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Abstract: A novel approach using the short-time 
Fourier transform and wavelet transform (time- 
frequency analysis tools) for fault detection 
during impulse testing of power transformers is 
described. The neutral and/or capacitively 
transferred currents which are recorded during an 
impulse test can be directly analysed with this 
approach. These currents are considered to be 
evolving in time, i.e. as nonstationary signals, 
especially when there is a fault. Results from 
simulation studies are presented wherein the fault 
condition is modelled as a fast decaying transient 
superposed on the neutral current. A comparison 
of the two transforms is made to assess their 
ability to detect as small a fault as possible and 
other implemenational issues. Advantages of 
these methods over the conventional transfer- 
function method are demonstrated, and it appears 
that the wavelet transform is better suited for this 

I task 

1 Introduction 

Impulse testing of power transformers is a routine to 
ascertain the integrity of insulation. This involves 
application of a specific number of predefined levels of 
impulse voltage and wave shapes. The resulting neutral 
and/or capacitively transferred currents are recorded. 
Standards stipulate comparison of these currents for 
detecting any visible variation in their shapes and, if 
none are present, the apparatus is adjudged as having 
passed the test. It is quite clear that this procedure is 
simple to adopt when the apparatus has a major fault 
resulting in large changes in shape of the pertinent cur- 
rents, but is rather difficult when only a minor fault, 
say a sparkover between adjacent coilsiturns lasting for 
a few microseconds occurs [l]. In such cases, the judg- 
ment is based on the expertise of the inspector and 
often becomes controversial. However, detection of 

With the availability of fast digital recorders and per- 
sonal computers these waveforms are now being 
acquired and stored digitally, thus enabling their 
indepth analysis than mere visual examination of oscil- 
lographic traces. