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By the quick growth of wind power generation in the world, this clean energy becomes an important green electrical source in many

countries. However, volatile and non-dispatchable nature of this energy source motivates researchers to find accurate and robust

methods to predict its future values. Because of nonlinear and complex behaviors of this signal, more efficient wind power forecast

methods are still demanded. In this paper, a new forecasting engine based on Neural Network (NN) and a novel Chaotic Shark Smell

Optimization (CSSO) algorithm is proposed. Choosing optimal number of nodes for the hidden layer can enhance the efficiency of the

NN’s training performance. Accordingly, a new meta-heuristic algorithm is presented in this paper, which is based on shark abilities in

nature, for optimizing the number of hidden nodes pertaining to the NN. Effectiveness of the proposed forecasting strategy is tested on

two real-world case studies for predicting wind power. The obtained results demonstrate the capability of the proposed technique to cope

with the variability and intermittency of wind power time series for providing accurate predictions of its future values.
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1. Introduction

With the quick growth of wind energy, the large-scale integration of

this volatile energy source negatively impacts operation of electric

power systems. Forecasting the wind power is one of the most

important technologies against the challenges that large scale wind

power integration brings to power system. Thus, more efficient wind

power forecast methods are still demanded to further improve not only

the forecast accuracy but also the risk assessment.1,2 For this purpose,

several models have been proposed by researchers to tackle wind

power forecasting problem. In Ref. 3, the potential of Evolutionary

Product Unit Neural Networks (EPUNNs) has been proposed to solve

wind speed forecasting problem for wind farms. This reference has

tested the proposed method on a Spanish test case. In Ref. 4, NN-based

forecast engine has been presented for weather forecasting by

considering the wind factor. In Ref. 5, combination of differential

Empirical Mode Decomposition (EMD) and Relevance Vector

Machine (RVM) has been presented for prediction of short-term wind

power output using raw data of wind farm. In Ref. 6, two Neural

Network (NN) based models are proposed for direct and rapid

construction of prediction intervals for short-term wind power.

Combination of nonparametric and time-varying regression and time-

series model, i.e. Holt-Winters and ARMA, applied for considering

residual autocorrelation and seasonal dynamics, is proposed in Ref. 7

for prediction of wind power. A Hybrid Iterative Forecast Method

(HIFM) for wind power forecasting is presented in Ref. 8. A two stage

feature selection technique is also introduced for selecting the most

relevant and the less redundant input variables in this reference. In Ref.

9, Ridgelet Neural Network (RNN), using Ridgelets as the activation

functions in the hidden nodes, has been proposed as forecast engine to

predict the wind power. Also, a new version of Differential Evolution

(DE) algorithm with novel crossover operator and selection mechanism

is presented in this reference to train the RNN. A review of wind power

forecast methods can be found in Refs. 10-13.

In this paper, we propose a new structure for forecasting engine

based on NN as well as a new stochastic search algorithm. It is clear

that the random selection of hidden neurons may cause overfitting or

underfitting problem in the NN. Thus, we also propose a new meta-

heuristic algorithm, inspired from shark smell abilities as a superior

hunter in nature, to determine the optimum number of neurons in the

hidden layer. By applying this new algorithm, called Chaotic Shark

Smell Optimization (CSSO), we optimize the parameters of NN-based

forecasting engine to increase its training efficiency and forecast

accuracy. 
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The new contributions of this paper can be summarized as follows:

·A new prediction strategy for short-term wind power forecasting

is presented based on a new NN-based forecasting engine. In this

model the parameters of NN, such as number of neurons in the hidden

layer, are fine-tuned by an intelligent algorithm. 

· A new meta-heuristic algorithm is proposed, which is based on

shark smell optimization. In this paper, the chaotic version of this

algorithm is presented, which improves the search abilities of the basic

method in the search environment. 

The rest of the paper is organized as follows. In Section 2, the

structure of the proposed forecasting engine is introduced. Section 3

presents the suggested CSSO algorithm. Numerical results obtained

from the proposed wind power forecasting strategy are presented and

discussed in Section 4. Finally, Section 5 concludes the paper.

