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ABSTRACT Existing methods in predicting short-term photovoltaic (PV) power have low accuracy and

cannot satisfy actual demand. Thus, a prediction model based on similar days and seagull optimization

algorithm (SOA) is proposed to optimize a deep belief network (DBN). Fast correlation-based filter (FCBF)

method is used to select a meteorological feature set with the best correlation with PV output and avoid

redundancy amongmeteorological factors affecting PV output. In addition, a comprehensive similarity index

combining European distance and gray correlation degree is proposed to select the similar day. Then, SOA is

used to optimize the number of neurons and the learning rate parameters in DBN. Based on the nonuniform

mutation and opposition-based learning method, an improved seagull optimization algorithm (ISOA) with

higher optimization accuracy is proposed. Finally, the ISOA-DBN prediction model is established, and the

experimental analysis is conducted using the actual data of PV power stations in Australia. Results show

that compared with DBN, support vector machine (SVM), extreme learning machine (ELM), radial basis

function (RBF), Elman, and back propagation (BP), the mean absolute percentage error indicator of ISOA-

DBN is only 1.512% on a sunny day, 5.975 on a rainy day, 3.359 on a cloudy to sunny day, and 1.911% on

a sunny to cloudy day. Therefore, the good accuracy of the proposed model is verified.

INDEX TERMS PV power generation, prediction model, similar day, seagull optimization algorithm, deep

belief network.

NOMENCLATURE

PV photovoltaic

SOA seagull optimization algorithm

DBN deep belief network

FCBF fast correlation-based filter

ISOA improved seagull optimization algorithm

SVM support vector machine

ELM extreme learning machine

RBF radial basis function

BP back propagation

CEEMD complementary ensemble empirical mode

decomposition

SU symmetric uncertainty

GR global radiation

DR diffused radiation

RBM restricted Boltzmann machines
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GBRBM Gauss–Bernoulli-restricted Boltzmann

machine

PSO particle swarm optimization

GA genetic algorithm

GOA grasshopper optimization algorithm

RMSE root mean square error

MAPE mean absolute percent error

I. INTRODUCTION

The development and utilization of renewable energy has

become an important measure for all countries to solve

energy and environmental problems [1]. Clean PV energy

has become a potential power resource in many parts of the

world and has been developed vigorously [2], [3]. However,

PV fluctuates greatly due to the impact of meteorological

and environmental conditions, and its large-scale penetration

brings many security challenges to the power grid system.

To improve the grid-connected access rate of PV

power generation, various technologies, such as demand
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response [4], [5], microgrid [6]–[8], unit optimization [9],

distributed generation [10], energy storage [11]–[14], and

PV power prediction, have emerged in the power system.

Among them, short-term PV power generation power pre-

diction can better evaluate the short-term operation state and

development trend of PV power station. Therefore, accurate

PV power prediction is greatly important for the effective

resources utilization [15]–[16].

At present, understanding the short-term PV power pre-

diction theory is still in the extensive research stage. Short-

term PV power predictionmethods include physical methods,

statistical methods, and artificial intelligence algorithms. The

physical method establishes a physical model to calculate

the PV power generation output by referring to the basic

principles of PV power generation and combining the detailed

module parameters, geographic information, and numerical

weather forecast data of PV power station [17]–[19]. The

physical method is suitable for the prediction under sta-

ble conditions. When the meteorological condition changes

rapidly, the prediction performance is greatly affected [20].

The statistical method relies on historical data, such as PV

output and meteorology, to establish the mapping relation-

ship. Statistical methods include time series method [21],

gray theory [22], [23], and regression analysis method [24].

Such methods are relatively simple in modeling and suitable

for linear series data with stable changes. However, the gen-

eralization ability of this method is poor for nonlinear data.

Intelligence algorithms do not rely on predefined mathe-

matical models. They obtain the prediction model through

training the sample set. They are used in PV output predic-

tion. Lin et al. [2] proposed a short-term PV predictionmodel

based on Elman method and the optimal similarity date is

determined by combining with the gray correlation analysis

method. Wang et al. [25] proposed the Elman prediction

model, and obtained the advantages of the proposed method

through comparison with BP neural network. Lin et al. [26]

