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Short-term traffic flow prediction is an effective means for intelligent transportation system (ITS) to mitigate traffic congestion.
However, traffic flow data with temporal features and periodic characteristics are vulnerable to weather effects, making short-term
traffic flow prediction a challenging issue. However, the existingmodels do not consider the influence of weather changes on traffic
flow, leading to poor performance under some extreme conditions. In view of the rich features of traffic data and the characteristic
of being vulnerable to external weather conditions, the prediction model based on traffic data has certain limitations, so it is
necessary to conduct research studies on traffic flow prediction driven by both the traffic data and weather data. -is paper
proposes a combined framework of stacked autoencoder (SAE) and radial basis function (RBF) neural network to predict traffic
flow, which can effectively capture the temporal correlation and periodicity of traffic flow data and disturbance of weather factors.
Firstly, SAE is used to process the traffic flow data in multiple time slices to acquire a preliminary prediction. -en, RBF is used to
capture the relation between weather disturbance and periodicity of traffic flow so as to gain another prediction. Finally, another
RBF is used for the fusion of the above two predictions on decision level, obtaining a reconstructed prediction with higher
accuracy. -e effectiveness and robustness of the proposed model are verified by experiments.

1. Introduction

In recent years, with the continuous increase of vehicle
ownership, the conflict between road resources and travel
demand is becoming increasingly acute, which leads to the
increasingly serious traffic congestion and even hinders the
development of social economy. ITS is an effective means to
alleviate traffic congestion, and short-term traffic flow
prediction is the key to it. Accurate and timely prediction of
traffic flow provides reliable basis of traffic control for
governors and meanwhile offers appropriate travel advice
for travelers so as to optimize road network and reduce
traffic congestion. However, traffic prediction is a sophis-
ticated and nonlinear problem. Traffic flow in reality has
obvious temporal correlation and periodicity, but it may
evolve in an irregular way under disturbance of weather
changes, which makes this problem more challenging.

-e existing short-term traffic flow prediction models
can be mainly divided into 3 categories: statistical models,

traditional machine learning models, and deep learning
models.

Statistical models include historical average (HA) and
autoregressive integrated moving average (ARIMA). -e
former takes the statistical average value at a certain time slip
in the past as the predicted value, while the latter establishes
mathematical model based on the time series. -is kind of
method has been widely used for a long time because it can
reveal the periodic changes of traffic flow data. In 1970s,
Ahmed et al. [1] firstly applied ARIMA on short-term traffic
flow prediction problem. After that, some improvements
had been made on the ARIMA model. Voort et al. [2]
combined Kohonen maps with ARIMA and proposed the
KARIMA method to forecast traffic flow. Williams et al. [3]
proposed seasonal ARIMA for traffic flow prediction on
expressway. Min et al. [4] proposed GSTARIMA for short-
term traffic flow prediction in urban network. For further
extraction on spatiotemporal correlation, Duan et al. [5]
proposed an extended space-time ARIMA for short-term
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traffic flow estimation. However, statistical models use
empirical data for parameter calculation based on tran-
scendental knowledge, which is not suitable to reveal the
nonlinearity and uncertainty of traffic flow.

Compared with the statistical methods, traditional
machine learning methods like support vector machine
(SVM) and support vector regression machine (SVR) show
stronger function fitting ability in complex and nonlinear
traffic flow prediction problem. -e essential idea of this
kind of method is to transform low-dimensional and lin-
early inseparable traffic data into high-dimensional and
linearly separable expression through kernel function.
Hong et al. [6] proposed a SVR traffic flow prediction
model employing the hybrid genetic algorithm to deter-
mine the suitable combination of parameters. Lou et al. [7]
presented the least square SVR algorithm for short-term
traffic flow forecasting. Hu et al. [8] used particle swarm
optimization (PSO) to determine optimal parameters for
SVR for higher precision in short-term traffic flow fore-
casting problem. Ling et al. [9] proposed multikernel SVM
and used adaptive particle swarm optimization (APSO) to
improve it. Feng et al. [10] proposed a novel SVM with
adaptive multikernel (AMSVM). Although there are a lot of
optimization studies on this kind of method, limitation in
the regression problem and lack of the ability of knowledge
mining for large-scale traffic data still constrain the pre-
diction performance.