2. The Proposed Model for Wind Power Prediction

In this paper, back-propagation neural network is proposed as the

forecasting engine. However, before describing the classic and

modified versions of this forecasting engine, its inputs should be

determined. The proposed NN is fed by the inputs selected by the

double-filter feature selection method of Ref. 14, which is based on the

information theoretic criteria of Mutual Information (MI) and

Information Gain (IG). This method has two cascaded filters to filter

out irrelevant candidate features (i.e. the inputs that have low mutual

information with the output variable) and redundant candidate features

(i.e. the inputs that have high mutual information with the other inputs),

respectively. Only the relevant non-redundant candidate inputs,

constituting a minimum subset of the most informative features for

predicting the output variable, are selected by the feature selection

method. As this feature selection method is not the focus of this paper,

it is not further discussed here. The interested reader can refer to Ref.

14 for details of this technique. The main structure of proposed wind

power forecast strategy is presented in Fig. 1.

2.1 Back Propagation Neural Network

Neural networks have been applied successfully for different

engineering problems in recent years. In this paper, we apply the back-

propagation NN, which is one of the most popular NNs. The back-

propagation learning algorithm includes four main steps as: Feed

forward computation, Back propagation to the output layer, Back

propagation to the hidden layer and weight updates. This forecasting

engine has good abilities for dealing with nonlinear systems, such as

forecasting problem of wind power.15 In this problem, the next several

hours’ prediction is the main function of the forecast engine. The

proposed optimization algorithm will be employed for improving this

forecasting engine. The structure of a three layered back propagation

NN is presented in Fig. 2. For each hidden neuron j, the input Ij and

output Oj are defined as:

(1)

(2)

where wij is the weight between the ith neuron in the input layer and jth

neuron in the hidden layer; f(.) is the activation function of the hidden

neurons; Oi and Oj are the output of input neuron i and hidden neuron

j; hj is the bias of hidden neuron j.

The initial number of neurons in the hidden layer is considered 7.

Ii wijOi
i
∑=

Oj f Ij hj+( )=

Fig. 1 The flowchart of the proposed wind power forecast strategy

Fig. 2 Typical three-layer back propagation neural network
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Moreover, in this model, the activation function is bipolar sigmoid and

Purelin for the hidden and output layer, respectively. Also, Trainlm is

selected as the training function.16 The bipolar sigmoid activation

function is presented as Ref. 16: 

(3)

Also, the sum of absolute errors E and mean absolute error Em in the

output layer are evaluated as below:

(4)

In the above equations, n is the number of training patterns; Tk and

Ok are the target value and obtained value of kth neuron in the output

layer. The back propagation error for kth output node and jth hidden

node, denoted by δk and δj, respectively, can be calculated as given in

Ref. 16. Using the back-propagated errors, the weights of the NN are

updated to reduce the errors.17,18

2.2 Improved Back-Propagation NN

To improve the performance of the forecasting engine, the proposed

CSSO is applied, which can be described as the following steps:

· Step 1: At first, the proposed CSSO algorithm is initialized. In this

stage, the position and velocity of shark are determined. Decision

variables of the CSSO algorithm, i.e. positions of shark, are selected as

the weights and biases of the NN-based forecasting engine.

· Step 2: In the second step, the objective function of the proposed

algorithm is evaluated. In this paper, mean absolute error Em, defined

in Eq. (5) is considered as the objective function of the NN in the

training procedure. Here, Tk and Ok are actual and predicted wind

powers, respectively. 

· Step 3: Compare the value of the objective function with its value

in the previous iteration of CSSO.

· Step 4: Evolve the position of shark based on the result of the

comparison in the previous step. The evolution process of shark will be

introduced in the next section.

· Step 5: If the stopping criteria is satisfied, go to the next step.

Otherwise, go back to Step 2. 

· Step 6: The individual of CSSO algorithm leading to the lowest

objective function value (i.e. the lowest value of Em) is selected as the

CSSO solution. The weights and biases of this optimal solution are

loaded to NN-based forecasting engine, which are used as the initial

weight and bias values of the NN for applying the back-propagation

learning algorithm. In other words, the back-propagation learning

algorithm begins from these initial weight and bias values.

