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Abstract State-of-the-art applications of short-term reservoir management integrate sev-

eral advanced components, namely hydrological modelling and data assimilation techniques

for predicting streamflow, optimization-based techniques for decision-making on the reser-

voir operation and the technical framework for integrating these components with data feeds

from gauging networks, remote sensing data and meteorological weather predictions. In this

paper, we present such a framework for the short-term management of reservoirs operated

by the Companhia Energética de Minas Gerais S.A. (CEMIG) in the Brazilian state of Minas

Gerais. Our focus is the Três Marias hydropower reservoir in the São Francisco River with
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a drainage area of approximately 55,000 km and its operation for flood mitigation. Basis

for the anticipatory short-term management of the reservoir over a forecast horizon of up to

15 days are streamflow predictions of the MGB hydrological model. The semi-distributed

model is well suited to represent the watershed and shows a Nash-Sutcliffe model perfor-

mance in the order of 0.83-0.90 for most streamflow gauges of the data-sparse basin. A

lead time performance assessment of the deterministic and probabilistic ECMWF forecasts

as model forcing indicate the superiority of the probabilistic model. The novel short-term

optimization approach consists of the reduction of the ensemble forecasts into scenario

trees as an input of a multi-stage stochastic optimization. We show that this approach

has several advantages over commonly used deterministic methods which neglect forecast

uncertainty in the short-term decision-making. First, the probabilistic forecasts have longer

forecast horizons that allow an earlier and therefore better anticipation of critical flood

events. Second, the stochastic optimization leads to more robust decisions than deterministic

procedures which consider only a single future trajectory. Third, the stochastic optimization

permits to introduce advanced chance constraints for refining the system operation.

Keywords Short-term reservoir optimization · Forecast uncertainty · Flood mitigation

1 Introduction

Reservoirs are important hydraulic infrastructure for water use and allocation. Among the

main uses are hydropower generation and flood control, often in a multi-purpose way. In

those water systems operation, optimal centralized control can be achieved by employing

Model Predictive Control (MPC) (Ackermann et al. 2000; van Overloop 2006). Key ele-

ments of MPC are (Morari and Lee 1999): (1) a model of the physical process to predict

future trajectories of the controlled variables over a finite horizon, (2) the calculation of a

control sequence that optimizes an objective function, and (3) a receding horizon strategy.

The receding horizon strategy means that, at each forecast time and control instant T 0, the

operator applies the first signal of the control sequence and shifts the forecast horizon ahead

in time. Constraints on inputs, states and outputs are explicitly considered (Schwanenberg

et al. 2012).

Contrary to conventional reservoir operation strategies, where operating rules are calcu-

lated offline, MPC considers the online solution of an online optimization problem at every

time step. Available disturbance forecasts, i.e. reservoir inflows and laterals in downstream

river reaches, are used directly in the control scheme, resulting in advantages and threats.

The main advantage is that the control strategy becomes anticipatory or proactive (Zavala

et al. 2009). Before the realization of a forecasted disturbance, the control sequences set

the system to a state optimal to accommodate it, for example by lowering the water ele-

vation in a reservoir before an expected flood event occurs. However, use of forecasts can

also jeopardize the control robustness (Bemporad and Morari 1999), if MPC is applied in a

deterministic mode and forecast uncertainty is high. In this case, the approach runs the risk

of suggesting decisions in anticipation of expected events that eventually do not occur. To

increase the robustness of MPC, enhancements of the approach take into account ensemble

forecast and appropriate transformation into scenario trees, as shown by Raso et al. (2013),

to extend the deterministic to a multi-stage stochastic optimization.

In contrary to long-term reservoir management approaches, in which streamflow

forecasts are often generated by Ensemble Streamflow Predictions (ESP) based on cli-

matology, short-term applications primarily rely on Quantitative Precipitation Forecasts
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(QPF) from multiple members of a Numerical Weather Prediction (NWP) model. In

this approach, it is expected that the uncertainty related to the meteorological portion

of the forecasting system is sampled and thus permits better decision-making (Cloke

and Pappenberger 2009; Ramos et al. 2013). Although meteorological ensembles do not

sample all uncertainties in the forecasting system (for example, uncertainties in the hydro-

logical model are not considered), the meteorological forecast are usually the ones which

introduce the highest amount of uncertainty to the system. This method for generating

hydrological ensemble forecasts is actually broadly applied and has been showing better

performance than deterministic forecasts in terms of performance metrics (Renner et al.