proposed an improved moth-flame optimization algorithm,

which was used to optimize support vector machine (SVM),

and proved the good performance of the model in sunny

and rainy days. Zhou et al. [27] proposed to optimize the

ELM model with genetic algorithm and used the model to

predict different seasons. Jiang et al. [28] proposed the com-

bination model of fuzzy clustering and ELM, and verified

the effectiveness of the model. Alsarraf et al. [29] proposed

a method to optimize artificial neural network by particle

swarm optimization (PSO), which realized the photovoltaic

power prediction. Liu et al. [30] proposed to use the improved

chicken swarm algorithm to improve the threshold of extreme

learning machine (ELM), and verified the prediction function

under different weather conditions. Niu et al. [31] proposed

the complementary ensemble empirical mode decomposition

(CEEMD) method, which reduces the fluctuation degree of

the original sequence. Finally, the prediction is performed

using the BP, and the effectiveness of the mixedmodel is veri-

fied. Yang et al. [32] proposed the use of a competitive swarm

optimizer to optimize parameters of the RBF. They finally

verified the effectiveness of the model. On the basis of the

traditional cuckoo algorithm, Zhou et al. proposed [33] a two-

mode cuckoo search algorithm, and an optimized wavelet

neural network model is established. [34] used ant colony

algorithm to optimize the SVM and realized accurate predic-

tion in a very short term.

The traditional neural network prediction model is a shal-

low and has limited ability to express nonlinear complex

functions. This type of model is prone to underfitting when

dealing with complex prediction problems. Recently, a new

artificial intelligence technology, namely, deep learning has

emerged. The deep learning algorithm is an extension of

the traditional artificial intelligence algorithm. By building a

machine model with multiple hidden layers, it can learn and

mine more useful features in the data. Thus, the prediction

accuracy is improved. At present, deep learning technology

has been used in load forecasting [35]–[37], wind power

output forecasting [38]–[40], and other fields. It has achieved

good prediction results. Zhang et al. [41] pointed out that

the deep belief network (DBN) can effectively represent the

internal structure of complex data and characteristics. Thus,

the DBN model is used in the current research to forecast

the short-term PV power. Fast correlation-based filter (FCBF)

method is put forward, combining similar day and ISOA

(improved seagull optimization algorithm)-DBN PV power

prediction model. It is compared with radial basis function

(RBF), BP, SVM, Elman, ELM, DBN, and other prediction

models to show its superiority in prediction accuracy. The

main contributions of this study include the following:

1) An FCBFmethod is proposed to screen significantmete-

orological factors corresponding to PV power generation.

2) A new method is proposed using the best similarity day

(integrated gray correlation degree and Euclidean distance)

and deep learning technology (DBN).

3) An improved seagull optimization algorithm is proposed

and verified to optimize the structural parameters of DBN

model.

4) The validity of the model is evaluated with the actual

data in different weather types and seasons.

The remainder of this article is organized as follows.

Section 2 analyzes the PV power generation and the mete-

orological feature set associated. Section 3 introduces stan-

dard depth belief networks and Gauss–Bernoulli constrained

Boltzmannmachines. Section 4 describes the implementation

process of the ISOA-DBN predictionmodel. Section 5 carries

on the experiment. The conclusions are drawn in Section 6.

II. SELECTION OF METEOROLOGICAL FEATURE VECTOR

AND SIMILAR DAY

A. SELECTION OF METEOROLOGICAL FEATURE VECTORS

DKA PV power station data from Australia are used to obtain

the generation power of the PV power station and corre-

sponding meteorological data. Excessive noncritical factors

increase the complexity of prediction and reduce the con-

vergence speed. To reduce the nonrelated factors, extracting

meteorological factors, which are more correlated with PV
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power, is necessary to avoid the redundancy. The commonly

used correlation feature extraction method is Pearson cor-

relation coefficient method. However, this method can only

measure the linear correlation degree between PV power

generation and meteorological factors. It also ignores the

redundancy among meteorological factors. FCBF is a typical

feature selection method, which can not only measure the

correlation between meteorological factors and PV power

generation, but can also effectively avoid the redundancy

among meteorological factors.

1) FORECAST MODEL INPUT METEOROLOGICAL FEATURE

SET IS SCREENED USING THE FCBF ALGORITHM

FCBF uses symmetric uncertainty (SU) for feature selection,

and the calculation formula is shown in reference [42]. The

feature subset with themost significant category correlation is

screened out and its redundant features are deleted by deter-

mining the correlation between features and categories and

the relationship among these features. PV power generation

is selected as the category, and global radiation, diffusion

radiation, wind speed, wind direction, humidity, temperature,

and other meteorological factors corresponding to PV power

are selected as the characteristics. The characteristic quantity

data set of PV power station is assumed W = (wij)N×D,

where xij is the ith data of the jth meteorological character-

istic vector. N is 133, which represents the total number of

sample points in the interval of a day from 7:00 to 18:00,

and the interval between data time points is 5 minutes. D is

6 when no meteorological factor of rainfall exists; otherwise,

the value is 7. The category vector of the PV power station is

P = (pi)N×1, where pi is the ith PV power category data of

the corresponding weather vector xij. Then, the input feature

selection method based on FCBF algorithm can be described

as follows:

Step 1: Features that are weak or irrelevant are removed.

