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Abstract

We consider a Dynamic Multi-Period Routing Problem (DMPRP)
faced by a company which deals with on-line pick-up requests and has
to serve them by a fleet of uncapacitated vehicles over a finite time hori-
zon. When a request is issued, a deadline of a given number of days d ≤ 2
is associated to it: if d = 1 the request has to be satisfied on the same
day (unpostponable request) while if d = 2 the request may be served
either on the same day or on the day after (postponable request). At the
beginning of each day some requests are already known, while others may
arrive as time goes on. Every day the company faces on-line requests by
possibly making new plans for the service and decides whether or not to
serve postponable requests without knowing the set of new requests that
will be issued the day after. The company objective is to satisfy all the
received requests while minimizing the average operational costs per day.
The daily cost includes a very high cost paid for each request forwarded to
a back-up service. We propose different short term routing strategies and
analyze their impact on the long term objective. Extensive computational
results are provided on randomly generated instances simulating different
real case scenarios and conclusions are drawn on the effectiveness of the
strategies.

Keywords: Dynamic Multi-Period Routing Problems, Postponable re-
quests, Short term strategies.

Introduction

We focus on a dynamic transportation problem typically faced by a company
which deals with on-line pick-up requests. There is a central depot which pro-
vides the fleet of vehicles for serving the requests. Requests are satisfied by
carrying parcels from a specific location to the depot. When a request is issued,
a deadline is associated to it. On the basis of the urgency of a request and the
service tariffs the customer chooses its deadline.

Every morning the vehicles leave the depot and have to return to the depot
at the end of the day. At the beginning of each day some requests are already
known (off-line requests), while others may arrive during the day (on-line re-
quests). Moreover, some of them may be postponed to a later day (postponable
requests) while others are not (unpostponable requests). Thus a request is on-
line on the day it is issued by the customer, while if it is not served on the



same day it becomes off-line. Thanks to modern communication technology,
the company knows the exact position of the vehicles at any time instant and
is able to forecast their position in the near future. The company can react to
on-line requests and possibly modify the previous traveling plans. Actually the
assignment of a pick-up request to a vehicle may be changed until the very last
moment before the service takes place.

The objective of the company is to guarantee the accomplishment of all
the received requests while minimizing the average operational cost per day.
Since issued requests are never rejected, in the case the company is not able to
guarantee the service to all received requests, it has the opportunity to forward
some of them, at a high cost, to a backup service.

In this paper we assume that the parcel size is not relevant and, for this
reason, the fleet of vehicles is assumed to be uncapacitated. Moreover, each
request has to be served within d ≤ 2 days. If d = 1 the request is unpostponable
and has to be served on the same day, whereas if d = 2 the request is postponable
and may be served on the same day or on the day after. We call this problem
the Dynamic Multi-Period Routing Problem (DMPRP). If all the requests to
be served in the future would be known in advance, the DMPRP would reduce
to a special case of the Periodic Vehicle Routing Problem (PVRP) (see Cordeau
et al.[5]). We believe that many of the ideas presented in this paper can be
extended to more general cases.

Dynamic routing problems have been attracting the interest of many re-
searchers in the last years (see the surveys by Psaraftis [14], [15] and Ghiani
et al. [8]). According to the existing literature, there exist several important
problems that have to be solved in real-time. They are usually classified ac-
cording to the application that motivates the work. There are problems dealing
with dynamic fleet management (see [16] and [18]), problems analyzing the long-
distance courier service (see, for instance, [7], [9], [11] and [12]), problems facing
dial-a-ride systems (see [10] and [6], where an interesting and effective objective
function is used for the case of a service to handicapped and elderly people).

With respect to the above cited dynamic problems, the DMPRP we study in
this paper is characterized by some distinctive features. First of all, the issues
typically addressed in the literature concern dynamic problems where one day
only is considered and requests have all to be served within the end of the day.
The requests are divided into off-line requests when they are known in advance
(as the loads coming from remote terminal and to be distributed locally (see,
for example, [7] and [9]) or as the trip booked one day in advance in dial-a-ride
problems (see, for example, [6] and [10])) and on-line requests when they come
over in real-time, while the vehicles are traveling. In such dynamic contexts
the main concern of the decision-maker is to decide whether on-line requests
should be accepted or rejected. An on-line request is accepted only if it can
be inserted in the existing service plan, otherwise it is rejected. In our case
requests can be served within two days. Thus, the requests can be either off-line
or on-line but are also classified as postponable or unpostponable. If a request
is unpostponable, it has to be inserted in the currently traveled routes, while
if it is postponable it may be, if beneficial, postponed to the following day.
The possibility to postpone the service opens new research issues. The only
known dynamic multi-period routing problem characterized by both customers
to be served today and customers that can be served either today or tomorrow
(postponable customers) is that analyzed in Angelelli et al. [2] and [3], where
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the authors provide the competitive analysis of some algorithms in a simple
case.

Another distinctive feature with respect to the literature is the approach
used to tackle the dynamic problem. The most common approach is based
on a repeated re-optimization of various instances of the off-line problem. We
propose, instead, short term routing strategies characterized by a look-ahead
period and a short term objective. For each strategy, we define a corresponding
optimization problem and provide a computational analysis of its impact on
the long term objective of the problem. We propose a Variable Neighborhood
Search (VNS) heuristic for the solution of the optimization problems. The
running time is limited by the need to have answers within a time compatible
with the real-time environment.

In order to understand the value of the proposed strategies, we compare
their efficiency and effectiveness with a naive method that mimics the behavior
of a decision-maker with no optimization tool at hand. The method immedi-
ately inserts new requests as soon as they become available by using a cheapest
insertion procedure.