2009; Velázquez et al. 2009; Jaun and Ahrens 2009), decision making assessments (Boucher

et al. 2011; Ramos et al. 2013), and also more recently to reservoirs operation assessments

(Mccollor and Stull 2008; Zhao et al. 2011; Boucher et al. 2012; Raso et al. 2013).

On reservoir operation using ensembles, Boucher et al. (2012) reports the possibility to

achieve better results for hydropower reservoirs operation by the use of ensemble forecasts

in comparison to a high-resolution deterministic one. The authors as well show that results

depend on the forecast skill (ensemble forecasts are not always better than the determinis-

tic ones), and that the lead-time performance metrics not necessarily match with the best

reservoir operation. Other examples include the work of Mccollor and Stull (2008), that

presented an assessment of short-range ensemble precipitation forecasts of 24h to operate a

hydroelectric reservoir at the Jordan River (Canada). The authors describe that employing

the full ensemble or the ensemble average is better than using a single deterministic model

or climatology data for the presented scenarios. Furthermore, Zhao et al. (2011) present a

hypothetical example of how a single-objective real-time reservoir operation benefits from

the streamflow uncertainty information. The authors also highlight that the operation effi-

ciency, measured by a utility function, decreases as the forecast uncertainty increases and

its magnitude depends on the skill of the forecast products.
Between the few studies found in literature on the assessment of short-term reservoir

operation using ensembles, the usual consensus is that it is possible to have better oper-

ational results than using deterministic approaches, although the results are dependent on

the forecast skill. Also, among the techniques applied, there are no further studies focused

on the use of stochastic MPC methods except for a first discussions by Raso et al. (2013),

who developed a scenario tree reduction technique to consider ensemble forecasts in MPC.

These trees start with a single control trajectory in the first phase of the forecast horizon

in which future system states are still uncertain. When uncertainty gets resolved over the

forecast horizon, for example by the observation of precipitation and streamflow, branching

points get introduced into the tree. This makes the reservoir management adaptive to the

resolution of forecast uncertainty.

In this context, we see one important contribution of this paper in the use of a

novel scenario tree reduction technique in application to an ensemble forecast. Different

from Raso et al. (2013), we use precipitation-dependent distance metrics for the

tree generation to generate streamflow trees for the stochastic optimization. This allows

us to consider lag time between precipitation and reservoir inflow in larger river basins

under the hypothesis that most forecast uncertainty gets resolved when forecasted precipita-

tion is observed and the hydrological model uncertainty is smaller than the meteorological

one. Another contribution of our work is the novel application of multi-stage stochastic opti-

mization for flood control by a multi-purpose reservoir. Whereas existing work considers

only single-stage setups (Boucher et al. 2012), the introduction of multiple stages at branch-

ing points of the scenario tree makes the management more adaptive to the resolution of

uncertainty and should lead to a better performance.
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2 Material and Methods

2.1 Case Description

The Três Marias hydropower reservoir is located in the São Francisco River in the center

of Minas Gerais state, Brazil (Fig. 1). It has a drainage area of approximately 55,000 km.

The region of interest in this case extends to Pirapora city, located 120 km downstream of

the reservoir. The operation of Três Marias reservoir is responsible for flood control and

mitigating flood inundation in Pirapora.

The Três Marias dam was built during the 1950s. Its reservoir has a total capacity of

19.5×109m3, with strategic importance for Brazil. It serves multiple purposes: hydropower

generation, flood control, navigation, municipal and industrial water supply and irrigation.

For Brazilian standards, the Três Marias is a watershed covered by a dense network of

meteorological and fluviometric gauges. Many of them include telemetry with real-time

data available from the National Water Agency (Agência Nacional de Águas ANA) and

CEMIG.

The short-term management of the Três Marias reservoir during flood events is con-

ducted by CEMIG. It implements the following components:

– Spill is undesired and its volume should be minimized to indirectly increase the turbine

flow and power generation.

– A time-dependent maximum forebay elevation constraint limits the forebay elevation

either to the reservoir’s maximum operating limit or an operational limit due to the

allocation of flood control storage during the wet season.

– Two flow thresholds at the downstream gauge of Pirapora Ponte exist at 2000 and

4000 m3/s. The lower one represents the flow at which the operators need to take first

Fig. 1 São Francisco river basin (until the confluence with Rio das Velhas upstream of Pirapora city), major

tributaries, CEMIG telemetric gauging stations, and the location of Três Marias reservoir
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measures and small-scale inundation starts. The higher threshold indicates the start of

large-scale inundation at the city of Pirapora causing significant flood damage.