The null sets G and Q are set, and the jth feature wNj in the

meteorological feature data set W and the SU(wNj;P) of the

PV power category P are calculated. If SU(wNj;P) < σ (σ is

the preset threshold of FCBF algorithm), then the feature wNj
is deleted and the reserved meteorological features are placed

into G.

Step 2: Redundancy features are screened. The special

collection in G is arranged in descending order of SU(wNj;P)

size, and themaximummeteorological featurewNj is obtained

and placed into Q. SU(wNj;wNi) of the remaining candi-

date meteorological feature wNi in wNj and G is calculated.

If SU(wNj;wNi) > SU(wNj;P), then the meteorological fea-

tures wNi are screened out of G.

Step 3: Step 2 is repeated and carried out step by

step; finally, the filtered input meteorological feature set is

obtained.

The preset threshold σ of the FCBF algorithm is set to 0.4.

The meteorological characteristics of the prediction model

screened by the FCBF algorithm are input global radiation

(GR) and diffused radiation (DR), which constitute the mete-

orological feature vector C [XGR,XDR].

2) TIME-VARYING CURVES OF THE METEOROLOGICAL

FACTORS AND PV POWER GENERATION

Two typical meteorological weathers, sunny day with less

volatility and rainy day with greater volatility, are selected

as examples, and their relationship is analyzed from the tem-

poral variation curve. They are shown in Figures 1 and 2. The

figures show that the GR, DR curve, and the PV power curve

have evident correlation, which verifies the results obtained

by the FCBF algorithm. The factors, such as rainfall, wind

speed, wind direction, and humidity, have poor correlation

with the PV power. The temperature has inertia characteristic,

which cannot reflect the transient situation of power. Espe-

cially, the correlation between temperature and PV power is

poor in the declining stage.

This analysis indicates that the model input meteorological

feature set selected in the subsequent establishment of the

prediction model includes GR and DR.

B. SELECTION OF SIMILAR DAYS

1) GRAY CORRELATION AND EUCLIDEAN DISTANCE
Gray correlation degree Ri can effectively analyze the

situation changes between sequences; it can reflect the

shape similarity between the meteorological feature vector

Ci [XGR,XDR] on the ith historical day and the predicted day

vector C0 [XGR,XDR]. Then, the Ri calculation formula of

global radiation GR and diffusion radiation DR is defined as

follows:

Ri =
1

l

l
∑

k=1

ω1εi(k) +
1

l

l
∑

k=1

(1 − ω1)εi(k) (1)

where ω1 and (1 − ω1) are the weights of GR and DR,

respectively; l refers to the number of elements of a single

meteorological feature vector in the time interval of a day

from 7:00 to 18:00; it is the same as in the previous study,

that is, 133. εi(k) is the correlation coefficient between the

kth elements corresponding to the predicted day and the ith

historical day. Formula is as follows:

εi(k) =

min
i

min
k

∣

∣x ′(k) − x ′
i (k)

∣

∣+ρ max
i

min
k

∣

∣x ′(k) − x ′
i (k)

∣

∣

∣

∣x ′(k) − x ′
i (k)

∣

∣+ρ max
i

max
k

∣

∣x ′(k) − x ′
i (k)

∣

∣

(2)

where x ′(k) and x ′
i (k) are the kth meteorological element

of the normalized forecast day and the ith historical day,

respectively; ρ is a constant, that is, 0.5.

The Euclidean distance Di can measure the distance

between sequences, and it can reflect the position relationship

between the meteorological vector of a certain historical day

and the predicted day vector. Then, the calculation formula of

Di integrating GR and DR is defined as follows:

Di =

√

√

√

√

l
∑

k=1

ω1[x0(k) − xi(k)]2

+

√

√

√

√

l
∑

k=1

(1 − ω1)[x0(k) − xi(k)]2 (3)
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FIGURE 1. PV power and corresponding meteorological factors in sunny day.

FIGURE 2. PV power and corresponding meteorological factors in rainy day.

where the values of l and ω1 are the same as in the previous

study.

2) WEIGHT CALCULATION
The combination of meteorological characteristics composed

of GR and DR has different correlations with PV power

generation and requires a reasonable distribution of the

weight ω1 in equations (1) and (3). The subjective weighting

method [43] is limited by the knowledge and experience of

experts and has a large subjective randomness defect. There-

fore, the standard deviationmethod in the objective weighting

approach is adopted to determine the weights of GR and DR.