The paper is organized as follows. In Section 1 the proposed Dynamic Multi-
Period Routing Problem is described and all its relevant features are put in
evidence. In this section we also provide the general definition of Short Term
Strategy (STS) and the description of the solution framework used to tackle
the dynamic problem. In Section 2 we propose several STSs and describe the
re-optimization problem which is a relevant part of the strategies. Section 3
is devoted to the description of the proposed Variable Neighborhood Search.
Finally, in Section 4, the simple method used as a comparative approach is
described and extensive computational results are provided on randomly gen-
erated instances simulating different real case scenarios and some conclusions
are drawn on the effectiveness of each short term strategy over all the tested
scenarios. Finally, some future developments are sketched.

1 The Dynamic Multi-Period Problem

The proposed Dynamic Multi-Period Routing Problem (DMPRP) is defined as
follows.

A set of pick-up requests need to be served over a time horizon of T days.
Each day a fleet of uncapacitated vehicles V = {v1, . . . , vm} is available for the
service. Every day the vehicles leave the depot in the morning and have to
return to the depot at the end of the day. The duration of a day is denoted by
τ which is also the maximum length in time of each vehicle route. We will refer
to the length of a route by understanding that the length is a time length.

At the beginning of each day some of such requests are already known, while
others may arrive over time. The traveling plans can be modified during the day
to take into account the new requests. This can happen also while the vehicle
is traveling between two destinations, i.e. we allow diversion.

Each request has a deadline of d ≤ 2 days which makes it either unpostpon-
able (d = 1) or postponable (d = 2). With respect to a fixed day in the time
horizon we define as off-line all the requests that are known in the morning
before the vehicles leave the depot, while we define as on-line all the requests
that arrive during the day while the vehicles are traveling. For instance, a new
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request which arrives today with deadline d = 2 is on-line and postponable. Off-
line requests available at the beginning of each day consist of pick-up requests
issued the day before. All such off-line requests are unpostponable and have to
be served within the day.

Each day the company has to decide whether or not to serve postponable
requests. The decision has to be taken without knowing what the set of new
requests will be issued in the future. The company never rejects a new request.
According to a common practice, we assume that no unpostponable pick-up
request is accepted after a fixed time L (e.g. noon or 1:00 pm). This rule has
the consequence that at that time the company knows the set of unpostponable
requests and can decide which of them it is able to serve with its fleet and
which it is forced to forward, at a high cost, to a back-up service. The goal
is the minimization of the total service cost over the whole horizon. We have
formalized such major target through two hierarchical objectives. The first one
is the maximization of the number of requests directly served by the company,
which is equivalent to the minimization of the number of requests forwarded to
the backup service. The second one is the minimization of the length of the
routes traveled.

1.1 The short term framework

In this section we provide the general description of a solution strategy. The
common approach used to solve a dynamic problem is based on the repeated so-
lution of its off-line version when new information becomes available and on the
application of such solution until a new re-optimization is run. While widely ac-
cepted, it is not guaranteed that such an approach will lead to good solutions in
the long term. For this reason, the crucial questions which need to be addressed
when solving a dynamic problem are related to what off-line problem should be
dynamically solved, if any, in order to achieve the long term objectives. Should
we optimize by taking as objective the long term objective? If not, what is the
right objective to optimize? Should we forget about optimization and seek for
other goals like feasibility? How often is it beneficial to re-optimize?

All such questions find an answer through the definition of a solution strat-
egy. To tackle the long term problem we have analyzed some Short Term Strate-
gies (STSs), each of which consists in the following main components:

1. A look-ahead period: The period of time over which the re-optimization
problem will be defined.

2. A short term objective: The criterion used to evaluate the quality of a
solution in the re-optimization problem.

3. A re-optimization problem: The off-line problem which is formulated and
solved, after a look-ahead period and a short term objective have been
defined.

4. A re-optimization interval. The length of the time interval between the
solution of two consecutive re-optimization problems.

When we choose the look-ahead period, we can, for example, consider the
next hours or the remaining part of the current day or a period which may also
include the day after. A too long period may cause problems because of the
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lack of information on the future, while a too short period may not allow us to
fully exploit the availability of the vehicles.

The second component is the criterion to measure the quality of a solution,
that is the objective function of the re-optimization problem. On one hand the
number of served requests is important, on the other hand the length of the
routes cannot be forgotten. The objective function selected in the short term is
strictly related to the length of the look-ahead period and may strongly affect
the quality of the solution obtainable in the long term. If the selected look-
ahead period is the current day only and we decide to maximize the number
of requests served we may end up with postponing all farthest requests and
making the satisfaction of all requests in the future a hard task. On the other
hand, if we minimize the length of the routes traveled today we may end up
with postponing as many requests as possible. Similarly, bad solutions can be
figured out by considering a two days look-ahead horizon along with the two
described objectives.

Once the first two components of the strategy have been chosen, we can de-
fine the re-optimization problem, i.e. the off-line problem which will be solved
over time. The solution of the re-optimization problem is obtained by means of a
heuristic algorithm and aims at providing new routes for the vehicles possibly in-
cluding some of the new requests that have arrived since the last re-optimization.

Finally, the last component is the frequency of the re-optimization, i.e.
the time interval which elapses between the solution of two consecutive re-
optimization problems. While it is clear that updating the routes on the ba-
sis of the new information may be locally beneficial, a large number of re-
optimizations might imply an instability effect and have negative conseguences
on the long term objective.

1.2 The long term framework

A Short Term Strategy is implemented through the solution of the correspond-
ing re-optimization problem. Each day the re-optimization problem is solved
once just before the beginning of the day and then continuously over time at
constant time intervals (re-optimization intervals). The problem solved before
the beginning of the day only considers unpostponable requests and provides
for each vehicle a route that starts and ends at the depot. The subsequent re-
optimization problems take into account all known requests (postponable and
unpostponable) and provide for each vehicle a route that starts at the fore-
casted position of the vehicle at the end of the re-optimization according to the
previously planned routes and ends at the depot.