– Large outflow gradients from Três Marias reservoir are undesired.

2.2 Model Predictive Control

For the representation of an arbitrary water resources system, we consider a discrete time

dynamic system according to

xk = f
(

xk−1, xk, uk, dk
)

yk = g
(

xk, uk, dk
) (1)

where x, y, u, d are respectively the state, dependent variable, control and disturbance vec-

tors, and f (), g() are functions representing an arbitrary linear or nonlinear water resources

model.

If being applied in Model Predictive Control (MPC), Eq. 1 is used to predict future tra-

jectories of the state x and dependent variable y over a finite time horizon represented by

k = 1, ..., N time instants, to determine the optimal set of control variables u by an opti-

mization algorithm. Under the hypothesis of knowing the realization of the disturbance

d over the time-horizon, for example the inflows into the reservoir system, a so-called

multiple-shooting version (Diehl 2001) of the nonlinear MPC becomes

min
u, x∗

u

N
∑

k=1

J
(

xk(u), yk(x, u), uk
)

+ E
(

xN (u), yN (x, u), uN
)

(2)

subject to h
(

x∗,k(u), yk(x, u), uk, dk
)

≤ 0, k = 1, ..., N (3)

x∗,k − f
(

x∗,k−1, xk, uk, dk
)

= 0 (4)

where J () is a cost function associated with each state transition, E() is an additional cost

function related to the final state condition, and h() are hard constraints on control vari-

ables and states, respectively. The notation x∗ refers to a subset of state variables which

become independent optimization variables. In this case, the related process model becomes

an equality constraint of the optimization problem in Eq. 4 such as in a simultaneous or

collocated optimization setup. A simulation model computes the remaining state variables

as well as the dependent variables according to Eq. 1 corresponding to a sequential or

single-shooting optimization setup. Xu and Schwanenberg (2012) compare pros and cons

of both methods from the perspective of control efficiency, constraints handling and scaling

in application to a storage reservoir.

The extension of the deterministic to a multi-stage stochastic optimization is achieved

by replacing the single-trace forecast by a forecast ensemble
{

ξ
j
k

}

, with j = 1, ..., M , k =

1, ..., N and computing the objective function values J and E as the probability-weighted

sum of the objective function terms of the individual ensemble branches or scenarios. This

lead to a reformulation of Eq. 2 as

min
u, x∗

u

M
∑

j=1

pj

[

N
∑

k=1

J
(

xj,k(u), yj,k(x, u), uj,k
)

+ E
(

xj,N (u), yj,N (x, u), uj,N
)

]

(5)
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where pj is the probability of the scenarios j = 1, , M and M is the total number of

scenarios. Whereas the disturbance d as well as the model states x and outputs y are treated

independently in each scenario, the control variable u is the key to the properties of the

stochastic optimization approach. The most general formulation results from the use of

scenario trees. One way for its definition is the scenario tree nodal partition matrix P(j, k)

(Dupaèová et al. 2003) with the dimensions m × n. The matrix assigns the control at time

step k of scenario j to the control vector u. This enables us to define a common control

trajectory for all scenarios at the beginning of the forecast horizon when future system states

are still uncertain and a single decision should cover all future trajectories.

When uncertainty gets resolved over the forecast horizon, for example when a forecasted

precipitation is finally observed, we introduce branching points to receive an independent

control in each scenario at the end of the forecast horizon. Equation 6 presents an example

of a nodal partition matrix for a simple tree with two scenarios and a branching point at the

second time step.

P =

[

1 2 3 4

1 2 5 6

]

(6)

The introduction of multiple branching points at several time steps leads to a multi-stage

stochastic optimization; check (Raso et al. 2013) for details. From a technical perspective,

the solution of the multi-stage stochastic optimization (Eq. 5) is very similar to the solution

of the deterministic setup of Eq. 2. The main difference is the number of dimensions of the

optimization problem. According to our experience, it is larger by a factor of 5-20, if we

derive a suitable scenario tree from a meteorological or hydrological ensemble forecast.

2.3 Scenario Tree Generation

A scenario tree is a rooted tree with the unique vertex at the first time step designated as the

root of the tree. At this initial stage, all future trajectories are possible. When uncertainty

gets resolved, we introduce branching points. At every branching point, the sample space of

the original branch splits into at least two subsets.