3. Chaotic Shark Smell Optimization

3.1 Shark Smell Optimization

Shark Smell Optimization (SSO) algorithm has recently been

proposed by Abedinia et al. in Ref. 19. This algorithm is based on

distinct shark smell abilities for localizing the prey. In sharks'

movement, the concentration of the odor is an important factor to guide

the shark to the prey. In other words, the shark moves in the way with

higher odor concentration. Fig. 3 presents the movement of shark to the

odor source based on its concentration. This characteristic is used in the

proposed SSO algorithm to find the solution of an optimization

problem. In this algorithm, we consider some assumptions, which have

been presented in Ref. 19.

3.1.1 Initialization

The proposed SSO algorithm starts the search process when the

shark smells an odor particle. Afterward, a population of the initial

solutions for the optimization problem is randomly generated within

the feasible search domain. Each solution represents one odor particle,

i.e. one possible position for the shark. The initial population of SSO

at the beginning of the search process can be represented as:

, (5)

where the ith initial position vector , i.e. ith initial candidate solution

for the optimization problem, is as follows:

, (6)

where  is the jth dimension of the i th shark position or

equivalently j th decision variable of the i th individual ; ND is the

number of decision variables of the optimization problem. As

described in the previous section, the decision variables of the

optimization problem pertaining to NN training phase are the NN

weights and biases. Magnitude of odor in each position indicates its

closeness to the prey.

3.1.2 Evolution Process

Shark has an initial velocity and location in the starting point. By

increasing the concentration of the Odor Particles (OPs), the position

and velocity of shark will be changed. So, corresponding to the position

vectors, we have NP initial velocity vectors as follows:

(7)

where each velocity vector has components in all dimensions:

, (8)

By increasing the concentration, the velocity of shark will increase.

The mathematical model for this type of movement can be expressed

through gradient of the objective function, illustrating the direction that

the objective function increases by the highest rate:

, , (9)

where OF represents the objective function and  is its

gradient; µm indicates the gradient constant. In Eq. (9), m represents

the stage number and M is the maximum number of stages for the

forward movement of shark. Also,  and R1 is a random

number with uniform distribution in the interval (0,1). According to

the Eq. (9), we can write the velocity of shark in every dimension as

follows:
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(10)

, , 

 

The current velocity of shark also depends on its previous velocity

and so Eq. (10) should be modified as:

(11)

,  

where αm is the inertia constant in the range of (0,1) for stage m. Higher

inertia constant leads to more dependency of the current velocity on the

previous one. In Eq. (11), R2 is a random number with uniform

distribution in the range (0,1), similar to R1. The shark’s velocity in

nature has an upper bound. Considering this bound, Eq. (11) becomes

as below:

(12)

,  

where γm represents the upper bound of current velocity in terms of the

previous one. Each element  of the vector  is determined

through Eq. (12). The forward movement of shark leads to a new

position in the next stage, denoted by , as below:

(13)

where, ∆tm represents the time interval for mth stage. Here, ∆tm= 1 is

considered in all stages for the sake of simplicity. Also, the local search

of shark can be modeled as: 

(14)

where, R3 is a random number in the interval (-1,+1); L represents

number of points in the local search of every stage. Among the points

searched in the forward movement and local search, the best one is

selected by shark, which is modeled in the SSO algorithm as follows:

(15)

In the selection mechanism of Eq. (18), a maximization problem is

assumed. In this paper, the free parameters of the SSO algorithm are set

as described in Ref. 19.

Although, the proposed SSO optimization algorithm uses gradient

information within the framework of a stochastic search method, gradient

operator is combined with random search operators. For instance, in Eq.

(12), the gradient operator is multiplied with a random number and then

a random part of the previous velocity is added to it through the

momentum term. More importantly, a random search operator, i.e.

rotational movement, is added to SSO and combined with the forward

movement. Thus, if candidate solution traps in a local optimum and

cannot proceed through gradient and momentum terms, the random

search operator still tries to release it. Even if the random search operator

cannot release the candidate solution from local optimum in successive

stages, which is a rare case, only one candidate solution is lost. Note that

SSO has a population of candidate solutions, which search the solution
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Fig. 3 Schematic illustration of a shark movement to odor source
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space in parallel, another characteristic not seen in a gradient approach.

