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Abstract

Purpose—To evaluate the short-term reproducibility of radiomic features in liver parenchyma 

and liver cancers in patients who underwent consecutive contrast-enhanced CT (CECT) with 

intravenous iodinated contrast within 2 weeks by chance.

Methods—The Institutional Review Board approved this HIPAA-compliant retrospective study 

and waived the requirement for patients’ informed consent. Patients were included if they had a 

liver malignancy (liver metastasis, n = 22, intrahepatic cholangiocarcinoma, n = 10, and 

hepatocellular carcinoma, n = 6), had two consecutive CECT within 14 days, and had no prior or 

intervening therapy. Liver tumors and liver parenchyma were segmented and radiomic features (n 

= 254) were extracted. The number of reproducible features (with concordance correlation 

coefficients > 0.9) was calculated for patient subgroups with different variations in contrast 

injection rate and pixel resolution.

Results—The number of reproducible radiomic features decreased with increasing variations in 

contrast injection rate and pixel resolution. When including all CECTs with injection rates 

differences of less than 15% vs. up to 50%, 63/254 vs. 0/254 features were reproducible for liver 
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parenchyma and 68/254 vs. 50/254 features were reproducible for malignancies. When including 

all CT with pixel resolution differences of 0–5% or 0–15%, 20/254 vs. 0/254 features were 

reproducible for liver parenchyma; 34/254 liver malignancy features were reproducible with pixel 

differences up to 15%.

Conclusion—A greater number of liver malignancy radiomic features were reproducible 

compared to liver parenchyma features, but the proportion of reproducible features decreased with 

increasing variations in contrast injection rates and pixel resolution.
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Radiomics is a rapidly expanding field where advances in computational image analysis are 

applied to growing medical imaging databases for the generation of high-dimensional 

datasets to investigate different clinical questions [1]. Radiomics employs computer-based 

analysis to extract a large number of quantitative features from digital images, often after 

segmentation of the region of interest. Multiple investigators have applied radiomics for 

diagnostic, prognostic, and predictive models in a number of different organs and 

malignancies, with promising results [2–9].

Despite the potential to develop predictive models [10], biomarkers must be informative, 

non-redundant, and reproducible prior to use in clinical decision making. The translation of 

radiomics to clinical practice requires rigorous testing, including validation with 

independent test data as well as investigations into the reproducibility of omics-based data 

[11]. Clinical variations in imaging protocols affect the appearance of CT images across and 

within institutions and consequently may influence the reproducibility of CT-based 

radiomics [12–16]. In lung cancer, the reproducibility of radiomic features has been 

investigated in a study using a publicly available dataset consisting of 31 test–retest non-

contrast CT scans [17]. In this so-called “coffee break” study, patients underwent repeat 

non-contrast CT scanning approximately 15 min apart. Radiomic features extracted from 

manually delineated tumors were tested for repeatability between scans, using intra-class 

correlation coefficients (ICC) [13, 14]. In another study, extracted lung cancer CT features 

with higher reproducibility were shown to have higher prognostic performance [18]. 

However, unlike lung cancers, which are imaged routinely with non-contrast chest CT, most 

abdominal and pelvic tumors are evaluated on contrast-enhanced CT (CECT), after 

intravenous administration of iodinated contrast. Thus, the reproducibility of radiomic 

features for abdominal tumors cannot be established using a similar “coffee break” design 

due to the dynamic nature of contrast enhancement in the imaging of abdominal tumors.