Methods for generating a proper tree-structure from complete scenario ensembles are

discussed in Sutiene et al. (2010), showing an empirical method to bundle scenarios based

on the k-means technique. In Raso et al. (2012), an approach is introduced which takes

into account the variety of variables the controller is able to observe along the forecasting

horizon as well as the level of resolution. In this paper we refer to Gröwe-Kuska et al.

(2003). The construction of the scenario tree is based on a simultaneous backward reduction

strategy, applied in every time step of the ensemble forecasts prediction horizon.

The criterion to terminate the reduction is defined in various ways. A scenario tree with

fixed structure can be created by determination of a predefined number of reductions for any

time step in the prediction horizon. In a second approach, we apply the maximal reduction

strategy to determine a reduced probability distribution of the stochastic process represented

by the ensemble forecast. To trade off the scenario probabilities and the distances of scenario

values we use the Kantorovich distance as a probability distance and limit it to a tolerance

level ǫ(t). For discrete probability distributions the Kantorovich distance is the optimal

value of a linear transportation problem. The reduction algorithm stops if inequality (7) is

violated for the first time.
∑

i∈J

pj min
j /∈J

c(ξi, ξj ) ≤ ǫ(t), (7)
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where c(ξi, ξj ) =
∑t

τ=1

∣

∣ξi(τ ) − ξj (τ )
∣

∣, with t ∈ {1, ..., N} and |.| denotes a norm on R
n.

J is the set of preserved scenarios.

The tolerance ǫ(t) was calculated in 5 different ways. We considered ǫ exponentially or

linear growing in t , constant or finally ǫ(t) recursively defined by Eq. 8.

ǫ(N) = (1 − q)ǫ

ǫ(t) = q ∗ ǫ(t + 1),
(8)

where t ∈ {1, ..., N − 1}, q ∈ (0, 1) and ǫ = ǫrel ∗ ǫmax . Here ǫmax is the best possible

Kantorovich distance of the original probability distribution of the ensemble forecast con-

cerning its scenarios endowed with unit mass. The relative tolerance ǫrel ∈ (0, 1) can be

modified.

If a scenario i is reduced in time step t , it will be added to the sample space of a sce-

nario j . For ensemble forecasts resulting from a stochastic process with steady domain, the

following approach is applicable. Instead of keeping the original ensemble member in the

scenario tree, it is possible to choose a branch consisting of the average over the ensemble

members from the sample space of the trajectory j . In every branching point one possible

realization bifurcates into two or more branches. This branching results in an abrupt change

of the scenario values. To avoid this sudden and physical unrealistic change of values we

smooth the skip in new branches over a given number of time steps.

2.4 Ensemble Forecast Data

Quantitative Precipitation Forecasts (QPF) of the global Ensemble Prediction System (EPS)

provided by the European Centre for Medium-range Weather Forecasts ECMWF (Molteni

et al. 1996; Buizza et al. 2005) are used as meteorological forcing of the hydrological fore-

casting model. The data of this assessment is obtained from The Observing System Research

and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE)

project portals (Bougeault et al. 2010). In comparison to the NWP of NOAA and CPTEC,

the ECMWF forecast has the best skill for the Três Marias river basin (Fan et al. 2014).

The ECMWF-EPS forecasts consist of 50 members of perturbed precipitation of 0.5

degrees resolution for the whole globe considering initial uncertainties by using singular

vectors and model uncertainties due to physical parameterizations by a stochastic scheme

(Buizza et al. 2007). The data becomes available twice a day at 00:00 UTM and 12:00 UTM

with a forecast horizon of 15 days and time steps of 6 hours. For the use in the hydrological

model, it is spatially downscaled to the watershed by Thiessen polygons and disaggregated

to hourly time steps. As a reference and comparison between deterministic and probabilistic

results, we also consider the deterministic forecast provided by ECMWF. It is also available

in the TIGGE portal.

We do not apply bias correction to the NWP rainfall. The most important restriction for

bias correction in the present case was the data availability. Good observations from the

telemetric network are only available recently starting in the year 2005, and data from the

NWP models is only available from October 2006, making the periods too short for an

adequate analysis. Also, we believe that results obtained for the NWP performance within

the hydrological model, showed below in the present paper, do not clearly request for bias

correction, and eventual differences do not affect our objectives and conclusions of this

study.