Let us provide some notation. For sake of simplicity, we assume that each day
the time evolution of the dynamic system is indexed by a continuous variable
t ∈ [0, τ ], where τ is the length of the working day. Initially, at time t = 0,
all vehicles are idle at the central depot. Request locations, as well as vehicle
positions at any given time t ≥ 0, are assumed to be points in a bounded region
of a metric space. We indicate by RP (t) and RU (t) the set of postponable
and unpostponable requests at a given time t, respectively. We also denote by
R(t) = RP (t) ∪ RU (t) the total set of the known requests at time t. Let ∆t
be the length of the re-optimization interval and let t′ = t + ∆t. The set R(t′)
differs from R(t) for the inclusion of all the new requests which have become
available during the last re-optimization interval ∆t and for the elimination of
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Figure 1: The long term framework: Temporal distribution of the re-
optimization problem instances.

all the requests served in the meantime.

A maximum time OptT ime (for Optimization Time) is made available to
the algorithm that solves each re-optimization problem. The solution found
by a re-optimization is implemented until the end of the next re-optimization.
More precisely, if a re-optimization has taken place at time t, the generated
routes are followed by the vehicles from time t+OptT ime to time t′ +OptT ime
where t′ = t + ∆t, that is until the routes obtained with the subsequent re-
optimization have become available. Figure 1 provides the temporal description
of the proposed framework. Since we have assumed that, at the beginning of
each day, time is measured starting with time 0, the problem that has to be
solved in the morning before all the vehicles start their tours is assumed to be
solved at time −OptT ime.

2 The Short Term Strategies

We introduce two classes of Short Term Strategies. The first one, called 1-day
look-ahead(f), is characterized by a look-ahead period of only one day, while
the second one, named 2-day look-ahead(f), by a look-ahead period of two days.
A strategy belonging to the former class “works” on the routes of the current
day while a strategy of the latter class on the routes of the current day and of
the day after. Moreover, a strategy differs from the others of the same class for
the function f selected as objective function. Different re-optimization intervals
will be tested.

2.1 The short term objectives

Let rP
1

and rU
1

represent the number of postponable and unpostponable requests
served today, respectively. Moreover, let r1 and l1 denote the total number of
served requests and the total length of the routes traveled in the current day,
respectively. The objective functions f we consider for the 1-day look-ahead(f)
class are the following:

min f1

1
= l1 + rU

1
K (1)

min f2

1
= l1 + rP

1
M + rU

1
K (2)

min f3

1
=

l1
r1

+ rU
1

K (3)
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where M and K are negative constant values such that K � M � 0. According
to the notation used to indicate the objective function, the lower index refers
to the look-ahead period while the upper index to the objective function.

We recall that the hierarchical objectives of the DMPRP are the maximiza-
tion of the number of served requests and the minimization of the length of the
traveled routes. To achieve such hierarchical objectives, the objective functions
of the class 1-day look-ahead(f) first maximize the number of unpostponable
served requests, through the term rU

1
K shared by all functions. Then, each

function differs from the others for the second hierarchical objective achieved:
The minimization of the length l1 of the routes traveled in the current day
(function f1

1
), the maximization of the number of postponable requests served

rP
1

M and the minimization of the length l1 of the routes (function f2

1
), the

minimization of the average distance traveled by the vehicles to serve a request
l1/r1 (function f3

1
). Function f1

1
is consistent with the objectives of the long

term problem. However, due to the horizon of the strategy, the minimization
of the length of the routes of the current day implies that the service of all
postponable requests will be postponed to the day after. In order to overcome
this limit and to avoid problems for the day after, function f2

1
maximizes the

number of postponable requests served in the current day and then minimizes
the length of the routes. This creates the opportunity to serve more requests
the day after. However, function f2

1
anticipates to the current day whatever

request can be anticipated, independently of its location. This is the reason for
the introduction of function f3

1
that minimizes the average distance per request

traveled by a vehicle.
Given two solutions and an objective function, the best of the two is identified

avoiding the impact of specific values of the parameters. Actually, in the case
of function f1

1
for example, the best of the two solutions is the one that has the

minimum value of rU
1

and, in case of tightness, the one that has the minimum
value of l1. Similarly for the other functions.

When the routes for a certain day are planned, let r2 and l2 denote the
number of served requests and the total length of the routes traveled the day
after, respectively. The objective functions f we consider for the 2-day look-
ahead(f) strategies are the following:

min f1

2
= αl1 + (1 − α)l2 + (rP

1
+ r2)K2 + rU

1
K1 (4)

min f2

2
= αl1 + (1 − α)l2 + rP

1
M + (rP

1
+ r2)K2 + rU

1
K1 (5)

min f3

2
= α

l1
r1

+ (1 − α)
l2
r2

+ (rP
1

+ r2)K2 + rU
1

K1 (6)

where α is a real number such that 0 ≤ α ≤ 1 and M , K1, K2 are negative
constant values such that K1 � K2 � M � 0.

In the 2-day look-ahead(f) strategies the three proposed objective functions
share the objective to maximize the number of unpostponable served requests
(term rU

1
K1) and, as second hierarchical objective, to maximize the total number

of postponable requests to be served within the day after (term (rP
1

+ r2)K2).
Actually, the requests that are postponable today will become unpostponable
tomorrow and have to be served within tomorrow. The three objective functions
differ for the remaining objective to be achieved in a way similar to the functions
of the 1-day look-ahead(f) strategies.

It is reasonable to assume α > 1/2, i.e. that the length of the today routes
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is more relevant to the today decisions than the length of the routes of the day
after. If α is close to 1, function f1

2
tends to postpone to the day after the post-

ponable requests. Function f2

2
anticipates to the current day the postponable

requests and then optimizes the routes. Finally, function f3

2
finds a compromise

between postponing and anticipating the postponable requests.