Each historical day has two meteorological features, such as

GR and DR, and the element number of each meteorological

feature is 133, forming a matrix X = [xij]133×2. xij represents

the ith element value of the jth meteorological feature in a

historical day. The formula for calculating the weight of each

factor by using the standard deviation method is as follows:

Sj =

√

√

√

√

√

l
∑

i=k

(xij − x̄j)2

l − 1
(j = 1, 2) (4)

where S is the sample standard deviation of meteorological

feature; x̄ is the sample mean value of meteorological feature.

The weight of the jth meteorological feature is as follows:

ωj =
Sj
2
∑

j=1

Sj

(j = 1, 2) (5)

where ω ∈ [0, 1], and ω1 + ω2 = 1.

3) COMPREHENSIVE SIMILARITY

To accurately select the most similar historical date to the

predicted date, the Euclidian distance combined with the

gray relational analysis method is used to construct the com-

prehensive similarity index Zi. Its calculation formula is as

follows:

Zi = α

min(Di)
1≤i≤n

Di
+ β

Ri

max
1≤i≤n

(Ri)
(6)

where α and β are empirical weight coefficients, both of

which are set to 0.5. Historical PV power generation days
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FIGURE 3. Structure of DBN.

with similarity Zi ≥ 0.8 are selected by date; b days close

to the predicted date are selected as similar days, and b = 5.

III. DBN NEURAL NETWORK

A. STANDARD DBN

DBN is proposed by Goeffrey Hinton [44], [45], and its

structure is shown in Figure 3. It is composed of multiple

stacked restricted Boltzmann machines (RBM). The RBM

model is fully connected between layers, and no connection

exists within the layers. The output layer of the previous RBM

is the input layer of the next RBM unit. A regression layer is

constructed by a hidden layer and an output layer at the end

of the entire network structure. Through vector x and vector

y, the set {x,y} of the prediction model is constituted.

The combined configuration energy function of the visible

layer and the hidden layer is as follows:

E(v, h |θ ) = −
∑

ij

wijvihj −
∑

i

aivi −
∑

j

bjhj (7)

where vi and hj represent the states of visible layer nodes and

hidden layer nodes, respectively; ai and bj represent the bias;

wij represents the connection weight between the visible and

hidden layers.

In accordance with the above formula, the joint probability

density can be obtained as follows:

p(v, h |θ ) =
1

Z (θ )
e−E(v,h|θ ) (8)

where Z (θ ) is the normalized factor.

For the training set containing N samples, the maximum

likelihood function can be used to obtain the following:

θ∗ = argmax
θ

L(θ ) = argmax
θ

N
∑

n=1

log p(vn |θ ) (9)

DBN algorithm pretrains RBM layer by layer, and then

uses the supervised BP algorithm to fine-adjust and optimize

the initial weight obtained from pretraining layer by layer,

so that the model can obtain the optimal solution, and thus

can represent the complex nonlinear relationship in the PV

data.

B. GAUSS-BERNOULLI LIMITED BOLTZMANN MACHINE

Because the hidden layer and the visible layer nodes of

the standard DBN are Bernoulli values at the time of

sampling, the input variables are continuous data at the

time of PV power prediction. Therefore, Gauss–Bernoulli-

restricted Boltzmann machine (GBRBM) is introduced as the

first RBM of DBN PV prediction model. The continuous

input data are converted into binary Bernoulli variables by

GBRBM, and then further processed by standard RBM. This

DBN can process continuous data and has the ability to model

functions. The energy function of GBRBM is as follows:

E(v, h |θ )=−
∑

ij

vi

σi
wijhj−

∑

i

(vi−ai)
2

2σ 2
i

−
∑

j

bjhj (10)

In the formula, vi and hj represent the states of the visible

layer node and the hidden layer node, respectively. At this

point, vi belongs to the actual value input vector of PV

power correlation factor, hj value still conforms to Bernoulli

type {0, 1} distribution, and σ is the standard deviation of

Gaussian distribution. According to Equations (11) and (12),

the conditional probability can be obtained.

p(vi |h ) = N (ai + σi

∑

j

wijhj, σ
2
i ) (11)

p(hj = 1 |v ) = sigmoid(bj +
∑

i

vi

σi
wij) (12)

where N (µ, σi) is a Gaussian function with a mean value of

µ and a standard deviation of σ .