The skill of the hydrological ensemble forecasts of the Três Marias inflow is assessed by

six performance metrics. The consensus forecast ensemble is evaluated by the Mean Abso-

lute Error (MAE). Regarding the ensemble distribution, we compute the Mean Continuous
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Ranked Probability Score (Mean CRPS) and Rank Histograms. To evaluate errors relative

to discrete events, i.e. threshold crossings, computed the Brier Score (BS). For the BS, we

adopt the exceedance of 1400m3/s, which corresponds to the Q10 of the inflow (exceedance

probability of 10 %).

The same metrics (except rank histograms) are also assessed for the deterministic fore-

casts and, as a basis for verification, to the perfect forecasts obtained using the observed

rainfall in the forecast horizon. Details about metrics interpretation are available in the

Appendix. Further descriptions of the metrics computation and its mathematical basins can

be found in Wilks (2006), Brown et al. (2010), Bradley and Schwartz (2011), Hersbach

(2000), and Jolliffe and Stephenson (2012).

2.5 Hydrological and Hydraulic Modeling

We use the MGB-IPH (Modelo de Grandes Bacias Instituto de Pesquisas Hidráulicas)

model (Collischonn et al. 2005, 2007; Paz et al. 2007; Paiva et al. 2013) to conduct stream-

flow forecasts based on the meteorological forcing. The MGB-IPH model is a conceptual

hydrological model developed for large-scales river basins. In its most recent version, it is

applied using a distributed, sub-basin based spatial discretization of the main river basin

(Paiva et al. 2013). The soil type and land uses within catchments are categorized by Hydro-

logical Response Units (HRU) (Kouwen et al. 1993). The evapotranspiration in the model

relies on the Penman-Monteith equation and flow propagation through the drainage network

is implemented by the Muskingum-Cunge method. If applied for operational forecasting,

the model time step is one hour, and the execution includes a Data Assimilation (DA) pro-

cedure presented by Paz et al. (2007). The DA uses the difference between observed and

simulated streamflow to compute a correction factor and updates the state variables of the

model at each time step.

The MGB-IPH model computes the inflow into Três Marias reservoir and the laterals of

the downstream routing reach. From an optimization point-of-view, these are disturbances

of the optimum control problem. In contrary, the routing model of the river reach down-

stream of the dam is executed as an internal models in the optimization to predict future

system states, i.e. the discharge at gauge Pirapora. Since the reservoir operation can intro-

duce high flow gradients into the downstream river reach, the required model should be

able to correctly propagate these gradients to Pirapora. Furthermore, it should be compu-

tationally efficient enough to run in the optimization. Our model assessment we conduct

for clarification of the proper model approach includes a full dynamic hydraulic model in

SOBEK (Stelling and Duinmeijer 2003), a kinematic wave model as well as an integrator-

delay model, the last two implemented in the RTC-Tools package (Schwanenberg et al.

2014), as well as the MGB-internal Muskingum-Cunge method.

3 Results

3.1 Model Uncertainty

The model uncertainty of the rainfall runoff simulation with the hourly MGB-IPH model is

presented in Table 1. It provides an overview about performance indicators at 3 represen-

tative gauges in the basin and the inflow into Três Marias reservoir for a calibration period

from December 2006 till June 2011 and a validation period from June 2000 till June 2006.

The gauges Iguatama and Ponte do Mesquita are located upstream of the reservoir; gauge
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Table 1 Model performance of the MGB-IPH hydrological model (hourly time step) for a calibration period

of December 2006 - June 2011 and a validation period of June 2000 - June 2006 at three gauges and the

inflow into Três Maria reservoir

Calibration Validation

Qmean Bias MAE NSE Bias MAE NSE

[m3/s] [m3/s] [m3/s] [–] [m3/s] [m3/s] [–]

Iguatama 118 −9.31 25.72 0.88 −3.29 20.82 0.88

Ponte do Mesquita 124 −6.95 23.19 0.90 −2.89 26.66 0.78

Três Marias 660 −20.90 179.80 0.84 16.49 146.19 0.85

PBR-040 65 −12.23 28.31 0.75 −13.31 25.46 0.64

PBR040 measures the flow in the most important tributary of the downstream river reach.

Gauge PBR040 and the reservoir inflow are boundary conditions of the routing models and

of major importance.

The model calibration in the streamflow gauges shows an acceptable performance for the

data-sparse basin. The Nash-Sutcliffe model efficiency (NSE) are above 0.7 for all gauges.