2.2 The re-optimization problem

The definition of a re-optimization problem is crucial to the success of a strat-
egy. We recall that τ is the maximum length in time of a route. At any re-
optimization time t ∈ [−OptT ime, τ−OptT ime], a directed graph Gt = (Nt, At)
is defined. The set of vertices Nt represent positions. The vertex 0 represents
the position of the depot. Vertices 1, . . . , m represent the forecasted positions
of vehicles v1, . . . , vm at time t + OptT ime. Finally, vertices m + 1, . . . , m + n,
represent the positions of the requests that are known at time t and we forecast
will not yet be served at time t+OptT ime. A nonnegative value tij is associated
to each arc (i, j) ∈ At and indicates the travel time from vertex i to vertex j.

The re-optimization problem for a 2-day look-ahead(f) strategy defines, for
each vehicle vk, k ∈ {1, . . . , m}, the route for the current day sk

1
and the route for

the day after sk
2

which optimize the objective function f . The re-optimization
problem for a 1-day look-ahead(f) strategy defines the routes of the vehicles
for the current day only. Let S1 = {sk

1
| k ∈ {1, . . . , m}} and S2 = {sk

d | k ∈
{1, . . . , m}, d ∈ {1, 2}} be the set of routes representing the feasible solution of a
re-optimization problem of a 1-day look-ahead(f) and of a 2-day look-ahead(f)
strategy, respectively.

At a re-optimization time t, each route sk
1

or sk
2

is defined as a sequence of
vertices over the graph Gt = (Nt, At). A solution is feasible if it satisfies the
following operational constraints:

1. a route sk
1
, assigned to the vehicle vk, k ∈ {1, . . . , m}, must originate in

vertex k and terminate in vertex 0, while a route sk
2

must originate and
terminate in vertex 0;

2. a route sk
2
, assigned to the vehicle vk, k ∈ {1, . . . , m}, has to serve post-

ponable requests only;

3. the daily traveling time of each vehicle cannot be greater than τ . Thus,
if t > 0, the length of the routes sk

1
and sk

2
assigned to the vehicle vk,

k ∈ {1, . . . , m}, must not exceed the time limits τ − (t+OptT ime) and τ ,
respectively, while, if t = 0, the length of both routes must not exceed τ .

3 A Variable Neighborhood Search heuristic

A method for the solution of a re-optimization problem can update a current
solution (set of routes) with respect to the previous one in different ways. A
postponable request that was planned to be served today may be postponed
to tomorrow and viceversa, a just arrived on-line request may be included in a
route, a request assigned to a vehicle may be assigned to a different one or a set
of requests not visited may be inserted in new planned routes by substituting
existing requests.
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The computational time OptT ime made available for the solution of the
re-optimization problem depends on the re-optimization frequency and on the
desired time set by the decision-maker to react to new information. According
to practice, this time is usually quite short. For this reason, we present a Vari-
able Neighborhood Search (VNS) heuristic that can solve any re-optimization
problem within a short computational time. At each re-optimization time, the
heuristic starts from an initial solution S (i.e. the part not yet implemented of
the solution obtained at the previous re-optimization) and tries to improve it.
The quality of a solution is measured through the short-term objective of the
problem.

Initial solution
Let t 6= −OptT ime be the current re-optimization time and let S− be the

solution found at time t − ∆t. Depending on the re-optimization problem to
be solved, such solution will include routes for the current day only or also
routes for the day after. At time t + OptT ime there may be some routes sk

1
,

k ∈ {1, . . . , m}, belonging to S−, which have been completed and some others
that still have to be completed (residual routes).

The initial solution S includes all the residual routes and the routes {sk
2
|k =

1, ..., m} built at time t−∆t in the case of a 2-day look-ahead(f) re-optimization
problem. It may happen that S = ∅, like for example at the re-optimization
time t = −OptT ime. In this case the VNS heuristic builds a solution from
scratch.

Variable Neighborhood Search heuristic (DynaRoute)
Let us assume a local search (LS) heuristic is available. A LS heuristic may

get stuck in a local optimum. In order to escape from it, a solution can be
selected in a neighborhood of the current local optimum and the local search be
started again. If the solution is too close to the current local optimum, the LS
heuristic is likely to get back to the same local optimum. On the other hand,
if the solution is too far, the search could move away from a promising area.
The goal of a VNS heuristic is to provide a sequence of neighborhoods Nh(·),
each one characterized by a different radius h. If intensification of the search is
required, the initial radius will be set to a minimum value so that the closest
neighborhood is selected first. The radius will be increased only if no solution
improvement can be obtained. If diversification of the search is required, the
initial radius will be set to a maximum value and then decreased. The variable
neighborhood search scheme was first proposed by Mladenovic and Hansen in
[13] and has been effectively applied to many routing problems.

The VNS heuristic we propose is called DynaRoute and is initialized with
the minimum value 0 of the radius. According to the scheme presented in [13],
a solution S′ is randomly selected in the neighborhood Nh(S) of the current
solution S. Then, a LS heuristic, which we call DynaSearch and will be explained
later, is applied to S′. If the local search DynaSearch ends without a solution
better than S, a further attempt is done by selecting at random a new neighbor
S′. After pmax unsuccessful attempts, the radius h is increased and the process
repeated in the new neighborhood. If the DynaSearch succeeds, the current
solution S is updated with S′, the radius h is set to 1 and the algorithm is
restarted. The DynaRoute heuristic stops when no better solution can be found
in the neighborhood of maximum radius hmax or when the elapsed execution
time exceeds the time available for the re-optimization process OptT ime.
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Let R̃ = R̃P ∪ R̃U be the set of all requests not yet scheduled for the ser-
vice, where R̃P and R̃U are the postponable and the unpostponable requests,
respectively. Moreover, let RS be the set of requests scheduled for the service in
the current solution S. The solution S′ in the neighborhood Nh(S) is obtained
by randomly removing h requests from the routes sk

1
∈ S, k ∈ {1, . . . , m}, and,

in the case of a 2-day look-ahead(f) strategy, also 2h requests from the routes
sk
2
∈ S, k ∈ {1, . . . , m}. The extracted requests are then labeled as tabu and

inserted in R̃. Then, the solution S′ is enhanced by means of DynaSearch.
The heuristic DynaRoute can be described as follows.