One approach to a prospective CECT test–retest study appropriate for abdominal tumors 

would be to administer intravenous contrast in two separate sessions, with enough time 

between scans to allow for the excretion of contrast, but this carries an associated risk of 

additional contrast administration [19]. However, patients with abdominal tumors 

occasionally undergo repeat CT imaging within short time intervals for clinical reasons, for 

example, to evaluate new symptoms, such as abdominal pain or fever. Thus, in this 

retrospective study in patients with liver cancer, we aimed to evaluate CECT imaging of 
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liver in an incidentally obtained “test–retest” CECT dataset. Given the large patient 

population with primary and secondary liver malignancies seen at our institution, we 

hypothesized that reproducible radiomic features could be identified for liver tumors in the 

setting of consecutive CECT with variable acquisition and reconstruction parameters and 

scanner models. The purpose of our study was to explore how routine variations in imaging 

affect short-term reproducibility of radiomic features derived from liver tumors and liver 

parenchyma in patients who undergo clinical CECT imaging twice within 2 weeks.

Methods

Patients

This was a HIPAA-compliant retrospective study conducted after a waiver of patient 

informed consent was obtained through Institutional Review Board approval. A database of 

consecutive patients at our institution was queried for patients with a diagnosis code of liver 

malignancy between June 2009 and October 2015 and the list was narrowed to include all 

patients who underwent two CECT scans within an interval of less than 15 days. Additional 

inclusion criteria were (1) the presence of a liver tumor confirmed by electronic medical 

record review: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), or 

liver metastasis (with pathologic report of the liver tumor itself or primary cancer in the case 

of liver metastasis, supporting the diagnosis); (2) size of at least one tumor greater than 2 

cm, and (3) DICOM images on Picture Archiving and Computer System (Centricity PACS, 

GE Healthcare) with CECT obtained during the portal venous phase and with slice 

reconstruction thickness of 5 mm or less. Exclusion criteria included any systemic or loco-

regional treatment (i.e., chemotherapy, surgical procedure, portal vein embolization, local 

ablation) directed to the tumor during the time interval between the two consecutive CECTs 

or within one month preceding the first CT, and non-evaluable CECTs (e.g., with imaging 

artifacts over the liver tumor).

CT imaging

All patients underwent CECT with one of three CT scanner models: Lightspeed 16, 

Lightspeed VCT, or Discovery CT 750 HD detector scanner (GE Medical Systems, Chicago, 

IL, USA). All acquisitions were performed at 120 kVp, exposure time: 500–1100 ms and 

tube current: 133–440 mA. Images were reconstructed at a section thickness varying from 

2.5 to 5 mm with a standard convolutional kernel and with a reconstruction diameter range 

of 360–500 mm. 150 mL iodinated contrast material (Omnipaque 300, GE Healthcare, 

Chicago, IL, USA) was administered intravenously for each CECT at a rate between 1 and 4 

cc/s.

Image processing

CECT scans were downloaded to a workstation and Scout Liver (Pathfinder Technologies 

Inc., Peabody, MA) was used to semi-automatically segment the non-tumoral liver 

parenchyma, vessels, and tumors. A research fellow (T.P.) under attending radiologist 

supervision (R.D.) performed all segmentations. The details of the segmentation approach 

utilized by Scout Liver and accuracy and repeatability of segmentations were established 

previously [20, 21]. For patients with more than one set of CECT scans meeting the 
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inclusion criteria (n = 4), only the first pair was included for analysis. In patients with 

multiple (two or more) liver tumors, the largest tumor was included in the analysis. In cases 

where confluent liver tumors were present, a lesion with clearly defined tumor was chosen 

as a representative lesion for analysis.

Image analysis

Two hundred and fifty-four well-known radiomic features, reflecting heterogeneity in 

enhancement patterns, were extracted from the segmented liver parenchyma and from one 

liver tumor per patient in both scans. The feature set included 19 features from gray-level co-

occurrence matrix (GLCM) [22–24], 11 from run length matrix (RLM) [25], 5 from 

intensity histogram (IH), 127 from local binary patterns (LBP) [26–28], 54 from fractal 

dimension (FD) [29, 30], and 19 from each of the angle co-occurrence matrix 1 (ACM1) and 

ACM2 [31–33]. The details of the features are provided in Appendix 1. All quantitative 

image analysis was implemented in Matlab (MathWorks, Natick, MA, USA). Acquisition 

and reconstruction parameters were extracted from the DICOM headers and electronic 

medical record for each CT study including scanner model, slice thickness, pixel size, kVp, 

mAs, contrast injection dose, and administration rate.