Bias and Mean Average Error (MAE) are considered low in comparison to the mean flow.

This performance do not drop significant in the validation period. For the inflow into Três

Marias reservoir, NSE metrics shows a performance that can be considered adequate for

forecasting purposes. MAE and Bias are larger at this point than in the gauging stations,

mainly because flow at this point is also larger. Part of this error is also related to the fact

that the inflow data is back-calculated by the reservoir’s mass balance, leading to noisy data.

The routing model between Três Marias reservoir and the gauge Pirapora propagates

outflow from the reservoir to the downstream inundation area. It is essential for the

decision-support on flood mitigation measures in the short-term optimization approach.

The performance indicators in Table 2 summarize the performance of the different routing

approaches.

The MGB model shows a relatively poor performance in the downstream routing reach.

This primarily results come from the overestimation of inflow from tributaries in this reach.

Furthermore, a visual inspection of observed and simulated flow data at the gauge Pirapora

shows an inaccurate flow propagation with too much damping of flow gradients. Good

performance is achieved with the full dynamic SOBEK model on a fine computational grid

we introduce as a reference. Although its good performance, a direct integration in the

Table 2 Model performance at gauge Pirapora of the full dynamic hydraulic model, the simplified hydraulic

modeling approaches and the MGB-IPH model (Muskingum)

Bias MAE RMSE NSE

[m3/s] [m3/s] [m3/s] [–]

SOBEK (Full Dynamic) +5.00 39.39 73.75 0.977

Kinematic Wave (coarse grid) +5.29 42.42 78.43 0.972

Kinematic Wave (fine grid) +5.29 39.38 72.62 0.977

Integrator-Delay +5.29 38.95 72.37 0.977

MGB (Muskingum-Cunge) +33.81 54.98 95.55 0.961



1644 D. Schwanenberg et al.

optimization is not possible due to high computational costs and the absence of an adjoint

model.

A coarser and finer simplified kinematic wave model shows a good model performance.

However, a visual inspection of the simulated data shows too high damping of large flow

gradients. A spatial and temporal refinement improves results, but increases the computa-

tional costs. The best combination of accuracy and computational performance is obtained

by the integrator delay model. The integration of time lags and nonlinear reservoirs enables

a fine tuning of the flow propagation even on a coarse grid with hourly time steps.

3.2 Forecast Uncertainty

We conduct the lead-time performance analysis for a five-years period between July 2008

and July 2013 including five wet seasons in the Três Marias basin. The wet season occurs

during the austral summer (November to April) whereas the dry season takes place during

austral winter (May to October).

The lead-time performance assessment of the hydrological forecasts for the Três Marias

inflow is presented in Figs. 2, 3, 4 and 5. The MAE (Fig. 2) shows no significant

difference between the deterministic and probabilistic ECMWF-based forecasts and the per-

fect forecast up to a lead-time of 48h. In this period, the forecast primarily depends on

observed rainfall and streamflow. From a lead-time of 48h, the MAE using the ECMWF

forcing starts to diverge from the perfect forecast error. Until a lead-time of 100h, the

error between the deterministic NWP model and the mean of the ensemble is still simi-

lar. From a lead-time of 100h, the error of the ensemble mean gets significantly smaller

than the error of the deterministic forecast indicating a higher skill of the consensus

forecast.

The CRPS performance assessment (Fig. 3) confirms the similarities between forecasts

until lead-times to 48h, when the results starts to diverge. From here, the results of the

ensemble forecast shows a better performance than the deterministic one. Also, it is note-

worthy that the ensemble forecast outperforms the perfect forecast until a lead-time of

260h. In our perception and experience, this mainly suggests problems related to the sparse

Fig. 2 Mean absolute error lead-time performance results for Três Marias reservoir inflow
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Fig. 3 Mean continuous ranked probability score lead-time performance results for Três Marias reservoir

inflow

rainfall gauge availability in the basin, and it is not uncommon that some rainfall events are

not observed by the existing telemetry.

