centers for

each hour of a day

1: m← 24

2: k ← 5

3: X̂ ← {Reshape(X )}′ ⊲ X̂ ∈ R
n×m is an (n×m) matrix

as shown in Equation (2)

4: for i← 1, 2, . . ., m do

5: Z ← ∅ ⊲ Z ∈ R
n

6: Z ← X̃ ⊂ X̂ ⊲ X̃ ∈ R
n is the ith column of X̂

7: C ← Kmeans(Z ) ⊲C ∈ R
k

8: C ← Bubblesort(C)

9: (Q̃← C) ⊂ Q ⊲ Q̃ ∈ R
k is the ith row of Q

10: end for

11: return Q

FIGURE 1. K-means centers for the solar irradiance of each hour in a
winter season - observed data are for the winters of 2012-2018 at the
Desoto solar farm in Florida.

FIGURE 2. Irradiance probability density function for each of the five
clusters at three different hours of a winter day.

day [28]. The irradiance probability distributions for the five

clusters of hours 8:00AM, 11:00AM, and 3:00 PMare shown

in Fig. 2. It is worth mentioning that the statistical analysis is

performed with keeping the testing data set excluded.
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Algorithm 2 Numerical Solar Irradiance Forecasting of an

M -Hour Prediction Horizon

Input: Y ∈ R
M contains categorical solar irradiance fore-

cast of the city (cloudy=1, mostly cloudy=2, partly

sunny/partly cloudy=3, mostly sunny=4 and sunny=5),

I ∈ R
M contains time index of each hour of the pre-

diction horizon, T ∈ R
24×5 is a (24 × 5) matrix which

contains the cluster center points for each hour of a day

Output: Q ∈ R
M contains numerical solar irradiance fore-

cast for the solar farm location

1: Q← ∅ ⊲ Q ∈ R
M

2: for i← 1, 2, . . .,M do

3: τ̄ ← I [i]

4: C ← T̃ ⊂ T ⊲ T̃ ∈ R
5 is the τ̄ th row of T ∈ R

24×5

5: for j← 1, 2, . . ., 5 do

6: if Y [i] = j then

7: Q[i] = C[j]

8: end if

9: end for

10: end for

11: return Q

D. SYNTHETIC WEATHER FORECAST DATA PREPARATION

The hourly and daily weather forecast data, for the considered

city of Arcadia, Florida, is available on the weather forecast

channel in [29]. The weather data contain the type of sky,

temperature, relative humidity, wind speed and precipitable

water. All the weather variables except solar irradiance are,

to a great extent, homogeneous over all parts of the city.

Hence, the temperature, relative humidity and wind speed

forecasts of the city area are considered directly in the syn-

thesized weather forecast of the solar farm area. The approx-

imate numerical solar irradiance of the solar farm location

is created for any hour using the saved irradiance clusters

for that hour and the categorical type of sky forecast of the

city. For each hour of the prediction horizon, the type of sky

forecast of the city is associated with the saved cluster that

corresponds to that type of sky at that hour of the day. There-

after, the center for that cluster is considered as the approx-

imate numerical forecast for that hour. The solar irradiance

forecast technique is detailed in Algorithm 2. Fig. 3 shows

the creation of a 24-hour irradiance forecast profile, where

the city categorical type of sky forecast is translated into a

numerical irradiance forecast for the PV plant location. The

data flow of the proposed forecasting system is summarized

in Fig. 4.

III. LSTM NN BASED FORECASTING FRAMEWORK

A. LSTM NEURAL NETWORK STRUCTURE

The LSTM NN was introduced by Hochreiter and Schmid-

huber [30] in 1997. A classical LSTM NN is constructed

by a sequence of an input layer, hidden layers and an

output layer. The hidden layer contains a number of mem-

ory cells with input and output gates. The LSTM NN was

FIGURE 3. Created numerical solar irradiance forecast of Desoto solar
farm location on Dec. 6, 2016.

FIGURE 4. Simplified system architecture and data flow of the proposed
model.

improved later by Gers et al. [31] by introducing a new gate

in the memory cell named the forget gate. The information

flow through a memory cell is regulated by these gates.