DynaRoute(S, R̃)
pmax:= maximum number of trials;
hmax:= maximum value of the radius;

S∗ := S; R̃∗ := R̃;
h := 0; p := 1;

InitT ime := clock(); /* clock() returns the current time in seconds */

while ((h ≤ hmax) and ((clock() − InitT ime) ≤ OptT ime))
/* Neighbor selection */
Randomly select a solution S′ in the neighborhood Nh(S∗);

Label the extracted requests as tabu and insert them in R̃;

/* Neighbor enhancement */

S′′ :=DynaSearch(S′, R̃);

Label all the requests in R̃ as non-tabu;

if (f(S′′) < f(S∗)) then

S∗ := S′′; R̃∗ := R̃;
h := 1; p := 1;

else

R̃ := R̃∗;
if (p < pmax and h > 0) then p := p + 1;
else p := 1; h := h + 1;

end-while

return S∗

The local search heuristic DynaSearch explores a sequence of three disjoint
neighborhoods (see [4]). At each step of the local search one of the three dis-
joint neighborhoods is completely explored. If an improving solution is found,
then the current solution is updated with the best solution found and the search
starts over again. Otherwise, the next neighborhood is explored. In the case
no improving solution can be found in any neighborhood the local search ter-
minates. The order in which the neighborhoods are considered is fixed and
at each iteration the neighborhoods list is scanned from the beginning. The
neighborhoods employed are:

• INSERT: This neighborhood includes all feasible solutions that can be
obtained by inserting a not served unpostponable request in a route sk

1
∈

S′ or a not served postponable request in the routes sk
1
, sk

2
∈ S′. A new

solution is generated for each not served request and for each feasible
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insertion position. A not served request can be inserted into a route
serving n requests in, at most, n + 1 feasible positions. If the n requests
are spread over m routes, the possible insertion positions become n + m.
The number of considered solutions is, thus, O(|R̃|(r1+m)) and O(|R̃|(r1+

m) + |R̃P |(r2 + m)) in the case of a 1-day look-ahead(f) and 2-day look-
ahead(f) problem, respectively.

• RELOCATE: This neighborhood includes all feasible solutions which can
be obtained by deleting an unpostponable request from a route sk

1
∈ S′

and re-inserting it into a route sp
1
∈ S′, or by deleting a postponable

request from a route sk
1

or sk
2
∈ S′, and re-inserting it into a route sp

1
or

sp
2

of S′. A request may be relocated in the route from which it has been
deleted if inserted in a different position. The request to be relocated can
also be chosen in a route which only contains such request. Moreover,
if the number of existing routes is less than m, a request that has to be
relocated can also be assigned to a new route that will be inserted in S′.
A new solution is considered for each request belonging to a route and for
each feasible insertion position. The number of considered solutions in the
case of a 1-day look-ahead(f) strategy is O(r1((r1 −1)+m)), while for the
case of a 2-day look-ahead(f) strategy the number of evaluated solutions
is O(r1((r1 − 1) + m) + rP

1
(r2 + m) + r2((r2 − 1) + m) + r2(r1 + m)).

• EXCHANGE: This neighborhood includes all feasible solutions that can
be obtained by exchanging an unpostponable request of a route sk

1
∈ S′

with a not served unpostponable request, or a postponable request of a
route sk

1
∈ S′ with a not served request, or a request of a route sk

2
∈ S′

with a not served postponable request. Finally, the neighborhood includes
also all the solutions that can be obtained by exchanging a postponable
request of a route sk

1
∈ S′ with a postponable request of a route sk

2
∈ S′.

During the exchange, each of the requests has to be inserted into the same
route and in the same position from which the other has been removed.
The number of considered solutions is, thus, O(|R̃U |r1 + |R̃P |rP

1
) and

O(|R̃U |r1 + |R̃P |(rP
1

+ r2)+ rP
1

r2) in the case of a 1-day look-ahead(f) and
2-day look-ahead(f) problem, respectively.

The neighborhoods RELOCATE and EXCHANGE are inspired by neighbor-
hoods RELOCATE and XSTRONG presented in [4]. According to some pre-
liminary results, we have decided to sort the three neighborhoods by considering
first the neighborhood INSERT and then the neighborhoods RELOCATE and
EXCHANGE.

The DynaSearch heuristic is executed twice. The first time, in order to
avoid cyclic moves, the heuristic is executed by only considering the non-tabu
postponable and unpostponable requests included in R̃. The second time, the
heuristic is executed over all the remaining requests included in R̃, searching
for improving solutions by possibly including some of the previously excluded
tabu requests. After the execution of the DynaSearch heuristic, the tabu status
of all the requests included in R̃ is reset.

Notice that, by setting hmax = 0, the DynaRoute heuristic reduces to the
DynaSearch heuristic.
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4 Computational results

The computational analysis has been carried out on two classes of scenarios
that differ for the geographical dispersion of the requests over a service area of
100× 100 km2 in the Euclidean plane. The distance between any two points is
the Euclidean distance. In the first class (random scenarios) the requests are
uniformly distributed, while in the second one (cluster scenarios) the requests
are clustered. Each scenario is characterized by a planning horizon of T = 10
days and a daily working service period of length τ = 10 hours (from 8:00
AM to 6:00 PM). Requests are generated dynamically according to a Poisson
distribution with parameter λ. With a probability equal to 1

3
, requests arriving

before 1:00 PM are considered as unpostponable. We consider 5 different values
for the Poisson distribution parameter λ ∈ {100, 200, 300, 400, 500}. This means
5 scenarios for each class (one for each value of λ) for a total number of 10
scenarios. Then, we generate 3 different instances for each scenario for a total
number of 30 instances. Each instance differs from the others for the number of
daily requests and for the coordinates of such requests. In a random scenario
instance, whenever a request arrives its coordinates are randomly selected among
all those of the requests in problem sets r1 and r2 of the Solomon’s instances
for the VRPTW (see [17]). In all the instances of the random scenarios, the
coordinates of the depot are those of the Solomon’s instances. Instances of
cluster scenarios are similarly generated using sets c1 and c2 of the Solomon’s
instances. The service is supposed to be provided by means of a fleet of 3
vehicles, each of them traveling at a constant speed of 40 km/h.