Thus, the other candidate solutions can still search the solution space and

find the optimum. This is the general idea of stochastic search techniques

that combine analytical and random search operators. For instance,

regarding the gradient operator, the stochastic search method of

differential evolution uses point-wise gradient (and not analytical

gradient used in SSO) and combines it with a random search operator.

3.2 Chaotic SSO

To enhance the search diversity of the SSO, chaotic technology is

incorporated into it leading to the proposed CSSO. In the proposed

CSSO, the chaotic operator of logistic map is used, which can

randomly generate many dissimilar numbers enabling CSSO to cover

different areas of the solution space. This operator is as follows:

(16)

where Ck and Ck+1 are two successively generated numbers by the

pendulum chaotic operator in the range of (0,1). To initialize this

operator, C0 is randomly generated in the interval (0,1) such that

. There are three random number generators in

the SSO algorithm including R1 and R2 related to forward movement

and R3 pertaining to rotational movement or local search. As R1 and

R2 are in the range of (0,1), the chaotic operator of logistic map is

directly used for these random number generators. However, R3 is in

the range of (-1,+1). Thus, to apply the chaotic operator for R3, the

following equation is used in addition to Eq. (16):

(17)

In other words,  is used as R3. Considering the range

of indices in Eq. (12), ND×NP random numbers R1 and R2 should be

generated. Each of these random number generators includes a sequence

of chaotic random numbers by the length of M (i.e. the number of stages),

which are generated based on Eq. (16), i.e. . Additionally,

considering the range of subscripts in Eq. (14), NP×M random numbers

R3 should be produced. Each of these random number generators consists

of a sequence of chaotic random numbers by the length of L (i.e. the

number of points in local search), which are generated based on Eqs. (16)

and (17), i.e. . Using the chaotic random number generators

of R1, R2 and R3, the proposed CSSO can implement a more diverse

search compared to SSO, which enhances the chance of finding optimal

solution, especially in the complex search spaces, which is the case of

training of the NN-based forecasting engine. 

4. Numerical Results

The proposed wind power forecast strategy is tested on two real-

world case studies. The first one is the Pincher Creek wind farm

located in the southern part of Alberta, Canada, and the second one is

Sotavento wind farm in Spain. The error criteria used in this paper are

Root Mean Square Error (RMSE) and Normalized RMSE (NRMSE):

(18)

(19)

where SACT(t) and SFOR(t) indicate the real and predicted values of the

signal (here, wind power of the wind farm) for hour t of the forecasting

horizon; SN is the nameplate capacity of the wind farm; N represents the

number of hours of the evaluation period. Another error index employed

in this paper to measure wind power forecast accuracy is well-known

Mean Absolute Percentage Error (MAPE) criterion, which is as follows: 

(20)

However, MAPE criterion cannot be directly used to measure wind

power forecast error as actual wind power output of a wind farm, i.e. SACT(t),

may become zero in some hours. To remedy this problem a modified

version of MAPE criterion, named MMAPE, is used in this paper:

,

(21)

In other words, the average of wind power values over the

evaluation period is used in the denominator of MMAPE to avoid the

problem caused by zero values of wind power. The last error criterion

considered in this paper is Normalized Mean Absolute Error (NMAE),

which is defined as below:

(22)

The five error criteria mentioned above are well-known error

measures frequently used in the forecast literature. MAPE is a widely

used error criterion as it gives a percentage nature to mean absolute error.