The core component of a hidden layer is called a memory

block where a number of memory cells share the same gate

units [30], [31]. The architecture of a memory block is shown

in Fig. 5. An input sequence in the time frame is expressed

as {x(1), x(2), . . . , x(M )}∈ R
K×M , where x(τ ) ∈ R

K is the

feature vector at time step τ .

A memory block, with J number of memory cells and an

input feature vector x(τ ) ∈ R
K , is updated M times, one

update for each feature vector in the input sequence. Each

update of the memory block results in the current state vector

c(τ ) ∈ R
J . The cell state vector c(τ − 1) ∈ R

J and the cell

output vector h(τ − 1) ∈ R
J , from the previous time step,

are utilized to calculate the current output vector h(τ ) ∈ R
J .

The input activation vector i(τ ) ∈ R
J , the forget activation

vector f (τ ) ∈ R
J , and the output activation vector o(τ ) ∈

R
J are updated at each time step of the input sequence by

utilizing a sigmoid activation function (σ ), as shown in Equa-

tions (4), (5), (7). A hyperbolic tangent activation function

(φ) is used to compute intermediate cell states, named as the
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FIGURE 5. Architectural view of an LSTM NN memory block.

cell candidates ĉ(τ ) ∈ R
J , as shown in Equation (6). The

corresponding (J×K ) input weight matrices are concatenated

as {Wi
T ,Wf

T ,Wc
T ,Wo

T }T to give a (4J × K ) matrix. Sim-

ilarly, the corresponding recurrent (J × J ) weight matrices

are concatenated as {Ui
T ,Uf

T ,Uc
T ,Uo

T }T , which results in

a (4J × J ) matrix. The corresponding (J × 1) biases are

concatenated as {bi
T , bf

T , bc
T , bo

T }T , which is a (4J × 1)

matrix. The update of a memory block at time step τ is

formulated as follows:

f (τ ) = σ [Wf x(τ )+ Uf h(τ − 1)+ bf ] (4)

i(τ ) = σ [Wix(τ )+ Uih(τ − 1)+ bi] (5)

ĉ(τ ) = φ[Wcx(τ )+ Uch(τ − 1)+ bc] (6)

o(τ ) = σ [Wox(τ )+ Uoh(τ − 1)+ bo] (7)

c(τ ) = f (τ )⊙ c(τ − 1)+ i(τ )⊙ ĉ(τ ) (8)

h(τ ) = o(τ )⊙ φ[c(τ )] (9)

The special sign ‘‘⊙’’ is introduced to show the

element-wise multiplication.

B. THE PV POWER FORECASTING FRAMEWORK

The LSTM forecasting framework is shown in Fig. 6. The

historical PV generation and weather data, the weather fore-

cast variables, the time of the day index, and the month of the

season index are considered as the input features of proposed

model. The min-max normalization method is adopted to

normalize the numerical predictors, whereas the categorical

predictors are standardized using the one-hot encoder tech-

nique. The input time-sequence length is selected to have the

same length (M ) as that of the prediction horizon. The input

matrix at a time step (τ − 1) is prepared and processed as

follows:

1) The PV power generation sequence of past M hours is

set as P = {p(τ − M ), p(τ − M + 1), . . . , p(τ − 1)}

∈ R
M . The historical weather data contains solar irra-

diance, temperature, wind speed and relative humid-

ity of past M hours. The sequences of the historical

weather variables, formulated as {w(τ−M ),w(τ−M+

1), . . . ,w(τ − 1)} ∈ R
M , are concatenated to form a

(4 × M ) matrix W ∈ R
4×M . The synthetic weather

forecast data comprises solar irradiance, temperature,

wind speed and relative humidity of nextM hours. The

sequences of the weather forecast variables, formulated

FIGURE 6. LSTM NN forecasting framework unfolded in time.

as {f (τ ), f (τ + 1), . . . , f (τ + M − 1)} ∈ R
M , are

concatenated to form a (4×M ) matrix F ∈ R
4×M .