With the emergence of traffic big data [11], short-term
traffic prediction becomes more challenging and complex,
which put forward higher requirements for data modeling.
Deep learning models, with the effectiveness for high-di-
mensional space modeling and the ability to extract features
of parameters through hierarchical representation, have
become the mainstream technology of traffic flow predic-
tion. Deep artificial neural network (ANN) [12], deep belief
network (DBN) [13, 14] based on restricted Boltzmann
machine, and long short-term memory (LSTM) network
[15] for time series problems have been studied and applied
to some extent. In addition, Xiao et al. [16] presented a short-
term multistep freeway traffic flow prediction model with
RBF whose center position of the hidden layer is determined
by the fuzzy c-means clustering algorithm. Lv et al. [17]
firstly used stacked autoencoder to learn the representation
of traffic flow features for prediction. Abdi et al. [18] pro-
posed a novel temporal difference backpropagation (TDBP)
method in the training of RBF, which improved the short-
term traffic flow prediction accuracy. Dai et al. [19] com-
bined the spatiotemporal analysis with GRU to predict
short-term traffic flow.

However, single model still has the limitation on the
process of complex data. In order to integrate the advantages
of single model to achieve more accurate traffic flow fore-
casting, a variety of combined models have emerged. Hong
et al. [20] proposed the ARIMA-ANN combination model,
using ARIMA to deal with the linear part of the historical
data and ANN for the nonlinear part. Li et al. [21] combined
the ARIMA model with the RBF model to capture the
different aspects of the underlying patterns of traffic flow. Du
et al. [22] proposed a hybrid deep learning framework based

on RNN and CNN, which can capture the spatiotemporal
dependencies of the traffic flow.

-e existing short-term traffic flow prediction methods
mainly aim at data modeling for traffic flow, and little re-
search has been done on the effect of external conditions like
weather on traffic flow. Hall et al. [23] discussed how adverse
weather affects traffic flow. Holdener et al. [24] considered
the effects of weather condition on rural freeway flow. Jian
et al. [25] investigated the microscopic traffic flow param-
eters under rainy environment. -ese research studies did
reveal part of the correlation between traffic flow and
weather conditions, but the conclusions have not been
applied to the prediction problem. Koesdwiady et al. [26]
incorporated DBNs for more accurate prediction based on
flow data and traffic data, and decision-level data fusion of
traffic flow and weather data had been realized. Zheng et al.
[27] proposed a combined architecture of embedded
components, LSTM and CNN, to capture the relationship
between traffic flow and weather. However, Koesdwiady
et al. [26] did not have a further consideration on the
weather decision (traffic prediction based on weather data
only), making it hard to achieve high performance in de-
cision-level data fusion. Reference [27] used embedding
components to extract the weather disturbance but lacked
the analysis and processing of weather parameters.

Based on the deficiency of existing methods, research
studies on traffic flow prediction driven by both the traffic
data and weather data are very important for mining data
characteristics of traffic flow and improving the accuracy in
prediction. -is paper proposes a novel combined frame-
work of SAE and RBF based on traffic flow and weather data.
-e main contributions are as follows:

(1) Corresponding data processing according to the
characteristics of the data: in terms of the non-nu-
merical weather type parameter, we firstly use one-
hot coding for the original expression. -en, with an
embedding component, the explicable expression is
learned. To deal with numerous weather parameters,
the Pearson correlation coefficient (PCC) is calcu-
lated to find out the flow-related parameters and
with principal component analysis (PCA), the se-
lected parameters are processed to be a new pa-
rameter with higher correlation. In addition, to
integrate time periodicity into prediction, HA is used
to construct time expression based on historical
traffic flow data.

(2) Incorporating the SAE and RBF to capture the
features of traffic flow and weather conditions:
considering the effectiveness of combination mod-
eling based on deep learning, we use SAE to learn the
temporal correlation in traffic flow, RBF to learn the
periodic evolution under weather disturbance, and
another RBF to realize the decision-level data fusion
of the former models. -is combined framework can
effectively learn the periodicity and temporal cor-
relation of traffic flow and the disturbance of weather
conditions so as to improve the accuracy and ro-
bustness of the prediction model.
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2. Problem Description