However, to evaluate prediction accuracy of a wind power forecast

method, it may encounter the problem of infinite error as previously

Ck 1+
4Ck 1 Ck–( )=

C
0

0.25 0.5 0.75, ,{ }∉

Ck 1+
′ 2Ck 1+

1–=

Ck 1+
′ 1 +1,–( )∈

Ck Ck 1+
→

Ck Ck 1+
′→

RMSE
1

N
---- SACT t( ) SFOR t( )–( )

t 1=

N

∑

1 2⁄

=

NRMSE
1

N
----

SACT t( ) SFOR t( )–

SN

-----------------------------------⎝ ⎠
⎛ ⎞2

t 1=

N

∑

1 2⁄

=

MAPE
1

N
----

SACT t( ) SFOR t( )–

SACT t( )

-------------------------------------

t 1=

N

∑ 100×=

MMAPE
1

N
----

SACT t( ) SFOR t( )–

SAVE ACT–

-------------------------------------

t 1=

N

∑ 100×=

SAVE-ACT
1

N
---- SACR t( )

t 1=

N

∑=

NMAE
1

N
----

SACT t( ) SFOR t( )–

SN

-------------------------------------

t 1=

N

∑ 100×=

Fig. 4 Flowchart of chaotic SSO
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mentioned. To remedy this problem, the modified version of MAPE or

MMAPE is presented, which seems a better choice for assessing wind

power forecast error. NMAE gives another measure of mean absolute

error, which is normalized in terms of SN and not SACT(t) or SAVE-ACT

considered in MAPE and MMAPE. On the other hand, RMSE and

NMRSE are based on squared error and not absolute error. It is known

that squared error gives higher weight to larger errors. NRMSE has a

normalized form compared to RMSE. While RMSE measures prediction

error in terms of MW and can give an insight to the wind farm operator

about the MW power output that is over/under-estimated, NRMSE is a

squared error-based criterion, which is dimensionless and can measure

the wind power forecast error independent of the wind farm's size. Thus,

it cannot be said that which error criterion is the best one as each of them

evaluates forecast accuracy from a specific viewpoint. Instead, it is better

to give the values of different error criteria for a forecast method to

evaluate its prediction accuracy from different aspects and give a better

insight to the user about its effectiveness.

4.1 Alberta Test Case

Pincher Creek is a city in the southwest of Alberta, Canada. Its wind

farm is considered as the first real-world test case in this paper. For this

test case, one-hour-ahead wind power forecasting is considered.20 A

key issue for illustrating the effectiveness of a forecast method is

comparing its results with the results obtained from the other methods

and published literature figures. However, for the sake of a fair

comparison, the same error criteria should be used for all methods;

otherwise, the comparison will not be informative. In Table 1, the

results obtained from the proposed wind power forecast strategy for

this test case are compared with the results of nine other methods in

terms of MMAPE, NMA, and NRMSE error criteria. The nine

comparative methods of Table 1 include persistence,20 back

propagation NN (BPNN),20 Radial Basis Function Neural Network

(RBFNN),20 Adaptive Neuro-Fuzzy Inference System (ANFIS)];20 NN

Particle Swarm Optimization (NNPSO),20 Wavelet Transform (WT)

with BPNN,20 WT+RBFNN,20 WT+ANFIS,20 WT+NNPSO.20 The

results reported for these methods in Table 1 are directly quoted from

Ref. 20. The same test days of these methods including December 3,

July 7, May 4, and October 15 of year 2009 (i.e. one day from each

season) are also considered for the proposed wind power forecast

strategy. Thus, the evaluation period in this numerical experiment is

one day or 24 hours, i.e. N=24 for Eqs. (18)-(22).

Table 1 shows that the proposed wind power forecast strategy

provides better average results for the four test days, reported in the last

three rows, than all nine other methods in terms of all three error

criteria. Even compared to WT+NNPSO, which is the best approach

among the nine comparative methods of Table 1, the proposed strategy

has 4.3% lower average MMAPE, 0.6% lower average NMAE and

4.6% lower average NRMSE. In addition to obtaining the best average

results, the proposed forecast strategy has better results than the nine

other methods in most of comparative cases of Table 1.

In the next numerical experiment performed on this test case, the

longer evaluation period of three days is considered. The results

obtained from this numerical experiment are shown in Table 2. Similar

to Table 1, the results reported for the nine comparative methods in

Table 2 are directly quoted from Ref. 20. Table 2 shows that the

proposed wind power forecast strategy has the best average results

among all methods in terms of all three error criteria. Compared to

WT+NNPSO, i.e. the best comparative method of Table 2, the

proposed strategy leads to 4.8% lower average MMAPE, 0.8% lower

average NMAE and 3.6% lower average NRMSE. 

To also give a graphical view for the forecast capability of the

proposed strategy, its prediction errors in Table 1 are compared with the

prediction errors of WT+NNPSO and WT+ANFIS, which are the two

best comparative methods of Table 1, in Fig. 5. In each part of this

figure, corresponding to one error criterion, the error values of the

proposed strategy, WT+NNPSO and WT+ANFIS are connected to

each other for creating an error area. The smaller surface of this area

means higher prediction accuracy of the associated wind power

forecast method. All three parts of Fig. 5 show that the error area of the

proposed strategy, indicated by yellow color, has smaller surface than

the error areas of WT+NNPSO and WT+ANFIS, indicated by red and

grey colors, respectively. Thus, this figure graphically illustrates lower

prediction error of the proposed strategy compared to WT+NNPSO and

WT+ANFIS. The comparisons of Tables 1 and 2 as well as Fig. 5

clearly represent the wind power prediction capability of the proposed

strategy. 

Table 1 Obtained results for one-hour-ahead wind power prediction in the first test case with the evaluation period of one day

Test day
Error

criterion
Persistence20 BPNN20 RBFNN20 ANFIS20 NNPSO20 WT+

BPNN20

WT+

RBFNN20

WT+

ANFIS20

WT+

NNPSO20 Proposed

December 3

MMAPE 10.03 13.62 10.41 14.81 9.54 11.26 8.26 11.08 7.28 7.12

NMAE 4.18 4.32 4.61 4.75 4.09 4.09 4.19 4.55 3.87 4.02

NRMSE 5.41 5.73 5.84 6.13 5.38 5.38 5.43 5.91 5.07 4.86

May 4

MMAPE 11.31 12.42 11.07 13.51 11.41 11.41 9.22 11.76 8.73 8.50

NMAE 4.58 4.88 4.61 4.71 4.51 4.51 4.18 4.39 4.11 4.12

NRMSE 6.11 6.38 5.89 6.43 6.20 6.20 5.41 6.22 5.83 5.92

July 7

MMAPE 21.58 17.44 16.72 19.30 12.26 12.26 12.39 16.38 11.27 10.12

NMAE 8.48 7.46 7.32 7.75 5.94 5.94 7.04 7.18 5.29 5.10

NRMSE 11.25 9.23 8.88 10.16 7.33 7.33 8.36 9.63 7.02 6.76

October 15

MMAPE 14.79 13.93 12.73 12.04 12.82 12.82 14.86 11.08 5.48 5.63

NMAE 7.48 7.26 7.31 7.76 6.85 6.85 7.08 7.32 6.17 6.08

NRMSE 9.19 8.79 8.99 9.38 7.43 7.43 8.60 8.93 7.21 6.43

Average

MMAPE 14.43 14.35 12.73 14.91 11.51 11.94 11.18 12.57 8.19 7.84

NMAE 6.18 5.98 5.96 6.24 5.35 5.35 5.62 5.86 4.86 4.83

NRMSE 7.99 7.53 7.4 8.02 6.58 6.58 6.95 7.67 6.28 5.99
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4.2 Sotavento Test Case

This wind farm is located in Galicia, Spain. It consists of 24 wind

turbines of 5 different technologies. The nominal power for this test

case is 17.56 MW.21 In this test case, the proposed wind power forecast

strategy is compared with five other methods presented in Ref. 22. The

same test periods of Ref. 22, including four months of April 2010, May

2010, June 2010 and July 2010 are also considered for the proposed

strategy. The numerical results obtained for wind power forecast and

wind speed forecast are presented in Tables 3 and 4, respectively. In

these tables, the proposed strategy is compared with Persistence

Table 3 Obtained numerical results for wind power forecast of Sotavento test case