Statistical analysis

Statistical analysis was performed using SPSS version 22.0 (IBM, Armonk, NY, USA). Two 

hundred fifty-four features were reported with summary statistics, for both liver parenchyma 

and tumor. Concordance correlation coefficients (CCCs) were used to quantify the 

reproducibility of a feature. A reproducible feature was defined by a CCC > 0.9 [34], 

regarding parameters setting variations (i.e., contrast material injection rate, pixel resolution, 

and machine consistency). Analyses were also performed for lower CCC threshold (> 0.85, 

> 0.80). The Wilcoxon signed rank test was used to compare continuous variables between 

each scan–rescan set [35]. Categorical variables were compared using Chi-square test. A p 

value < 0.05 was considered a statistically significant difference. The effect of change in 

contrast injection rate, pixel resolution, and scanner model on radiomic features was 

assessed for both liver parenchyma and index tumor regions. These three reflect acquisition 

and reconstruction parameters routinely modified by CT technologists: contrast injection 

rate is modified based on the type of venous access available, pixel resolution varies 

depending on the size of the scan field of view, and CT scanner model choice is based on 

availability of the scanner at the time of scheduling.

Results

A total of 100 scan–rescan paired sets of liver tumors met the initial inclusion criteria. Fifty-

two sets of scans were excluded: 47 based on concurrent treatments and 5 due to imaging 

artifacts (e.g., presence of metallic objects). Of the remaining 48 sets, 4 patients had more 

than one set within 15 days (10 sets total). Since only the first pair of consecutive CTs for 

each patient was included in the planned analysis, our final cohort consisted of 38 scan– 

rescan sets, one set each from 38 patients. The etiologies of liver malignancy in the included 

patients were liver metastasis (n = 22), ICC (n = 10), and HCC (n = 6). All patients had 

pathologic diagnosis confirmation except one patient with IHCC who was diagnosed based 
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on imaging. Twenty-four (63.2%) patients had two or more tumors. Two patients had liver 

cirrhosis and no patient had portal vein thrombus. The mean time interval between the two 

scans was 9.7 days (range 3–14) (Table 1).

We compared imaging acquisition and reconstruction parameters and scanner models across 

the first and second CECT scans (Table 2). Significant differences were found for pixel 

resolution (p < 0.05), scanner model (p < 0.01), slice thickness (p < 0.05), and exposure (p < 

0.05) across CECTs. Twenty-two patients (58%) underwent both CECTs on the same CT 

scanner model. No statistically significant differences were observed between first and 

second CECTs for the following: contrast injection rate reconstruction diameter, exposure 

time, and tube current (Table 2). Matrix sizes and kVp were constant across all CECTs.

Influence of contrast injection rate

We evaluated the influence of contrast injection rate against a feature set composed of 254 

features: 19 features from gray-level co-occurrence matrix (GLCM) [22–24], 11 from run 

length matrix (RLM) [25], 5 from intensity histogram (IH), 127 from local binary patterns 

(LBP) [26–28], 54 from fractal dimension (FD) [29, 30], and 19 from each of the angle co-

occurrence matrix 1 (ACM1) and ACM2 [31–33].

Reproducibility of radiomics features was affected by changes in contrast injection rate 

between CECTs. The mean contrast injection rate was 2.25 cc/s (range 1–4). The mean rate 

difference between scan and rescan was 0.15 cc/s (range 0–2.5, p = 0.88). The number of 

reproducible imaging features [having a concordance correlation coefficients (CCC) > 0.9] 

was highest when the analysis was limited to patients who had scan sets with similar 

contrast injection rate, and correspondingly, the number of reproducible features decreased 

as a greater number of scans with larger differences in contrast injection rate was included 

(Figs. 1, 2).

For liver parenchyma-derived imaging features, limiting the analysis to sets where the 

contrast injection rate difference was less or equal to 15% (n = 10 patients) yielded the 

greatest number of reproducible features: 63/254 features (6 GLCM, 4 RLM, 1 IH, 19 LBP, 

18 FD, 8 ACM1, and 7 ACM2). When the analysis included sets with a change in contrast 

injection rate up to 25% (n = 13 patients), the number of reproducible features dropped to 

only 4/254 (LBP4, LBP18, LBP71, and LBP72). When allowing for a change in contrast 

injection rate up to 50% (n = 21 patients), no feature reached a CCC > 0.9 (Fig. 1). A greater 

number of features met a lower threshold CCC > 0.8, but the number of such features also 

decreased as the variability in contrast injection rate increased (Fig. 1).

For radiomic features derived from segmented tumors, changes in contrast injection rate had 

a lower impact on the reproducibility of radiomic features. 68/254 features (8 GLCM, 5 

RLM, 1 IH, 20 LBP, 32 FD, 1 ACM1, and 1 ACM2) were reproducible in patients with 

changes in contrast injection rate less or equal to 15% (n = 10 patients), while 50/254 

features (3 GLCM, 5 RLM, 13 LBP, and 29 FD) were reproducible when the changes in 

contrast injection rate was up to 50% (n = 21) (Fig. 2).
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Influence of pixel resolution

The reproducibility of radiomic features also varied with changes in pixel resolution 

between scan–rescan sets (Figs. 3, 4). The number of reproducible features was higher when 

the analysis was limited to smaller variations in pixel resolution between scan–rescan sets, 

for both features derived from liver parenchyma and features derived from tumor. The mean 

pixel resolution was 0.820 mm (range 0.703–0.977). The mean pixel resolution difference 

between scan and rescan was 7.27% (range 0–30.8%, p < 0.05).

For features derived from the liver parenchyma, when including all sets with pixel resolution 

variation of 0–5% (n = 18 patients), 20/254 radiomic features were reproducible (20 LBP). 

When allowing for pixel resolution variation of up to 15% (n = 34 patients), no feature was 

reproducible; a greater number of features met a lower threshold CCC > 0.8 (Fig. 3).

Compared to liver parenchyma-derived features, a greater number of radiomic features 

derived from the tumor region were reproducible. For example, with a pixel resolution 

variation of up to 15% (n = 34), 34/254 features (1 GLCM, 2 RLM, 5 LBP, and 26 FD) were 

reproducible.

Influence of scanner model

When the reproducibility analysis was limited to patients with scan–rescan sets with the 

same scanner model (n = 22 patients), 75 features extracted from the tumor region (10 

GLCM, 5 RLM, 22 LBP, 31 FD, 4 ACM1, and 3 ACM2) (Fig. 5) and 3 features from the 

liver parenchyma region were reproducible (LBP72, LBP75, and LBP76) (Fig. 6). The 

number of reproducible features for the tumor and parenchyma regions decreased to 35/254 

and 0/254, respectively, when all the patients were included (n = 38 patients), regardless of 

scanner model used. Only 12/254 features from the tumor region (2 GLCM and 10 FD) and 

10/254 liver parenchyma (9 LBP and 1 ACM2) extracted features were reproducible when 

the machine was inconsistent across both scans.

Discussion

The results of the current study underscore the impact of routine variation in image 

acquisition and reconstruction parameters and scanner model on the reproducibility of 

radiomic features extracted from liver parenchyma and liver tumors. These data highlight 

potential challenges in the use of quantitative imaging features derived from CT images 

obtained after intravenous contrast enhancement with different imaging protocols. Notably, 

variations in contrast injection rate, pixel resolution, and scanner model affected the number 

of reproducible radiomic features derived from CECTs performed in the same patients 

within a short time interval. A greater number of reproducible features were found when the 

same CT scanner model was used for the CECTs, suggesting that consistent imaging 

protocol yielded similar imaging features at multiple time points; prospective evaluation of 