Traffic prediction in our research is based on the former
parameters of 12 consecutive 5-minute intervals to predict
the output flow in any subsequent time slice. -e output
target y of the prediction model can be expressed by the
following formula:

y � f X1, X2, X3, . . . , X10, X11, X12( ). (1)

Considering that the evolution of traffic flow is not only
restricted by its own regularity but also disturbed by external
weather conditions, the input parameters of the model need
to include external weather factors in addition.Xi represents
the dataset on the time slice i, including flow xflowi , time
expression xtimecode

i , vector representation of embedding
x
embedding
i , and weather parameters xweatherconditioni ; Xi can be

expressed as

Xi � xflowi , xtimecode
i , x

embedding
i , xweatherconditioni[ ], (2)

where yflowrepresents the flow prediction based on traffic
sequence and yweather&time represents the flow prediction
based on weather and time periodicity. From the perspective
of decision-level data fusion, the final flow prediction value
is the fusion value of two decisions, so the output y of the
combined model can also be expressed as follows:

y � ffusion y
flow, yweather&time( ). (3)

In multistep prediction, y is represented by yi, and i is
the step size. As shown in Figure 1(a), in the sequence-to-
sequence framework, the former output is also the input of
the next unit, and in this way, the prediction results can be
extended to any one time slice. At the beginning, this
framework was proposed for machine translation [28]. As
shown in Figure 1(b), the proposed model in this paper
referred to sequence-to-sequence model for multistep pre-
diction. Considering that the input of the prediction model
includes parameters of different types (weather and traffic
flow), some of the modules are adjusted to satisfy the
modeling demand of multivariate data.

3. Data Process

-e data from January 12, 2018, to June 11, 2018, are selected
as the training set, and the data from June 17, 2018, to
January 12, 2019, are selected as the test set. -e primary
objective of data mining in our research is to study the data
rules from 6:00 to 21:00, which is the peak period of the day.

3.1. TrafficData. -e traffic dataset of metro freeways in the
Twin Cities is from the Regional Transportation Manage-
ment Center (https://www.d.umn.edu/tdrl/traffic/). -e
original data are collected at a 30-second interval from more
than 4,500 loop detectors. -e No. 644 detector data from
January 12, 2018, to January 12, 2019, with less errors and
omissions are selected. In the data preprocessing stage, the
data are processed into a table with 5-minute interval.
Meanwhile, the omissions and error are corrected by using

the principle of time similarity. Part of the processed traffic
data is shown in Table 1.

To reveal the periodicity of traffic data under weather
disturbance, we construct time-flow correlation expression
by the HA method. -e training set is divided into working
days and nonworking days, and the average flow in every
certain time slice is counted, which is taken as the repre-
sentation of time slice. -e time-flow correlation expression
on time slice can be expressed as follows:

xtimecode
t �

1

n
∑n
j�0

xflowi,j , (4)

where xflowi,j represents the flow of time slice i on day j.

3.2. Weather Data. -e weather dataset is from the Na-
tional Oceanic and Atmospheric Administration (https://
gis.ncdc.noaa.gov/maps/ncei/lcd). On the map, we select
the site with the closest location to detector 644 and the
final selection is No. 72658414927. -e collection time of
weather data corresponds to traffic data. After data
preprocessing, part of the weather data is shown in
Table 2.

Weather type is a non-numerical parameter, so we use
one-hot coding for the preliminary treatment. However, the
sparse representation of one-hot coding cannot reflect the
correlation between weather types, resulting in the model
not effectively extracting its rich features during training. To
solve this problem, an embedding component has been
applied to extract the expression of higher dimension of
weather type. -e embedding vector of weather type can be
expressed by the following formula:

xembedding
� fembedding x

one− hot( ), (5)

where xembedding is the trained embedding vector of weather
type, while xone− hot is the one-hot expression; the relation
between them is shown in Figure 2.

Except for weather type, there are still 7 types of weather
parameters. To select the parameters relevant to traffic flow,
Pearson correlation coefficient ρ as formula (6) is calculated.
X and Y stand for two target variables involved in the
operation. -e PCC of traffic flow and weather parameters is
shown in Table 3, and the corresponding heat map is shown
in Figure 3.