IV. PV POWER GENERATION POWER PREDICTION

MODEL BASED ON ISOA-DBN

Literature [46] points out that setting appropriate parameters

has an important impact on the modeling accuracy of DBN

for specific sample data and the DBN structure. Moreover,

factors, such as the number of hidden layers, the number

of neurons in each layer, and the learning rate in DBN, are

analyzed. Therefore, the number of hidden layers in the deep

neural network should be set to two or three, and the model

accuracy is relatively high.When the number of hidden layers

increases to four, the classification or prediction effect of the

model and the generalization performance decrease. To save

the algorithm time, the DBN network structure with two hid-

den layers is selected, and the improved seagull optimization

algorithm is used to optimize the number of neurons in the

two hidden layers and the learning rate of the entire DBN

network.

A. SOA

SOA is a new intelligent algorithm proposed by Gaurav

Dhiman. It simulates the migration and attack behavior

of seagulls and shows better performance in solving opti-

mization constraint problems compared with common PSO,
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genetic algorithm(GA), locust algorithm, and other optimiza-

tion algorithms [47].

1) MIGRATION

Migration indicates that the algorithm simulates the move-

ment of the seagull population from one place to another.

① Avoid collisions. The additional variable A is adopted to

calculate the new position of seagulls.

Cs = A× ps(x) (13)

where Cs represents the new position that does not conflict

with other seagulls, ps(x) represents the current position of

seagulls, andA represents themovement behavior of seagulls.

A = fc − (t × (fc/Maxinteration)) (14)

where fc is used to control the range of the variable A, and

Maxinteration represents the maximum number of iterations.

② Optimal position direction. After avoiding collisions

between neighboring gulls, the gulls move toward the optimal

position.

Ms = B× (Pbs(x) − Ps(x)) (15)

where Ms is the direction of the optimal position; Pbs(x) is

the best seagull position; B is a random number within the

range of [0,1], which is mainly used to balance global and

local search.

B = 2 × A2 × rd (16)

③ Close to the best position. The seagull moves in the direc-

tion of the best position to reach the new position Ds.

Ds = |Cs −Ms| (17)

2) ATTACK

When a seagull finds its prey, it attacks the target in a spiral

motion by constantly changing its attack angle and speed.

Planes x, y, and z can be described as follows:

x = r × cos θ (18)

y = r × sin θ (19)

z = r × θ (20)

r = u× eθv (21)

where r is the radius of one circle of the helix; θ is a random

value within the range of [0, 2π ]; u and v are constants that

define the shape of the helix. The attack position Ps of the

seagull can be obtained from the following equation:

Ps = Ds × x × y× z+ Pbs (22)

B. IMPROVED SEAGULL OPTIMIZER ALGORITHM

SOA has the advantages of easy implementation, but the

algorithm is still prone to premature convergence and other

disadvantages. This study proposes an improved SOA (ISOA)

to solve the existing problems of the traditional SOA.

The seagull algorithm randomly determines the initial

position of the seagull. If the initial value generated randomly

is unfavorable, then it affects the final experimental results.

Therefore, Chaoticmapping is proposed to generate the initial

population of seagull. Chaos is a random and irregular motion

that occurs in a deterministic system. A chaotic variable has

the characteristics of randomness, ergodicity, and regularity

in a certain range. Thus, the chaotic property is helpful to

enhance the search diversity. The widely used logistic map

is selected as the chaos model to improve the initial value of

the population. The model is shown as follows:

xn+1 = µ × xn × (1 − xn), t = 0, 1, 2 · · · (23)

where µ is the control variable, which determines the degree

of chaos in the logisticmapping. The greaterµ value indicates

higher degree of chaos, which is generally valued between

[0,4] and xn ∈ [0, 1].

The nonuniform mutation method is a type of automatic

adjustment of search step size, which can effectively avoid

SOA falling into local optimal and premature. The principle

is as follows: suppose that variation operation is performed on

the kth component of vector Xi = (xi1, xi2, · · ·, xik , · · ·, xim),

and the upper and lower bounds of xik are denoted as UB and

LB, respectively. Then, the component after variation is as

follows:

x ′
id =

{

xid + 1(t,UB− xid ), r < 0.5

xid − 1(t, xid − LB), r ≥ 0.5
(24)

where t is an iteration variable; T is the maximum number

of iterations; r is a random value in the [0, 1] range; b is the

system parameter. Nonuniform variation step size 1(t, y) is a

mutation operator that can be adaptively adjusted. It enables

the program to scan the entire search space in a wide range in

the first half, thereby ensuring the global exploration ability

and avoiding premature local optimal solutions. With the

increase in iteration variables, the step size of the nonuniform

variation gradually decreases to realize the convergence to the

optimal solution.