reproducibility is still warranted. A smaller number of liver parenchyma-derived imaging 

features were reproducible compared to liver tumor-derived imaging features, under the 

same conditions. The greater reproducibility of liver tumor-derived imaging features is 

intriguing and may be related to the greater heterogeneity in enhancement pattern in liver 
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malignancies. In comparison, liver parenchymal enhancement patterns may have a lower 

range of enhancement patterns, affecting their reproducibility as measured by CCC. This is a 

finding that merits further investigation, with larger datasets of patients who are grouped by 

similar liver pathologies.

The current study is the first to date to investigate the reproducibility of commonly reported 

CECT liver imaging features in the radiomics literature. Previous studies studying the 

reproducibility of radiomics features have mainly reported on features derived from non-

contrast imaging, finding that many features are unstable between test–retest imaging scans 

in different organs. For example, Balagurunathan et al. [13, 14] assessed the CCC of 219 

radiomic features from test–retest CT in lung cancer patients acquired 15 min apart. Of these 

features, only 66 were found to have CCC > 0.9, suggesting that a large number of features 

may be omitted from routine radiomic analysis, which is comparable to our results using 

CECT in liver tumors. Galavis et al. [36] assessed the reproducibility of 50 texture features 

in 20 patients with solid tumors in FDG-PET under different acquisition modes and with 

different reconstruction parameters. Only 4 features (entropy-first order, energy, maximal 

correlation coefficient, and low gray-level run emphasis) exhibited small vs. large variations 

due to five different acquisition modes and reconstruction parameters. On the other hand, 

Leijenaar et al. [4] analyzed the reproducibility of 91 FDG-PET image features within a 1-

day interval in 23 patients with lung tumors and reported that the majority of assessed 

features had both high test–retest (71%) and inter-observer (91%) reproducibility. They also 

suggested that features that were more reproducible in repeated PET-CT imaging were also 

more robust against inter-observer variability. In our study, our features exhibited more 

variability, which may be due to the differences in imaging modalities and the larger mean 

time gap of 10 days between two CECTs.

Most studies investigating the stability of radiomic features assessed non-contrast-enhanced 

images; however, diagnostic CT imaging of the liver requires contrast intravenous 

administration. Texture features for these images have not yet been widely investigated. 

Recently, a study assessed the reproducibility of 122 radiomic features extracted from 

CECTs for lung metastases demonstrating that commonly used texture features (87%) were 

reproducible between different scan times after contrast injection and between different 

scanning sessions several days apart (2–7 days) [37]. This study included only eight patients 

with small and well-defined lung metastases using a single machine with a unique imaging 

protocol.

This study has a number of limitations, some related to the retrospective nature of the study. 

The number of patients is relatively small at 38, but is comparable in size to the RIDER 

dataset used in previous radiomic reproducibility studies which includes 32 patients with 

non-small cell lung cancer. In addition, imaging was performed on different CT scanners for 

16 patients, with a variety of image acquisition and reconstruction parameters, precluding a 

systematic analysis of the effect of individual parameters. Ideally, a single parameter would 

be varied at a time, with all others are kept constant, to establish how each acquisition 

parameter or how the segmentation software itself affects reproducibility. We focused on 

contrast injection rate, pixel spacing, and scanner model consistency, which are often 

affected by CT technologists. Pixel resolution depends on the field of view prescribed, 
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which usually varies from 40 to 50 cm; contrast injection rate can be modified based on 

intravenous access and catheter size available at the time of imaging, while scanner model 

may depend on the availability of the CT scanner at the time of the scan. Despite these 

limitations, the results show the potential loss of reproducible imaging features as CT 

imaging acquisition parameters diverge. This study is also limited by the variety of primary 

and secondary liver malignancies included; due to the small sample size, we avoided further 

analysis by tumor subtype. Another limitation relates to the small number of patients with 

confirmed cirrhosis, preventing a subanalysis of this patient population. Finally, due to the 

heterogeneous group of patients, we could not compare the effect of reproducibility on a 

predicted patient outcome. Ideally, a homogeneous group of patients in a prospective clinical 

trial setting would inform how changes in reproducibility of imaging features affect the 

prediction of a clinical trial outcome. Finally, the choice of a CCC threshold > 0.9 is 

relatively arbitrary, and a lower threshold may be sufficient for an imaging feature to be used 

as a biomarker. For this reason, we show additional results with CCC > 0.85 and 0.8. 