ρX,Y �
cov(X,Y)

σXσY
�
E[(X − μX)(Y − μY)]

σXσY
. (6)

From Table 3, hourly dew-point temperature and hourly
precipitation have the minimum Pearson correlation coef-
ficient, so only the other five parameters are retained. For
further extraction of weather parameters, the mathematical
PCA method is used for feature-level data fusion. By linear
transformation, the original set of variables with certain
correlation is reformed into a new set of independent
variables to replace the original ones. By this way, the
original information can be retained and the similar in-
formation can be removed. Formula (7) is the original
matrix A of weather parameters:
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Table 1: Traffic flow dataset (processed).

Time Flow

2018/1/12 6:00 67
2018/1/12 6:05 86
...... ......
2018/6/12 8:05 163
2018/6/12 8:10 167
...... ......
2019/1/12 21:00 47

LSTM

A

LSTM
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Figure 1: Multistep prediction based on sequence-to-sequence framework. (a) Sequence-to-sequence model. (b) Sequence-to-sequence
proposed method.

Table 2: Weather dataset (processed).

Time Weather type Hourly dew-point temperature Hourly dry-bulb temperature Hourly precipitation

...... ...... ...... ...... ......
2018/1/14 8:15 −Sn −6 −2 0
2018/1/14 8:20 −Sn −6 −2 0
...... ...... ...... ...... ......
2018/6/2 15:00 −RA 61 64 0.01
...... ...... ...... ...... ......

Hourly relative humidity Hourly visibility Hourly wet-bulb temperature Hourly wind speed
...... ...... ...... ......
83 6 −3 8
83 6 −3 8
...... ...... ...... ......
88 2.5 62 3
...... ...... ...... ......
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A �

xDB
1 xRH1 xVis1 xWB

1 xWS
1

xDB
2 xRH2 xVis2 xWB

2 xWS
2

. . . . . . . . . . . . . . .

xDB
n−1 xRHn−1 xVisn−1 xWB

n−1 xWS
n−1

xDB
n xRHn xVisn xWB

n xWS
n




, (7)

where xDB、 xRH、 xVis、 xWB, and xWS are the selected
parameters.

After being processed by PCA, the new matrix P is
generated as follows:

P � fPCA(A) �

x
pca
1

x
pca
2

. . .

x
pca
n−1

xpcan




, (8)

where xpca is the fusion value of the selected weather pa-
rameters processed by PCA.

4. Proposed Methodology

To capture the features of traffic flow and weather condi-
tions, we propose a combined framework of SAE and RBF,
as shown in Figure 4. -e combined framework can be

divided into three modules: the flow prediction module
(FPM), the weather and periodicity module (WPM), and the
decision-level data fusion module (DDFM).

4.1. FPMUsing SAE. FPM uses SAE to extract the temporal
correlation of traffic flow, as shown in Figure 5. -e stacking
of multiple hidden layers can improve the function fitting
ability of the neural network for complicated issues. Weights
of the former three hidden layers are trained by three dif-
ferent autoencoders (AEs) using backpropagation algorithm
(BP algorithm). With these autoencoders, the input is
reproduced and SAE learns multiple expressions of original
data layer by layer.-e input of the SAE is a sequence of flow
data in continuous segments, which is denoted as

Xflow
� xflowi+1 , x

flow
i+2 , . . . , x

flow
i+11, x

flow
i+12[ ]. (9)

Ignoring the calculation process of the model and fo-
cusing on the input and output, the output target of the
model can be expressed as

yflow � fSAE X
flow( ). (10)

To train SAE, firstly, an autoencoder encodes the input
Xflow to a sparse representation as shown in the following
formula:

Xhidden1
�Whidden1Xflow, (11)

where Xhidden1 is the learned sparse representation of the
original input data andWhidden1 is the weight matrix between
the input layer and the first hidden layer.

-en, with the other two autoencoders, the input is
reconstructed again, as shown in formulas (12) and (13).

Xhidden2
�Whidden2Xhidden1, (12)

Xhidden3
�Whidden3Xhidden2, (13)

where Whidden1, Whidden2, and Whidden3 are transferred to
SAE as the weights of first three layers.-e weights of the last
layer of the SAE are trained separately in all with BP al-
gorithm after weight transfer. In this way, after training, SAE
can capture the time correlation of traffic flow data
according to the former traffic flow which is close to the
predicted value in time.