The basic idea of opposition-based learning is to find the

reverse solution of a feasible solution, evaluate the original

solution and the reverse solution at the same time, and select

and save a better solution. [48] pointed out that the reverse

solution has greater probability of approaching the global

optimal solution than the random solution. Thus, it can be

used to improve the efficiency of SOAoptimization. Variation

operation is performed on the j component of vector Xi =

(xi1, xi2, · · ·, xij, · · ·, xim), and the upper and lower bounds

of xij are denoted as xmax j and xmin j, respectively. Then, the

component after reverse learning is as follows:

x∗
ij = xmin j + xmax j − xij (25)

The process of improving the seagull optimizer is as

follows:

Step 1. Parameter initialization. The population size is set

as N , the spatial dimension of the seagull search is set as v,
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TABLE 1. Test functions.

the chaos control parameter is set as µ, and the number of

iterations is set as T .

Step 2. Producing the chaotic sequence z1D. A set of

variables z1D = [z11, z12, · · ·, z1D] whose value interval is

[0,1] are randomly generated, and N − 1 chaotic variables

z2D, z3D, · · ·, zND are generated by Logistic mapping.

Step 3. Generation of the population. According to the

following formula, N variables are mapped to [xminj, xmaxj],

which is the value interval of the seagull search.

xij = xmin j+Zkj(xmax j−xmin j), i=1, 2, · · ·; j=1, 2, · · ·

(26)

Step 4. Twin group parallel search. The entire population

N was divided into two subgroups of N/2. Seagull uses

formulas (13)–(22) to form its own optimization subgroup

and formula (24) to form the nonuniform variation subgroup

to improve the global search capability of SOA.

Step 5. The reverse learning formula (25) is used to obtain

the newly generated reverse learning population of the two

subgroups.

Step 6. The fitness function is used to evaluate the optimal

seagull population, the nonuniform variation population, and

the two reverse populations in Step 5, and the individual with

highest fitness is selected as the optimal individual.

Step 7. Steps 4–6 are repeated, and the algorithm is ended

when it reaches or satisfies the accuracy requirements to

obtain the optimal solution.

The ISOA algorithm flow is shown in Figure 4.

To verify the performance of the proposed ISOA, six clas-

sical test functions with different optimization characteristics

were selected for the comparative analysis of the original

SOA, PSO, and grasshopper optimization algorithm (GOA).

The test function is shown in Table 1, where f1 ∼ f3 is a

unimodal function used for testing the convergence accuracy

of the algorithm, and X2 is a multipeak function used for

inspect the algorithm’s ability to avoid the local optimal.

The Settings of each algorithm are shown in Table 2. The

calculation results are evaluated by four performance indica-

tors. The results of the algorithm running independently for

30 times are shown in Table 3. The test results show that the

FIGURE 4. SOA algorithm flow chart.

convergence accuracy of the ISOA algorithm is better than

that of the SOA, PSO, and GOA algorithms for the unimodal

test function. The PSO algorithm has poor test results on

f3 function, but the test accuracy of f2 is better than that of

GOA algorithm. The test results of the SOA algorithm are

better than those of PSO and GOA. For the multipeak test

functions, the ISOA algorithm obtains the theoretical optimal

value 0 for functions f4 and f6, and its convergence accuracy

in the multipeak function tests is better than that of SOA,

PSO, and GOA algorithms. The optimization results of the

SOA, PSO, and GOA algorithms in the multipeak function

test are unstable. In summary, the ISOA algorithm has higher

accuracy than the three other algorithms, thereby showing

better optimization ability and stability.
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TABLE 2. Parameter settings.

TABLE 3. Test results.

C. PREDICTION MODEL OF ISOA-DBN

For the two hidden layers of, the number of neurons in each

hidden layer is expressed as m1 and m2, and the learning

rate is η. When the seagull population in the ISOA algorithm

is coded, each individual is a vector X(m1,m2, η), and the

optimization problem of DBN parameter can be expressed as

follows:

Ffitness(m1,m2, η) =

∑N
i=1 (yi − Yi)

2

N

s·t·







1 ≤ m1 ≤ 100

1 ≤ m2 ≤ 100

0 ≤ η ≤ 1

(27)

where N is the number of samples, and yi and Yi are the

predicted and true values of the ith sample, respectively.

The process of using the ISOA to optimize the DBNmodel

is shown in Figure 5.

Step 1. The DKA PV power station data, query singular

values, and missing data in the data are preprocessed, and

cubic spline interpolation is used for filling.

Step 2. The FCBF method mentioned is used to extract

meteorological factors that are highly correlated with PV

power and to remove redundant meteorological factors.

Step 3. The comprehensive similarity index is adopted to

select the historical date that is most similar to the predicted

date.