Nevertheless, our study illustrates the potential effects of variable imaging protocols and 

scanners on imaging feature reproducibility.

Conclusion

Similar to lung cancers, liver tumors may have a limited number of reproducible imaging 

features available for radiomic studies. Furthermore, since liver tumors are routinely imaged 

with contrast, variations in imaging parameters rate appear to reduce the number of 

reproducible imaging features. The effect of diminished imaging feature reproducibility on 

biomarker development remains uncertain. Nevertheless, our results challenge the use of any 

single radiomic feature to make clinical prediction before their reproducibility is measured. 

Further systematic investigations into the reproducibility of liver-derived imaging features 

on CECT are needed to support the development of liver radiomics into clinically useful 

biomarkers. As many factors affect radiomic features, further investigation on 

reproducibility of quantitative imaging features is warranted through prospective studies.
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Fig. 1. 
Number of reproducible imaging features derived from liver parenchyma with variations in 

contrast injection rate.
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Fig. 2. 
Number of reproducible imaging features derived from liver tumors with variations in 

contrast injection rate.
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Fig. 3. 
Number of reproducible imaging features derived from liver parenchyma with variations in 

pixel resolution.

Perrin et al. Page 13

Abdom Radiol (NY). Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Number of reproducible imaging features derived from liver tumor with variations in pixel 

resolution.
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Fig. 5. 
Number of reproducible imaging features derived from tumor region on similar, different, or 

mixed (both similar and different) CT scanner models.
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Fig. 6. 
Number of reproducible imaging features derived from liver parenchyma on similar, 

different, or mixed (both similar and different) CT scanner models.
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Table 1

Patient characteristics

Tumor type (n = 38)

HCC 6 (16%)

IHCC 10 (26%)

Metastases 22 (58%)

 Pancreas 6

 NET 6

 Colon 2

 Rectum 2

 Lung 2

 Ovary 1

 Melanoma 1

 Hilar cholangiocarcinoma 1

Time between scans (days) 9.7 (3–14)

Number of tumors

 1 15 (39%)

 > 1 to < 5 15 (39%)

 ≥ 5 to < 10 3 (1%)

 ≥ 10 5 (13%)

HCC hepatocellular carcinoma, IHCC intrahepatic cholangiocarcinoma, NET neuroendocrine tumor
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Table 2

Imaging reconstruction and acquisition variables

Scan 1 Scan 2 p value

Model

 Lightspeed VCT 10 (26%) 3 (8%) p < 0.01

 Lightspeed16 18 (26%) 32 (84%)

 Discovery 10 (48%) 3 (8%)

Pixel resolution 0.791 (0.703–0.918) 0.848 (0.703–0.977) p < 0.05

Thickness (mm) 4.8 (2.5–5) 5 (5) p < 0.05

Reconstruction diameter 415.9 (360–500) 423.2 (360–500) –

Exposure time 773.6 (500–1100) 815.3 (699–1159) –

Exposure 34.1 (7–88) 37.9 (13–96) p < 0.05

Tube current 299.3 (133–440) 315 (156–420) –

Matrix size

 Row 512 (512) 512 (512) –

 Column 512 (512) 512 (512) –

Voltage (kVp) 120 (120) 120 (120) –

Contrast agent

 Contrast volume (mL) 150 (150) 150 (150) –

 Rate (cc/s) 2.33 (1–4) 2.18 (1–4) –
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