We have tested 18 different strategies obtained by combining three different
values for the re-optimization interval ∆t equal to 5, 2.5 and 1 hours along
with 3 re-optimization problems with a look-ahead period of 1 day and 3 re-
optimization problems with a look-ahead period of 2 days. In order to make
all possible strategies comparable, an additional day is considered to complete
the work of the not yet served requests. In fact, a strategy may take improper
advantage by postponing as many requests as possible from day T to day T +1.
The parameters of DynaRoute(S, R̃) are set as follows: OptT ime has been set
equal to 1

12
∆t, while hmax and pmax have been set equal to b

√
|RS |c and bhmax

10
c,

respectively.
All computational experiments have been carried out on a 1.5GHz Intel

Pentium IV machine with 512MB of RAM. The results presented in the following
are the average values of the results obtained out of the 3 instances associated
with each scenario.

4.1 1-day look-ahead(f) strategies

We have analyzed 9 different 1-day look-ahead(f) strategies obtained by com-
bining the three short term objectives with three different values of the re-
optimization interval ∆t.

Tables 1 and 2 report the results obtained by applying such strategies in the
case of random and cluster scenarios, respectively.

Each table consists of a row for each strategy and as many columns as the
tested values of the parameter λ plus the first two columns which provide the
value of the re-optimization interval ∆t and the short term objective function
which defines the re-optimization problem. For each column associated to a
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∆t f λ = 100 λ = 200 λ = 300 λ = 400 λ = 500

time # time # time # time # time #

f1

1
204h15′15′′ 0.0 267h49′57′′ 5.7 292h49′20′′ 34.7 300h44′42′′ 97.3 303h26′18′′ 147.0

5.0h f2

1
229h53′4′′ 0.0 258h57′20′′ 15.7 291h9′35′′ 32.7 302h58′50′′ 82.7 305h14′30′′ 141.7

f3

1
210h7′5′′ 0.3 262h32′3′′ 10.3 291h55′27′′ 30.3 299h5′32′′ 80.7 303h21′35′′ 136.3

f1

1
195h55′38′′ 0.0 258h37′17′′ 0.3 289h47′12′′ 8.3 302h16′3′′ 27.7 307h25′28′′ 62.3

2.5h f2

1
238h56′21′′ 0.0 277h52′57′′ 1.7 299h28′11′′ 16.0 310h36′60′′ 38.0 312h40′60′′ 72.0

f3

1
193h58′15′′ 0.0 254h32′40′′ 0.3 287h42′56′′ 6.7 304h31′45′′ 18.0 310h19′27′′ 43.3

f1

1
186h50′26′′ 0.0 248h25′5′′ 0.0 275h50′34′′ 0.7 296h55′34′′ 4.7 305h1′15′′ 21.7

1.0h f2

1
244h5′33′′ 0.0 276h17′56′′ 0.0 298h28′24′′ 3.3 312h30′10′′ 6.3 316h13′21′′ 20.3

f3

1
185h27′7′′ 0.0 237h27′17′′ 0.0 277h23′13′′ 0.0 292h56′24′′ 4.3 307h34′59′′ 11.0

Table 1: 1-day look-ahead(f) strategies: Random scenarios.

∆t f λ = 100 λ = 200 λ = 300 λ = 400 λ = 500

time # time # time # time # time #

f1

1
188h12′55′′ 0.0 219h59′44′′ 0.3 237h36′39′′ 4.3 241h41′58′′ 25.3 245h1′28′′ 49.0

5.0h f2

1
208h49′43′′ 0.0 242h20′31′′ 1.0 246h29′3′′ 13.3 248h45′56′′ 30.3 249h6′55′′ 67.0

f3

1
190h52′46′′ 0.0 229h6′6′′ 0.7 240h45′28′′ 17.0 245h16′18′′ 33.0 246h59′38′′ 60.7

f1

1
173h9′2′′ 0.0 204h31′18′′ 0.0 232h39′9′′ 0.0 249h6′40′′ 2.0 252h29′3′′ 6.0

2.5h f2

1
221h2′47′′ 0.0 254h17′50′′ 0.0 265h51′49′′ 2.0 268h54′19′′ 4.0 277h8′34′′ 9.7

f3

1
176h51′51′′ 0.0 219h51′24′′ 0.0 237h26′5′′ 0.7 246h56′6′′ 5.3 258h58′10′′ 10.0

f1

1
161h21′59′′ 0.0 190h15′52′′ 0.0 218h0′23′′ 0.0 226h57′35′′ 0.0 238h11′6′′ 0.0

1.0h f2

1
225h26′46′′ 0.0 261h36′46′′ 0.0 269h35′12′′ 0.0 275h40′19′′ 0.0 281h10′7′′ 0.0

f3

1
162h27′55′′ 0.0 195h15′10′′ 0.0 211h46′56′′ 0.0 227h17′51′′ 0.0 240h13′41′′ 0.0

Table 2: 1-day look-ahead(f) strategies: Cluster scenarios.
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value of the parameter λ the total length of the routes measured as traveling
time and the total number of not served requests are reported, where the total
is taken over the planning horizon.