Rank Histograms (Fig. 4) of the ensemble forecasts predominately have a U-shaped

form. This indicatives of lack of spread in the forecasts, but also results from the noisy,

back-calculated inflows. The shape is more distinct until a lead-time of 48h because of the

small spread in the ensembles. This is a common characteristic of hydrological ensemble

forecasting systems that only relies on meteorological uncertainty and do not cover model

uncertainty. However, in the present case, a lack of spread is also present for larger lead-

times, indicating a general underestimation of uncertainty by the actual system. This aspect

Fig. 4 Rank histograms for Três Marias reservoir inflow
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Fig. 5 Brier score lead-time performance results for Três Marias reservoir inflow

will probably trigger future research, however, for the scope of this study, the consideration

of incomplete forecast uncertainty in the stochastic optimization should still outperform the

deterministic approach.

Finally, the BS assessment (Fig. 5) for a threshold of 1400m3/s shows again close simi-

larities between forecasts results until a lead-time of 48h. From here, the ensemble forecast

performs always better than the deterministic one. In comparison to the perfect forecast, the

ensembles show very similar results until a lead-time of 250h and become worse afterwards.

In general, the probabilistic forecast seems to have a clear added value above the deter-

ministic forecast. First, all indicator show higher skills of the probabilistic forecast in

comparison to the deterministic one. Second, the probabilistic forecast offers an additional

5 days of lead-time. Third, the ensemble spread will become a valuable input of the stochas-

tic optimization for more robust decision-making. Also, ensemble results are close (or even

better in terms of CRPS) to results obtained by using ’perfect’ forecasts with observed rain-

fall. Although we believe that the observed precipitation of the gauges is not very accurate,

this is a noteworthy result.

3.3 Scenario Tree Generation

Figure 6a presents an ensemble inflow forecast to the Três Marias reservoir and one of

the generated scenario trees (Fig. 6b). The forecast was issued on December 27, 2011, and

shows a forecast for one of the major flood events of the last ten years.

The scenario tree is built with a fixed binary structure of maximum size. First, the number

of ensemble members is reduced to the next smaller power of two. Then, branching points

of the tree are introduced at equidistant time steps over the forecast horizon. The tree is

constructed by reducing the number of the remaining ensemble members at every branching

point, starting with the last branching point. The 32 resulting branches are averaged over

their sample spaces and the transition to new branches is smoothed over 10 time steps.

Additionally, we construct a set of 118 scenario trees by using different tolerance levels.

The comparison of the constructed trees to the corresponding ensemble forecast shows no

bias of the probability weighted average of the scenarios, i.e. the MAE of both are identical.

To compare the tree quality, we evaluate the error of the branches compared to its sample

space in every time step of the prediction horizon and summed it up over the time and all
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Fig. 6 Example of a an ensemble inflow prediction issued on December 27, 2011, into the Três Marias

reservoir based on the ECMWF ensemble forecast and b the related binary scenario tree with 32 branches

branches in the tree. The worst case for this absolute quality measure occurs for a tree with

only one branch. The relation between the absolute quality measure and the worst case of the

quality measure helps to estimate the tree quality, i.e. the closer the relative quality measure

is to zero the better is the accordance to the original ensemble forecast. We observe a direct

dependence between the relative quality measure and the size of the tree. For the example in

Fig. 6, the quality measure for the tree with averaged branches is below the quality measure

of trees with original branches, while the size of the tree is constant.

3.4 Optimization Performance

Figure 7 presents deterministic and stochastic optimization results for the total outflow, spill

and forebay elevation of the Três Marias reservoir as well as the flow at the gauge Pirapora

Ponte for a forecast time of December 27, 2011. Deterministic results base upon perfect

forecasts with a forecast lead time of 10 and 15 days. Therein, the streamflow forecast of the

hydrological model is replaced by observed data. Another deterministic optimization uses

the MGB streamflow forecast forced with the deterministic ECMWF forecast of 10 days.

The stochastic optimization relies on the scenario tree of 32 final branches with a lead time

of 15 days as presented in Fig. 6b.

Deterministic results with a lead time of 10 days show similar results. Since they do not

include the peak inflow beyond Day 10, the forebay elevation increases faster and flow at

the downstream gauge is lower than in the optimization runs with a lead time of 15 days.

The latter detect the peak and foresee an average flow at the downstream gauge larger than

the first threshold of 2000 m3/s. The least-square penalty motivates the optimization to

prefer a constant flow at Pirapora Ponte by choosing an appropriate reservoir outflow under

consideration of the flow propagation to the gauge and lateral inflows from downstream

tributaries.