4.2.WPMUsing RBF. As shown in Figure 6, RBF is a three-
layer neural network, consisting of an input layer, hidden
layer, and output layer. Unlike general ANN, the trans-
formation of RBF from input space to hidden layer space is
nonlinear, while that from hidden layer space to output layer
space is linear. -e training of the RBF can be summarized
with two stages: (a) determine the center of basis function of
the hidden layer with unsupervised learning like clustering
algorithm and (b) train weights between hidden layer and
output layer with supervised learning.

-e purpose of WPM is to generate the flow prediction
with three processed parameters including xembedding, xtimecode,
and xpca, so the function of RBF can be described as follows:

One-hot coding
of weather type

Embedding vector
of weather type

1

0

0

.

.

.

.

.

.

Figure 2: Relation between one-hot coding and embedding.

Table 3: PCC of weather parameters and traffic flow.

Flow

Hourly dew-point temperature 0.108352
Hourly dry-bulb temperature 0.234864
Hourly precipitation −0.057385
Hourly relative humidity −0.372337
Hourly visibility 0.143758
Hourly wet-bulb temperature 0.190240
Hourly wind speed 0.140027
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Figure 4: -e combined framework of SAE and RBF.
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Figure 3: Heat map of PCC of weather parameters and traffic flow.
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yweather&time
� fRBF x

embedding, xtimecode, xpca( ). (14)

In part (a), the K-means clustering algorithm is applied
to find out m cluster centers of the input data as the radial
basis of Gaussian kernel function. -is procedure is sum-
marized in Algorithm 1.

-e selected set of cluster centers from Algorithm 1 is
also called the set of radial basis, which can be defined as

C � [c1, c2, . . . , cm−1, cm], where ci represents the selected

cluster center. Define xi � [x
embedding
i , xtimecode

i , x
pca
i ] as the

input sequence, and the Gaussian kernel function R is also
regarded as the activation function of the network, and the
definition is

R xi − cj( ) � exp −
1

2σ2
[ xi − cj

∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣2( ), (15)

xembedding

xtimecode

xpca

yweather and time

c1

cn

Σ

. . .
. . .

. . .

Figure 6: -e structure of RBF in WPM.
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Figure 5: SAE structure in FPM.
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where σ represents the hyperparameters.
With formula (15), linear indivisibility in low dimension

becomes linearly separable in high dimension, which is the
core idea of kernel function. -us, nonlinear mapping from
input layer to hidden layer is finished. -en, with formula
(16), the output target of RBF is determined.

yweather&time
i �∑h

j�1

wjR xi − cj( ), (16)

where wj represents trainable weights from hidden layer to
output layer.

In part (b), to determine the value of wj, different
methods of parameter updating can be attempted, including
BP algorithm and pseudoinverse matrix method (PIM). PIM
is a network training algorithm similar to BP, but the cal-
culation of PIM is more simple. Since the output of the
network is linear to the adjustable parameters, using PIM to
solve linear equations directly for the weights is more effi-
cient and accurate than using BP algorithm.

Pseudoinverse matrix is a generalized form of inverse
matrix, aiming at the singular matrix or nonsquare matrix
with no corresponding inverse matrix. Use W to represent
the set ofwj,Y to represent the output of the network, andX
to represent the output matrix of the hidden layer processed
by Gaussian kernel activation function. In training stage, we
assumed that the input and the output of RBF satisfy the
following formula:

XW � Y, (17)

where Wcan be calculated as

W � dot(pinv(X), Y), (18)

where dot is vector dot multiplication and pinv(X) is the
pseudoinverse matrix of X. Algorithm 2 shows the calcu-
lation process of pinv(X).

4.3. DDFM Using RBF. As shown in Figure 7, DDFM is
realized by another RBF with the same configuration of that
in WPM and differs from its input dimension. Different
from the former which used RBF for data fusion on feature
level, DDFM is designed for the decision-level data fusion of
the outputs of the former modules. RBF is a kind of neural
network with simple structure, so there is no need to
consider the hierarchical structure when modeling, and it

can meet the requirement of data fusion both in feature level
and decision level. -e output of DDFM is also the final
prediction of the combined model, and the definition is

y � yfusion � ffusion y
flow, yweather&time( ). (19)