2) The sequence of the incremental time of the day indices

for pastM hours is {i(τ−M ), i(τ−M+1), . . . , i(τ−1)}

∈ RM . The one-hot encoding transform this series into

a (24×M ) matrix, I ∈ R
24×M , since each hour of the

day is encoded using 24 categories. The sequence of

month of the season indices of past M hours is {s(τ −

M ), s(τ −M + 1), . . . , s(τ − 1)} ∈ RM . After one-hot

encoding, it forms a (3 ×M ) matrix S ∈ R
3×M as the

month of the season has only three categories, i.e. three

months.

3) Finally, the predictors are concatenated to cre-

ate the (36 × M ) input matrix X (τ − 1) =

{PT ,W T ,FT , IT , ST }T .

The input matrix is fed to an LSTM network with two hidden

layers, with J1 number of cells in the first hidden layer, and

J2 number of cells in the second one. The input matrix is fed

sequentially, a single feature vector, x ∈ R
36, at each time

step. Hence, the memory block is updated M times, one for

each time step of the input sequence. The memory block of

the second hidden layer is updated synchronously at each

time step by accepting the output vector, h ∈ R
J1 , from the

first layer. The cell output vector, h ∈ RJ2 , from each update

is sent to the output layer to calculate the output sequence,

Y (τ−1) = {p(τ ), p(τ+1), . . . , p(τ+M−1)} ∈RM . Finally,

the output sequence is denormalized to produce the predicted

PV generation sequence.
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IV. PERFORMANCE EVALUATION

The forecasting performance of the proposed model is evalu-

ated using five statistical metrics, namely the mean absolute

error (MAE), the root mean square error (RMSE), the mean

absolute percentage error (MAPE), the mean relative error

(MRE), and the mean bias error (MBE) [32]–[34]. These

metrics are defined as follows:

MAE =
1

n

n∑

i=1

|xpredicted [i]− xactual[i]| (10)

RMSE =

√√√√1

n

n∑

i=1

(xpredicted [i]− xactual[i])2 (11)

MAPE =
1

n

n∑

i=1

|
xpredicted [i]− xactual[i]

xactual[i]
| × 100% (12)

MRE =
1

n

n∑

i=1

|xpredicted [i]− xactual[i]|

P
capacity
PV

× 100% (13)

MBE =
1

n

n∑

i=1

(xpredicted [i]− xactual[i]) (14)

where P
capacity
PV is the capacity of the PV power plant.

V. RESULTS AND DISCUSSION

The simulation is carried out over 3 years (2016-2018)

of data. The data set of each season is divided into two

subsets using a 9:1 training to testing ratio. In the deep

LSTM NN, the first hidden layer contains 75 memory cells,

while the second layer contains 70 memory cells. The algo-

rithm is implemented in MATLAB 2019b, and executed

on Intel(R) Core (TM) i3 CPU @ 2.1 GHz and 8GB of

memory.

A. FORECASTING PERFORMANCE OF THE PROPOSED

ALGORITHM

The forecasting performance of the proposed algorithm is

evaluated using different prediction horizon lengths in dif-

ferent seasons. The raw weather forecast categorical type

of sky is also used directly in the proposed algorithm to

verify the significance of the proposed synthetic weather

forecast data. To achieve this, the proposed model is tested

using two additional data sets, named as direct-1 and direct-2

versions. In the direct-1 version, the weather forecast data

contains the hourly type of sky category of the city area,

while the daily type of sky category is used in the direct-2

version.

The forecasting accuracy of the proposed model is com-

pared in Table 2 and Table 3, which show that the algorithm

using synthetic weather forecast data performs significantly

better than the other two versions. The seasonal effect on

the forecasting accuracy is shown in Table 2 for 24-hour

prediction horizons. As can be seen, the proposed model can

achieve up to 33% improvement in accuracy in comparison

to the direct-1 version, and up to 44.6% in comparison to the

direct-2 version, in the autumn season. The horizon length

FIGURE 7. Volatility analysis of PV power generation in different seasons.

impact on the prediction accuracy is shown for the summer

season in Table 3.