Test month

Persistence

 method22

Multivariate

ARIMA22 RBF22 MLP22 RNN22 Proposed

RMSE MMAPE RMSE MMAPE RMSE MMAPE RMSE MMAPE RMSE MMAPE RMSE MMAPE

April 2010 1.124 35.91 0.843 28.74 0.594 25.08 0.514 22.44 0.463 7.75 0.451 8.12

May 2010 0.848 30.84 0.742 27.21 0.516 18.11 0.618 19.82 0.435 11.43 0.422 10.12

June 2010 0.784 34.33 0.702 28.91 0.593 26.45 0.521 25.24 0.437 16.06 0.434 15.07

July 2010 0.826 36.84 0.691 29.54 0.501 27.75 0.467 26.14 0.376 9.33 0.401 8.59

Average 0.895 34.48 0.744 28.60 0.551 24.35 0.530 23.41 0.428 11.14 0.427 10.47

Fig. 5 Comparison of the proposed wind power forecast strategy with WT+NNPSO and WT+ANFIS (Solid: proposed, Dashed: WT+NNPSO,

Dashed-Dotted: WT+ANFIS)

Table 2 Obtained results for one-hour-ahead wind power prediction in the first test case with the evaluation period of three days

Test days
Error

criterion
Persistence20 BPNN20 RBFNN20 ANFIS20 NNPSO20 WT+

BPNN20

WT+

RBFNN20

WT+

ANFIS20

WT+

NNPSO20 Proposed

December 3-5

MMAPE 13.27 14.82 11.51 16.29 10.11 13.16 10.09 13.83 8.66 8.12

NMAE 5.86 4.72 4.76 4.93 4.65 4.54 4.33 4.42 4.11 4.06

NRMSE 8.11 5.80 5.93 6.24 5.39 5.56 5.62 5.98 5.21 5.08

May 4-6

MMAPE 9.77 12.33 10.89 14.67 11.07 11.34 9.14 12.17 9.32 8.87

NMAE 5.00 4.74 4.64 4.63 4.28 4.52 4.10 4.42 4.13 4.03

NRMSE 6.71 6.40 5.82 6.46 6.15 5.94 5.53 6.16 5.64 5.40

July 7-9

MMAPE 17.46 19.87 17.93 20.17 14.79 17.29 15.90 18.63 12.38 11.78

NMAE 5.36 7.21 7.33 8.16 5.99 7.08 7.10 7.56 5.17 5.24

NRMSE 8.12 9.82 9.07 9.56 7.83 9.19 8.46 9.12 7.18 7.04

October 15-17

MMAPE 18.29 14.67 12.92 17.94 13.77 13.40 11.85 15.79 12.61 12.12

NMAE 7.61 7.63 7.83 7.96 7.11 7.38 7.23 7.68 6.55 6.48

NRMSE 9.90 9.14 9.20 9.42 7.86 8.43 8.74 9.15 7.32 6.92

Average

MMAPE 14.70 15.42 13.31 17.27 12.43 13.80 11.74 15.10 10.74 10.22

NMAE 5.96 6.075 6.14 6.42 5.51 5.88 5.69 6.02 4.99 4.95

NRMSE 8.21 7.79 7.50 7.92 6.81 7.28 7.09 7.60 6.34 6.11

Table 4 Obtained numerical results for wind speed forecast of Sotavento test case

Test month

Persistence

 method22

Multivariate

ARIMA22 RBF22 MLP22 RNN22 Proposed

RMSE MMAPE RMSE MMAPE RMSE MMAPE RMSE MMAPE RMSE MMAPE RMSE MMAPE

April 2010 9.11 99.23 7.92 90.15 6.12 69.34 6.33 70.14 2.13 23.08 2.12 22.21

May 2010 9.21 98.15 7.52 84.34 6.92 76.91 5.38 58.12 1.74 22.23 1.65 21.86

June 2010 9.34 97.69 8.02 85.59 6.48 70.29 6.51 73.39 1.50 21.63 1.55 21.45

July 2010 8.56 98.77 6.34 74.25 6.31 72.34 5.93 66.91 1.51 20.67 1.50 21.01

Average 9.05 98.46 7.45 83.58 6.46 72.22 6.04 67.14 1.72 21.90 1.70 21.63
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method, multivariate ARIMA time series, RBF, multi-layer perceptron