5. Experimental Results

5.1. Evaluation Indexes. To test the performance of the
proposed model, a variety of evaluation indexes were used in
the experimental stage, including mean absolute percentage
error (MAPE), symmetric mean absolute percentage error
(SMAPE), mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE). -ese metrics
mainly reflect the gap between the real values and the
predicted values.-e specific formulas of these metrics are as
follows:

MAPE �
100%

n
∑n
i�1

y
predict
i − ytruei

ytruei

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣,

SMAPE �
100%

n
∑n
i�1

y
predict
i − ytruei

∣∣∣∣∣ ∣∣∣∣∣
y
predict
i

∣∣∣∣∣ ∣∣∣∣∣ + ytruei

∣∣∣∣ ∣∣∣∣( )/2,

MAE �
1

n
∑n
i�1

y
predict
i − ytruei

∣∣∣∣∣ ∣∣∣∣∣,
MSE �

1

n
∑n
i�1

y
predict
i − ytruei( )2,

RMSE �

����
1

n
∑n
i�1

√√
y
predict
i − ytruei( )2

. (20)

5.2. Configuration and Baselines. -e proposed model and
the baseline-model are implemented by Python-Keras, the
data are normalized by MinMaxScaler, the iteration time is
600, the batch size is 256, the function optimizer selects
RMSprop, and the loss function is MSE. According to the
actual performance of each model based on the above
standards, the relevant parameters are fine tuned. -e used
baselines include the following:

Input: given the training set of [xembedding, xtimecode, xpca], the number of cluster centers m
Procedure:
Step 1: m points were selected randomly as clustering centers.
Step 2: calculate the distance between every point and the m clustering centers, and then the points are divided into the nearest
clustering center, thus forming m clusters.
Step 3: recalculate the centroid (mean value) of each cluster, forming m new clustering centers.
Step 4: repeat step 2 to step 4 until the cluster centers no longer change or the set number of iterations is reached.
Output: the m cluster centers in the final iteration as C � [c1, c2, . . . , cm−1, cm].

ALGORITHM 1: K-means clustering.
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(1) HA: use historical averages as prediction value.

(2) LSTM: long short-term memory network for time
series problem.

(3) GRU: a variant of LSTM with simpler structure.

(4) StackedLSTM: the stacking of LSTM layer.

(5) StackedGRU: the stacking of GRU layer.

(6) SAE: stacked autoencoders, as is described in Section
4.

(7) Fusion with ANN (F-ANN): ANN for decision-level
data fusion of the outputs of FPM and WPM.

(8) Fusion with RBF on feature and decision level (F-
RBF-FDL): RBF for feature and decision-level data
fusion of the outputs of FPM and the processed data
xembedding, xtimecode, and xpca.

5.3. Performance Comparison in WPM. -e purpose of
WPM is to capture the periodic evolution and weather
disturbance. In data preprocessing stage, efforts have been
done to meet the requirements of feature extraction of
weather data, including PCC for feature selection and PCA
for feature-level data fusion of the selected weather pa-
rameters. In addition, the scheme of WPM is selected from

numerous experimental schemes. Some controlled trials
with different scheme have been done. -e comparison is
shown in Table 4.-e specific contents of each scheme are as
follows:

(a) RBF+PIM: use RBF without any process on the
weather parameters. Use PIM to train the network.

(b) RBF+PCC+PIM: on the basis of scheme a, use PCC
to reduce the amount of weather parameters. Use
PIM to train the network.

(c) RBF+PCA+PIM: on the basis of scheme a, use PCA
to fuse the weather parameters. Use PIM to train the
network.

(d) RBF+PCC+PCA+PIM: the fusion of scheme a and
scheme b. Use PIM to train the network.

(e) RBF+PCC+PCA+BP: similar to scheme d, but use
BP instead of PIM in training.

From Table 4, our selected scheme
(RBF +PCC+PCA+PIM) achieves the best performance in
all metrics. Control groups a–d confirm that the model with
feature selection by PCC and feature-level data fusion by
PCA can get more accurate prediction value. -at is, our
proposed method (PCC+PCA) for data process of weather
parameters is significant for precise prediction by accurate
extraction of periodicity and weather disturbance. Com-
paring experiment dwith experiment e, we can conclude that
using pseudoinverse matrix for solution (or weights) of
linear equation in RBF can achieve higher accuracy in a
simpler way and BP algorithm is probably not suitable for
the training of RBF.