FIGURE 5. PV power prediction process based on ISOA-DBN model.

Step 4. The parameters, such as hidden layer number,

training times, ISOA population number, and training times

of the DBN network are initialized. The ISOA algorithm

is used to determine the number of neurons and learning

rate.

Step 5. The determined DBN network structure is pre-

trained and reversely fine-tuned, and the DBN network train-

ing and test data are used to output the PV power forecast

value.
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TABLE 4. Forecast model input/output variables.

TABLE 5. Predictive model parameter settings.

V. EXAMPLE ANALYSIS

A. BUILDING THE SAMPLE SET

The data of Alice Springs station in the DKA solar power

center in Australia are used for the experiments. The selected

sample data include the PV power data and corresponding

meteorological data in the time interval from March 1, 2015

to March 1, 2016, and the resolution of the data is five

minutes. The PV power at night is 0; thus, the PV power in the

time period from 07:00 to 18:00 on the forecast day is selected

for prediction. There are 133 sampling points in the whole

day. According to the determination method of similar days

in the above chapter, 5 historical days similar to the predicted

days are selected as training samples, and 133 power values of

the predicted days are tested. In accordance with the analysis

results of PV power influencing factors, the input variables of

the forecast model are determined as the PV power generation

on similar days, global radiation GR, and diffuse radiation

DR. The input and output variables of the prediction model

are shown in Table 4.

B. PARAMETER SETTING OF PREDICTION MODEL

The MATLAB R2019b is used as the test platform in a

64-bit Intel I5-3230M computer configuration. In the ISOA

algorithm, the dimension is set to 3, the number of population

is 30, and the maximum number of iterations is 100.After

optimization by ISOA hidden layer neurons, the parameter

optimization results of DBN are shown in Table 5.

To verify the effectiveness of the proposed algorithm,

seven PV prediction models including BP, SVM, DBN,

Elman, ELM, ISOA-DBN, and RBF are selected for compar-

ative analysis. The proposed method is used for the similar

day selection of each model, and the corresponding input and

output variables are the same. In order to ensure objectivity,

the parameters of each comparison model are set through trial

and error method, and the comparative analysis is done for

many times. Finally, the optimal parameter value is adopted.

The parameter settings of each prediction model are shown

FIGURE 6. Forecast result of sunny day.

in Table 5. The remaining parameters take the default values

of the model.

C. ANALYSIS OF RESULTS

Four representative weather types, namely, sunny, rainy,

sunny to cloudy, and cloudy to sunny are selected as the

research objects. The dates are March 26 (sunny), June 17

(rainy), June 25 (cloudy to sunny), and August 25 (sunny

to cloudy). The results of the following prediction models

after 20 times of execution are averaged to avoid possi-

ble large fluctuation. The forecast and actual values of PV

power generation under different weather types are shown in

Figures 6–13.

Figures 6 and 7 show the result of sunny weather forecast.

The figures show that the prediction results of the proposed

model, ISOA-DBN, are better than those of the six other

models. The prediction results of DBN, SVM, ELM, and

RBF models are also ideal. The prediction results of the BP

and Elman models are compared with other prediction mod-

els. The error graph shows that the prediction effect of these
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FIGURE 7. Forecast error of sunny day.

FIGURE 8. Prediction result of rainy day.

FIGURE 9. Prediction error of rainy day.

models has slight deviation from the actual value because the

PV power generation power is regular and has less volatility

on sunny days.

Figures 8 and 9 show the rainyweather forecast results. The

figures show that the prediction effects of the seven models

are worse than those in sunny days because the power fluc-

tuates greatly in rainy days, thereby increasing the difficulty

FIGURE 10. Forecast result of cloudy to sunny weather.

FIGURE 11. Forecast error of cloudy to sunny weather.

of prediction. However, compared with the six other models,

ISOA-DBN shows better robustness, and the prediction effect

is closer to the actual value. DBN, SVM, and ELM obtain

better prediction results.

Figures 10 and 11 show the forecast results from cloudy

to clear weather. The figures show that the prediction devia-

tions of each model during the cloudy period from 08:00 to

12:00 are larger than the prediction deviations from 12:00 to

18:00 during the sunny period. This finding is due to the

movement of clouds that causes the PV power station to

generate electricity. The power fluctuation becomes larger,

thereby increasing the difficulty of prediction. The prediction

effect of the proposed ISOA-DBN is better than that of the

six other models, DBN, SVM, and RBF have relatively better

prediction effect.