The stochastic optimization takes into account forecast uncertainty and propagates it

through the decision-making process. It shows a more conservative allocation of reservoir

storage, i.e. a lower forebay elevation compared to the deterministic optimization. On the

other hand, the total reservoir outflow is larger from the beginning. The reason for this is the

forebay elevation hard constraint. While the deterministic run fulfills the constraint only for

the most probable scenario (without considering forecast uncertainty), the control trajectory
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Fig. 7 Deterministic and stochastic optimization results for a forecast time of December 27, 2011: a total

reservoir outflow, b forebay elevation of the reservoir, c spill, d flow at the downstream gauge at Pirapora

Ponte

of the stochastic optimization meets the constraint for all 32 branches of the scenario tree. In

the operational context, this leads to a much higher chance to meet the constraint for a range

of potential future inflows. An alternative and less conservative approach is the formulation

of the forebay elevation bound as a chance constraint. In this case, the optimization accepts

a limited probability of a forebay elevation violation.

4 Conclusions

The use of probabilistic forecasts in combination with the multi-stage stochastic optimiza-

tion in comparison to a deterministic approach has a number of advantages in the short-term

reservoir management. One is that probabilistic forecasts often show a better skill and are

available for longer lead times, in our case 15 days compared to 10 days for the NWP

of ECMWF. This leads to an earlier detection of critical events and its better anticipation

by earlier decisions. Another one is the propagation of forecast uncertainty through the

decision-making process and its visualization for the stakeholder.

Our suggestion for the correct representation of forecast uncertainty, in our case approxi-

mated by an ensemble forecast, in a multi-stage stochastic optimization is based on scenario
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tree generation. We propose a novel method which derives the tree structure from pre-

cipitation data to generate a streamflow tree. This takes into account time lags between

the observed precipitation, i.e. the time when most of the meteorological uncertainty gets

resolved, and streamflow forecasts in large-scale river basins. Furthermore, the applied sam-

ple space averages in the tree generation lead to identical MAE by definition between the

ensemble and the tree representation in comparison to standard tree reduction approaches

which only deletes branches and aggregates the probabilities.

The extension of the deterministic optimization towards a multi-stage sto-chastic opti-

mization approach results in a number of conceptual advantages. An important one is the

option to take risk-based decisions by considering the forecast uncertainty in the optimiza-

tion. This will probably lead to more robust decisions. Furthermore, the sampling of control

trajectories facilitates the integration of non-linearity and constraints.

So far, our assessment has been based on few individual flood events. One direction of

future research will be the application of the framework to a more representative number

of cases including a better-founded assessment of the skill and benefit of the stochastic

technique in comparison to the deterministic method. A sideline will be the improvement

of the hydrological framework by the integration of additional observation, for example by

adding remote sensing data, to reduce the model uncertainty and put more focus on the

forecast uncertainty. Finally, related to the optimization framework, chance constrains are

an interesting feature for the conceptual improvement of the optimization setup.
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Appendix

Mean Absolute Error (MAE): For ensemble forecasts, the MAE is computed by i) aver-

aging the ensemble members at each lead-time, ii) calculating the absolute difference

between this average, also refered to as consensus forecast, and the corresponding

observation. The MAE of a perfect model is equal to zero.

Mean Continuous Ranked Probability Score (CRPS): The CRPS is a score that sum-

marizes the quality of a continuous probability forecast by comparing the integrated

square difference between the cumulative distribution function of forecasts and obser-

vations. The average CRPS across all pairs of forecasts and observations leads to the

Mean CRPS. It is usually considered the probabilistic equivalent of the MAE, since it

reduces to the mean absolute error for deterministic forecasts, and allows the comparison

of probabilistic and deterministic forecasts. Lower values of the mean CRPS correspond

to better results.
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Rank Histogram (RH): The RH consists in a simple counting of the percentage of cases

where observed value are placed between the ensemble forecast members within all fore-

casts and lead-times. Each position between each forecast member is denominated a bin,

and the number of bins is equal to the number of members in the ensemble forecast

plus one. In the end, the resulting histograms give a measure of the forecast spread. A

perfectly reliable with perfect spread set of forecasts would produce a flat uniform RH.

High probabilities in both tails (U shape) of the rank histogram are an indicative of lack

of spread. An inverted U shape rank histogram is an indicative of excessive spreading.

Other formats may be indicative of biases in the set of ensembles.

Brier Score (BS): The BS measures the average square error of a probability forecast for

a dichotomous event, defined by a flow threshold exceedance, for example. Error units

are given in probabilities. A perfectly sharp set of forecasts would have resulting BS

values equal to zero.
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