5.4. Performance Comparison between Proposed Model and
Baselines in Single Step. -e performance comparison be-
tween our proposed model and the baselines is shown in
Figure 8 and Table 5. -e proposed model has the optimal
performance in all the selected error indexes, with
10.378414% of MAPE, 10.059485% of SMAPE, 9.494741 of
MAE, 151.153208 of MSE, and 12.294438 of RMSE. In
Table 5, models g, h, and i get better performance in pre-
diction for they all consider periodicity and weather dis-
turbance in modeling. Experiment groups h and i confirm
the effectiveness of decision-level data fusion. -at is, with

Input: matrix X
Procedure:
Step 1: singular value decomposition of X:
X � UDVT, where U and V are the orthogonal matrices.

Step 2: construct the diagonal matrix S:

S(i, i) �
0, D(i, i) �� 0
1/D(i, i), D(i, i) ! � 0

{
Step 3: calculate pinv(X):

pinv(X) � VSUT

Output: pinv(X)

ALGORITHM 2: Calculation of pinv(X).

yweather and time

yflow

yfusion

c′m

c′
1

Σ

. . .
. . .

. . .

Figure 7: -e structure of RBF in DDFM.
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the combination modeling idea and selected data fusion
scheme, the proposed model can effectively learn the tem-
poral correlation in traffic flow, the time periodicity from
historical data, and the disturbance of weather conditions so
as to improve the accuracy and robustness. In Figure 8, we

divided these methods into two categories: prediction with
traffic data only (a–f) and prediction with multivariate data
(g–i). -e groups g–i which consider the weather conditions
show higher accuracy compared with the groups a–f which
do not.

Table 4: Performance comparison in WPM.

Model MAPE (%) MAE MSE RMSE

(a) RBF+PIM 20.844211 14.272642 403.534660 20.088172
(b) RBF+PCC+PIM 20.375935 14.172910 398.247865 19.956149
(c) RBF+PCA+PIM 18.955604 14.088218 389.717634 19.741267
(d) RBF+PCC+PCA+PIM 18.857257 13.988252 384.716684 19.614196
(e) RBF +PCC+PCA+BP 21.445947 17.124295 517.260612 22.743364
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Figure 8: Performance comparison of different models. Prediction with traffic data only: (a) HA. (b) LSTM. (c) GRU. (d) StackedLSTM.
(e) StackedGRU. (f ) SAE. Prediction with both the traffic data and weather data: (g) F-ANN. (h) F-RBF-FDL. (i) Ours.
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5.5. Performance Comparison between Proposed Model and
Baselines in Multiple Steps. In Figure 9, with the increase of
time step size, an upward trend of prediction error occurred
in all models for the accumulated error from the last step,
but the proposed model is still superior to baselines in most
indicators. Compared with experiments in single step, the
proposed model shows more obvious advantages of pre-
diction accuracy in multiple steps. With the increase of

prediction time span, the accuracy gap between models will
be further widened, making the advantages of proposed
model more obvious. From Table 6, we can see the indicators
of the models in different steps. Models f and g achieve more
precise prediction value when compared to the other models
because they combine time periodicity with weather dis-
turbance in modeling. Comparing f with g, g is slightly better
than f in most indicators and most step sizes. In Step 05 and
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Figure 9: -e changing indicators of models in multiple steps.

Table 5: Performance comparison of the proposed one and baselines.

Model MAPE (%) SMAPE (%) MAE MSE RMSE

(a) HA 20.511022 17.320345 15.748870 462.314322 21.501496
(b) LSTM 11.341084 10.692583 9.998004 166.770930 12.913982
(c) GRU 11.896406 10.963014 10.053730 167.202068 12.930664
(d) StackedLSTM 10.573702 10.612538 9.695501 155.607847 12.474287
(e) StackedGRU 10.628161 10.316958 9.778009 158.479036 12.588846
(f) SAE 10.558251 10.397757 9.841813 162.254182 12.737903
(g) F-ANN 10.537031 10.134355 9.511839 151.190477 12.295954
(h) F-RBF-FDL 10.521758 10.134487 9.507794 151.528273 12.309682
(i) Ours 10.378414 10.059485 9.494741 151.153208 12.294438
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Step 06, f shows slightly better performance in MSE and
RMSE than g because time periodicity in modeling is more
important for the prediction accuracy in long-term pre-
diction. -at is, the proposed model is more stable and
precise no matter in single step or in multiple step.