Figures 12 and 13 show the forecast results under sunny to

cloudy weather. The figures show that the prediction result is

similar to that of cloudy to sunny weather. Similarly, the pre-

diction effect is better during the sunny period from 07:00 to

14:00. However, during the cloudy period from 14:00 to

18:00, the actual PV power fluctuation law becomes worse

due to the cloud movement, thereby reducing the prediction

accuracy. The prediction effect of the proposed ISOA-DBN

in sunny and cloudy periods is also better than that of the six
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TABLE 6. Prediction error indexes under different weather.

FIGURE 12. Forecast result of sunny to cloudy weather.

FIGURE 13. Forecast error of sunny to cloudy weather.

other models, among which DBN, SVM, and ELM models

have relatively better prediction effect.

To accurately evaluate the prediction performance of vari-

ous algorithms, two indexes, namely, root mean square error

(RMSE) and mean absolute percent error (MAPE) are used

to quantitatively analyze the prediction effect of each model.

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

si − s′i
)2

(28)

MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

si − s′i
si

∣

∣

∣

∣

× 100% (29)

where N is the number of samples; si is the ith sample true

value; s′i is the ith sample prediction.

The quantified results of the prediction errors correspond-

ing to the four types of weather are shown in Table 6. It shows

that in sunny days with stable power change, the prediction

effect of the seven forecasting methods is better than that

of rainy days, cloudy to sunny days and sunny to cloudy

days. The RMSE and MAPE of all model prediction errors

are small, and the prediction results are relatively accurate.

In rainy days, the randomness and volatility of power gen-

eration are large, and the RMSE and MAPE errors of all

models are greater than those of the three other weather

types. The RMSE and MAPE of the prediction errors in

cloudy to sunny and cloudy periods are greater than those

in sunny days because the appearance and movement of

clouds in cloudy periods reduce the prediction accuracy of

each method. Among the four weather types, the proposed

ISOA-DBNmethod has smaller error quantization value, and

its prediction effect is better than the six other methods; it

has good environmental adaptability. At the same time, it can

be known from the experimental error index value. When

input variables and structural parameters of prediction model

are determined, RMSE and MAPE values of ISOA-DBN,

DBN and SVMmethods are all fixed values. They have good

predictive stability. However, when the other methods are

used under the same conditions for multiple predictions, the

results of each prediction vary in amplitude and have poor

stability.

To verify the generalization ability of various algorithms

in different seasons, the sunny weather is considered an

example. In accordance with the classification standard of

Australian seasons, one sunny day is selected from the four

seasons of autumn, winter, spring, and summer as the forecast

day. The forecast dates are April 24 (autumn), July 8 (winter),

October 23 (spring), and December 5 (winter), and the fore-

cast results and error indicators are shown in Figures 14-15

and Table 7, respectively. The prediction results of the
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FIGURE 14. Prediction result of different seasons.

FIGURE 15. Prediction error of different seasons.

TABLE 7. Prediction error index in different seasons.

proposed model are closer to the actual values in different

seasons, showing better prediction performance. Compared

with the six methods of DBN, SVM, ELM, RBF, Elman, and

BP, the RMSE indicators of the proposed prediction method
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(considering autumn an example) decrease by 0.066, 0.095,

0.089, 0.022, 0.4, and 0.249 KW, respectively. The MAPE

indicators decrease by 2.277%, 2.977%, 2.583%, 0.413%,

7.876%, and 4.942%. Therefore, the proposed method has

better adaptability to different seasons.

VI. CONCLUSION

In connection with the current research hotspot of deep learn-

ing algorithm, the ISOA-DBN prediction model is proposed.

By analyzing the experimental results of the model under dif-

ferent weather types and seasons, the following conclusions

were drawn:

1) A scheme of using FCBF algorithm to screen forecast

model input meteorological feature set is proposed. This

approach not only effectively determines the most relevant

meteorological features corresponding to PV power genera-

tion power, but also avoids the redundancy problem among

selected meteorological features.

2) The similarity in the distance and shape of the predicted

day and its corresponding similar day is considered com-

prehensively, and the weight of meteorological parameters is

determined by the standard deviation method. The optimum

similar day selectionmethod for the comprehensive similarity

index is proposed by combining Euclidean distance with the

gray correlation analysis method, which accurately realizes

the selection of similar day.

3) The proposed ISOA algorithm optimizes DBN model

parameters,, thereby improving the prediction performance

of the model.

4) Finally, the actual PV power generation scenarios in

different weather and seasons are considered. The proposed

ISOA-DBN prediction model is compared with DBN, SVM,

ELM, RBF, Elman, BP, and six other classical methods for

analysis. The results show that the proposed method has good

adaptability in both experimental scenarios and shows better

prediction performance.
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