Season wise, the accuracy is lower in the spring and sum-

mer seasons, yet the proposed model still achieves higher

accuracy than the other two versions. A volatility analysis

of PV power generation in different seasons is performed

using seven years (2012-2018) worth of data to investigate

the lower prediction accuracy in the spring and the sum-

mer. As shown in Fig. 7, PV power generation is more

volatile in the spring and the summer in comparison to

the autumn and winter seasons. To determine probability

density functions of the averaged forecasting error, the pre-

diction horizon is rolled over one hour at a time for a

testing period of one year (2018), and prediction horizons

are picked randomly. Thereafter, the forecasting errors from

each set of samples are averaged. The probability distribu-

tions of the averaged forecasting error are shown in Fig. 8

as Gaussian distributions, according to the central limit

theorem [35].

Though the model gives the highest error for 24-hour

prediction horizons, it shows more consistency as depicted

in Fig. 8. Season wise, the model achieves the high-

est accuracy and consistency in the autumn. The predic-

tions of two 12-hour rolling horizons are shown in Fig. 9.

To assess the convergence of the NN training, the train-

ing process is repeated for 15 times with the same num-

ber of iterations, but with randomly chosen initial weights.

The prediction average and standard deviation envelops

are shown in Fig. 10, for 24-hour horizons. The proposed

model performance under different day conditions is shown

in Fig. 11.

B. FORECASTING ENGINE PERFORMANCE EVALUATION

The prediction capability of the LSTM NN, with the pro-

posed features, is evaluated by implementing the proposed

algorithm using a recurrent neural network (RNN), a gener-

alized regression neural network (GRNN), and an extreme

learning machine (ELM). The hourly data of the autumn

season is used to compare the performance of the forecasting
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TABLE 2. Prediction accuracy for different seasons.

TABLE 3. Prediction accuracy for different horizon lengths - (summer).

FIGURE 8. Averaged error probability distribution for different prediction
horizons of a day, and different seasons of a year.

FIGURE 9. 12-hour ahead rolling horizons, with different horizon starting
hours, in spring 2018.

engines. The prediction accuracy for 24-hour horizons is

compared in Table 4. Performance samples from the autumn

of 2018 data are shown in Fig. 12. The comparison reveals

the superiority of the LSTMNNwith the proposed algorithm,

over the RNN, the GRNN, and the ELM. It is worth noticing

FIGURE 10. 24-hour rolling horizons, with different horizon starting
hours, in winter 2018. The prediction average and standard deviation
envelopes are shown as a results of 15 training trials, with same number
of iteration, but with different initial weights.

FIGURE 11. 24-hour ahead PV power forecasting for different types of
days in summer, 2018.

that the RNN can still achieve higher accuracy than those

of the GRNN and the ELM machines due to its recurrent

nature. However, the LSTM NN shows higher accuracy due

VOLUME 8, 2020 172531



M. S. Hossain, H. Mahmood: Short-Term PV Power Forecasting Using an LSTM NN and Synthetic Weather Forecast

TABLE 4. Forecasting accuracy comparison among different forecasting
engines- autumn.

FIGURE 12. Sample performance for 24-hour prediction horizons in
autumn, 2018.

to the additional input, forget, and output gates in the mem-

ory cells, which equip the LSTM NN with the ability to

preserve long-range temporal dependencies more than the

RNN.

VI. CONCLUSION

In this paper, an algorithm is proposed to exploit the time

series processing qualities of LSTM NNs along with the

proposed synthetic irradiance forecast to predict PV power

generation. Instead of employing the categorical hourly or

daily type of sky forecast, of the city area, the types of sky

are defined for each hour uniquely, using different levels

of irradiance, based on the hour of the day and the season.

It is shown that using this synthetic irradiance forecast can

achieve up to 33% improvement in accuracy in comparison

to that when the hourly type of sky forecast is used, and

up to 44.6% in comparison to that when the daily type of

sky forecast is used. Moreover, the superiority of the LSTM

NN with the proposed input features, is verified in this

paper by implementing the proposed algorithm using other

forecasting engines, namely the ELM, the GRNN, and the

RNN.
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