6. Conclusion

A combined framework of SAE and RBF is proposed for
short-term traffic flow prediction based on traffic data and
weather data. Before modeling for traffic prediction, lots of
work for data processing are involved in our experiment. For

precise numerical representation for time periodicity, HA is
used to create time expression based on historical flow. In
terms of weather data, one-hot coding and embedding
component are used for numerical expression of weather
type while PCC and PCA are applied to the feature-level data
fusion of weather parameters. After data processing, we
incorporate SAE and RBF to capture the features of traffic
flow and weather conditions. -e final prediction considers
the temporal correlation, time periodicity, and weather
disturbance, owning higher accuracy and robustness.
Quantities of experiments have been done to test the per-
formance of the proposed model from different aspects,

Table 6: Performance comparison in multiple steps.

Prediction step Model MAPE (%) SMAPE (%) MAE MSE RMSE

Step 01 (5min)

(a) LSTM 11.34 10.69 9.99 166.77 12.91
(b) GRU 11.89 10.96 10.05 167.20 12.93
(c) StackedLSTM 10.57 10.61 9.69 155.60 12.47
(d) StackedGRU 10.62 10.31 9.77 158.47 12.58
(e) SAE 10.55 10.39 9.84 162.25 12.73
(f ) F-ANN 10.53 10.13 9.51 151.19 12.29
(g) Ours 10.37 10.05 9.49 151.15 12.29

Step 02 (10min)

(a) LSTM 13.19 12.00 11.20 215.49 14.67
(b) GRU 13.55 12.18 11.20 214.40 14.64
(c) StackedLSTM 12.15 11.75 10.69 195.16 13.97
(d) StackedGRU 12.14 11.39 10.76 197.55 14.05
(e) SAE 12.15 11.67 10.99 208.83 14.45
(f ) F-ANN 12.05 11.16 10.35 182.06 13.49
(g) Ours 11.58 10.94 10.24 180.19 13.42

Step 03 (15min)

(a) LSTM 15.07 13.21 12.34 264.90 16.27
(b) GRU 15.29 13.36 12.32 263.18 16.22
(c) StackedLSTM 13.92 12.94 11.64 234.77 15.32
(d) StackedGRU 13.75 12.41 11.70 236.78 15.38
(e) SAE 13.82 12.91 12.14 258.00 16.06
(f ) F-ANN 13.26 12.03 11.14 213.09 14.59
(g) Ours 12.92 11.84 11.03 211.28 14.53

Step 04 (20min)

(a) LSTM 16.77 14.31 13.36 314.91 17.74
(b) GRU 16.86 14.45 13.33 313.58 17.70
(c) StackedLSTM 15.51 14.05 12.51 273.88 16.54
(d) StackedGRU 15.21 13.35 12.53 274.65 16.57
(e) SAE 15.33 14.09 13.20 311.01 17.63
(f ) F-ANN 14.37 12.86 11.90 246.19 15.69
(g) Ours 14.12 12.71 11.79 244.99 15.65

Step 05 (25min)

(a) LSTM 18.32 15.41 14.38 372.75 19.30
(b) GRU 18.29 15.55 14.34 372.23 19.29
(c) StackedLSTM 16.72 15.05 13.32 318.88 17.85
(d) StackedGRU 16.48 14.28 13.36 319.37 17.87
(e) SAE 16.66 15.27 14.26 373.09 19.31
(f ) F-ANN 15.34 13.67 12.65 284.67 16.87
(g) Ours 15.18 13.59 12.55 285.80 16.90

Step 06 (30min)

(a) LSTM 19.75 16.50 15.40 434.19 20.83
(b) GRU 19.62 16.66 15.36 434.89 20.85
(c) StackedLSTM 17.93 16.10 14.19 370.32 19.24
(d) StackedGRU 17.64 15.23 14.22 369.00 19.20
(e) SAE 17.85 16.46 15.33 441.44 21.01
(f ) F-ANN 16.20 14.50 13.42 326.71 18.07
(g) Ours 16.12 14.47 13.34 331.33 18.20
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confirming that the research of our short-term traffic flow
prediction model driven by both the traffic data and weather
data is valuable.
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