(MLP) neural network trained by the efficient Levenberg-Marquardt

(LM) learning algorithm and Ridgelet Neural Network (RNN). The

results of the five comparative methods of Tables 3 and 4 are quoted

from Ref. 22. These methods have frequently been used in the other

forecast research works Refs. 23-28. Tables 3 and 4 show that the

average results of the proposed strategy for both wind power and wind

speed prediction are better than the average results of all five other

methods in terms of both RMSE and MMAPE error criteria. The

average wind power and wind speed prediction results in terms of

RMSE and MMAPE are presented in Figs. 6-9, respectively. These

figures graphically illustrate lower average errors of the proposed

strategy indicating overall better wind power and wind speed forecast

performance of the proposed strategy compared to the other methods. In

Fig. 10, sample results of the proposed method for wind power prediction

of a typical day, i.e. April 18, 2010, including the real curve and forecast

curve are shown. This figure shows that the forecast curve reasonably

follows the real curve and only small deviations are seen in it.

Selecting appropriate training period is an important factor for the

effectiveness of a neural network-based forecast method. A short

Fig. 6 Average RMSE histogram for wind power forecast of the

Sotavento test case

Fig. 7 Average MMAPE histogram for wind power forecast of the

Sotavento test case

Fig. 8 Average RMSE histogram for wind speed forecast of the

Sotavento test case

Fig. 9 Average MMAPE histogram for wind speed forecast of the

Sotavento test case

Table 5 Obtained results for wind power forecast of the Sotavento test

case with different training periods

Test month
30 days 40 days 50 days

RMSE MMAPE RMSE MMAPE RMSE MMAPE

April 2010 1.006 22.64 0.486 12.98 0.456 8.12

May 2010 1.016 23.14 0.506 12.86 0.406 10.87

June 2010 0.836 20.42 0.569 16.48 0.489 15.47

July 2010 0.859 17.54 0.468 13.68 0.401 9.14

Average 0.929 20.93 0.507 14.00 0.438 10.9

Fig. 10 Curves of real and forecast wind power values for the

Sotavento test case in April 18, 2010
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training period with small number of training samples can lead to

premature convergence of the learning phase and so the neural network

cannot correctly learn the input/output mapping function of the forecast

process. On the other hand, a long training period may include old

historical data, which are irrelevant for training of the neural network.

Using such historical data only complicates the learning process for the

neural network. To remedy this problem, usually the neural network is

run with training periods of different lengths and the training period

leading to the best forecast results is selected Ref. 29. In Table 5, three

sample results of this study to select an appropriate training period are

illustrated. These results are obtained with three training periods

including 30 days, 40 days and 50 days prior to the forecast day. It is seen

that the training period with the length of 50 days leads to the lowest

average errors in terms of both RMSE and MMAPE (reported in the last

row of Table 5) for wind power forecast of the Sotavento test case.

 The training period of the proposed wind power forecast method in

Table 3 is 50 days. Thus, the results of the proposed method in Table

3 are close to the results of Table 5 with 50 days training period. Slight

difference between these two sets of results is related to the CSSO part

of the proposed wind power forecast method. As any other

evolutionary algorithm, CSSO begins from random initial points and

thus the results of its different runs are slightly different. This leads to

small difference between the results of Table 3 and results of Table 5

with 50 days training period.

5. Conclusions

In this paper, a new wind power forecast strategy, composed of

back-propagation NN and evolutionary method, is proposed. Wind

power, appeared as a volatile time series, is a complex nonlinear

mapping function of many input variables. In the proposed forecast

strategy, the prediction performance of back-propagation NN-based

forecast engine is improved by means of the evolutionary algorithm of

CSSO. CSSO is an enhanced version of SSO, which is a stochastic

search method, inspired from shark smell capabilities in nature. CSSO

incorporates chaotic technology into SSO to improve its search

diversity. CSSO optimizes the initial weight and bias values of the

back-propagation NN. Effectiveness of the proposed wind power

forecast strategy is extensively compared with 14 other prediction

methods on two real-world test cases. These comparisons illustrate

wind power forecast capability of the proposed strategy. 
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