In case of random scenarios, for each value of λ, the strategies with higher
frequency of the re-optimization (smaller re-optimization interval) provide bet-
ter results in terms of not served requests. In the most difficult scenarios
(λ = 300, 400, 500), moving from strategies with ∆t = 5h to strategies with
∆t = 2.5h improves on average the results by about 65%, whereas the average
improvement is of about 80% if we consider strategies with ∆t = 1h instead
of ∆t = 2.5h. Smaller values of the re-optimization interval ∆t, from half an
hour to few minutes, have also been tested confirming this trend. Clearly, from
a practical point of view, ∆t cannot take values that are too small. Selecting
strategies with a higher re-optimization frequency allows also, in most of the
cases, to obtain better results with respect to the second hierarchical objective.
In particular, this is true if we move from strategies with ∆t = 2.5h to strate-
gies with ∆t = 1h and we consider functions f1

1
and f3

1
. On the other hand,

when function f2

1
is employed, the total length of the routes traveled increases

on average with the increase of the re-optimization frequency. This is partially
due to the increase of the number of served requests, but it also depends on the
fact that the strategies that use this function maximize the number of requests
served. This objective generates solutions where vehicles travel in already vis-
ited areas in order to serve new requests as soon as they appear. The strategies
that evaluate the solutions by means of the function f3

1
are the best. This is

especially true when ∆t = 1h. In this case, for λ = 500, function f3

1
reduces the

number of not served requests by about 49% and 46% with respect to functions
f1

1
and f2

1
, respectively. This suggests to minimize first the distance traveled to

serve unpostponable requests, and then to visit postponable requests that can
be efficiently served along the routes already planned to serve the unpostponable
ones.

The behavior of the 9 strategies in the case of cluster scenarios is similar. The
results reported in Table 2 show that cluster scenarios are easier to handle than
the random ones. Actually, the strategies based on a re-optimization interval
of one hour guarantee the service of all the requests in every scenario, while in
the case of random scenarios the best strategy is able to serve all the requests
only for values of λ ≤ 300. In cluster scenarios the best strategy is the one that
evaluates solutions by means of the function f1

1
.

4.2 2-day look-ahead(f) strategies

In order to test the 2-day look-ahead(f) strategies, we have considered three
different values of the parameter α (set equal to 0.5, 0.75 and 1−, where 1−

is a value slightly smaller than 1). For each value of α a different short term
objective, and thus a different strategy, is generated. A value α = 0.5 means
that the same weight is associated to the distances traveled today and tomorrow,
while with α = 0.75 and α = 1− a greater weight is associated to the distance
traveled today. With α = 1− a decrease in the distance traveled today is to be
preferred to any decrease in the distance traveled tomorrow. Preliminary tests
show that the re-optimization interval ∆t = 1h gives better results than those
obtained with larger values of ∆t. Smaller values of ∆t, from half an hour to
few minutes, have also been tested confirming this trend (see [1]). We report
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f α λ = 100 λ = 200 λ = 300 λ = 400 λ = 500

time # time # time # time # time #

f1

2
0.50 204h27′3′′ 0.0 256h5′18′′ 0.0 294h25′43′′ 2.3 310h38′28′′ 8.0 315h8′27′′ 17.0

0.75 178h1′3′′ 0.0 236h45′13′′ 0.0 272h1′28′′ 0.0 295h13′38′′ 2.3 306h8′31′′ 12.7

1− 181h41′13′′ 0.0 235h1′60′′ 0.0 267h14′3′′ 0.0 287h0′29′′ 2.0 298h36′8′′ 6.7

f2

2
0.50 241h18′39′′ 0.0 277h22′47′′ 0.0 298h45′1′′ 2.0 312h34′15′′ 7.7 316h32′30′′ 23.7

0.75 243h1′36′′ 0.0 275h55′43′′ 0.0 299h38′26′′ 1.0 313h20′45′′ 10.3 315h41′34′′ 19.0

1− 244h7′11′′ 0.0 276h17′56′′ 0.0 298h28′24′′ 3.3 312h30′10′′ 6.3 316h13′21′′ 20.3

f3

2
0.50 246h52′13′′ 0.0 278h52′60′′ 0.0 306h51′52′′ 1.1 314h21′12′′ 5.3 317h0′56′′ 17.7

0.75 237h39′34′′ 0.0 273h58′7′′ 0.0 300h8′55′′ 1.7 311h53′52′′ 4.0 314h23′26′′ 12.0

1− 183h19′38′′ 0.0 235h14′30′′ 0.0 276h51′14′′ 1.7 292h18′28′′ 0.7 305h28′42′′ 10.3

Table 3: 2-day look-ahead(f) strategies and ∆t = 1h: Random scenarios.

f α λ = 100 λ = 200 λ = 300 λ = 400 λ = 500

time # time # time # time # time #

f1

2
0.50 184h29′12′′ 0.0 218h1′4′′ 0.0 246h54′31′′ 0.0 265h35′52′′ 0.0 276h4′28′′ 0.0

0.75 161h20′15′′ 0.0 196h27′56′′ 0.0 220h22′27′′ 0.0 236h29′51′′ 0.0 249h53′23′′ 0.0

1− 160h31′58′′ 0.0 185h40′20′′ 0.0 206h5′6′′ 0.0 217h30′51′′ 0.0 231h16′8′′ 0.0

f2

2
0.50 225h31′42′′ 0.0 262h24′3′′ 0.0 269h48′8′′ 0.0 278h58′18′′ 0.0 281h0′59′′ 0.0

0.75 225h59′25′′ 0.0 260h10′29′′ 0.0 269h55′46′′ 0.0 275h26′55′′ 0.0 279h6′46′′ 0.0

1− 226h6′24′′ 0.0 261h43′2′′ 0.0 269h35′12′′ 0.0 276h5′30′′ 0.0 280h2′30′′ 0.0

f3

2
0.50 228h26′7′′ 0.0 258h30′55′′ 0.0 268h29′19′′ 0.0 276h47′31′′ 0.0 282h2′44′′ 0.0

0.75 223h29′40′′ 0.0 255h13′4′′ 0.0 264h33′51′′ 0.0 272h30′25′′ 0.0 276h54′59′′ 0.0

1− 161h4′12′′ 0.0 190h11′29′′ 0.0 213h58′17′′ 0.0 225h39′58′′ 0.0 237h9′16′′ 0.0

Table 4: 2-day look-ahead(f) strategies and ∆t = 1h: Cluster scenarios.
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Figure 2: Average gap: Random scenarios.

the results for ∆t = 1h only. Results for random and cluster scenarios are
presented in Tables 3 and 4, respectively. In both cases, the results obtained by
the 2-day look-ahead(f2

2
) strategies are only slightly affected by the values of α.

In general, the quality of the results obtained by applying the other strategies
improves when α increases.

If the short term objective is f1

2
or f3

2
, the number of not served requests

decreases when α increases or, if all requests are served, the length of the routes
traveled decreases when α increases. In the case of cluster scenarios, all the
requests are served independently from the chosen strategy. For α = 1−, the
2-day look-ahead(f1

2
) strategy allows us to obtain in all but one scenarios results

that are better than those obtained by means of the function f3

2
. The strategies

based on 2-day look-ahead(f2

2
) problem are confirmed to perform worse than

the others.

The results obtained by a 2-day look-ahead strategy are definitely better
than those obtained by 1-day look-ahead strategies. Comparing the best 1-day
strategies, that is the 1-day look-ahead(f3

1
) strategy in case of random scenarios

and the 1-day look-ahead(f1

1
) strategy in case of cluster scenarios, with the 2-

day look-ahead(f1

2
) strategy with α = 1−, we can see that in random scenarios,

the most difficult ones, the number of not served requests is halved and the
distance traveled is improved on average by about 2.33% as well. On the other
hand, in case of cluster scenarios, where all the strategies allow us to serve all
the requests, the best 2-day look-ahead strategy allows to decrease on average
the traveled distance by about 3.09%.

In Figure 2 the average increase of the distance with respect to the minimum
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Figure 3: Average gap: Cluster scenarios.

Strategy λ = 100 λ = 200 λ = 300 λ = 400 λ = 500

time # time # time # time # time #

myopic 256h11′39′′ 0.7 312h57′41′′ 123.7 321h51′56′′ 422.7 325h6′12′′ 728.7 325h30′39′′ 1074.7

2-day

look-ahead
181h41′13′′ 0.0 235h1′60′′ 0.0 267h14′3′′ 0.0 287h0′29′′ 2.0 298h36′8′′ 6.7

Table 5: Random scenarios, 3 vehicles.

value (over all the tested strategies) is shown. The values are reported only
for the functions that have succeeded to serve all requests. The same type of
representation is given in Figure 3 for the case of cluster scenarios. Here all
values are reported because with any function all requests are served.

4.3 The comparison with a myopic strategy

In order to estimate the value of the dynamic strategies proposed in this paper,
we compare the solutions obtained by the best of the tested strategy with the
solutions obtained with a simple strategy that we call myopic. The myopic
strategy models the behavior of a decision maker that takes decisions without
the support of any tool. The comparison should provide evidence of the value
of implementing sophisticated methods with respect to simple ones.

With the myopic strategy, a new request is inserted in the current routes and

17



Strategy λ = 100 λ = 200 λ = 300 λ = 400 λ = 500

time # time # time # time # time #

myopic 205h8′3′′ 0.0 284h14′4′′ 2.3 307h36′52′′ 13.7 315h31′39′′ 42.3 317h28′57′′ 54.3

2-day

look-ahead
160h31′58′′ 0.0 185h40′20′′ 0.0 206h5′6′′ 0.0 217h30′51′′ 0.0 231h16′8′′ 0.0

Table 6: Cluster scenarios, 3 vehicles.

is never removed. The routes are modified only to accommodate new requests.
As soon as an unpostponable request becomes known, an attempt is made to
insert it in the current routes. The request is inserted by means of the cheapest
insertion rule. If the request cannot be inserted without violating the time
constraint on the routes length, the request is classified as not served. In fact, it
will be served by the back-up service. In the case of a new postponable request,
an attempt is made to insert it in the routes of the day after. If such attempt
fails, an attempt is made to insert it in the current routes.

The myopic strategy has the advantage of being extremely simple. We com-
pare it with the best 2-day strategy, that is the 2-day look-ahead(f1

2
) strategy

with α = 1−. The results are reported in Table 5 for the case of random sce-
narios and in Table 6 for the case of cluster scenarios. In the case of random
scenarios, the myopic strategy is unable to serve all requests, even in the case of
λ = 100. When λ = 500, the number of not served requests is very high and is
about 20.51% of the total number of requests. With the 2-day look-ahead(f1

2
)

strategy with α = 1− the percentage of not served requests is equal to 0.13%.
The myopic strategy not only is extremely inefficient in terms of number of
requests served, but also makes the vehicles travel much more to serve a much
lower number of requests. In the case of cluster scenarios, the myopic strategy
is able to serve all requests only when λ = 100, while the 2-day look-ahead
strategy serves all for any value of λ. Moreover, the myopic strategy makes the
vehicles travel for an average time 42.5% longer than that required by the 2-day
look-ahead strategy.

Future developments

As future development, it is of practical interest to analyze the case where a
request has to be served within d days, with d > 2. We believe that many of
the ideas presented in this paper for d ≤ 2 can be extended to the case of larger
value of d. Moreover, according to the operational context where the problem
is applied additional constraints can be taken into account. The most common
include constraints on vehicle capacity and time windows. We believe that our
solution approach can be extended to such cases as well.
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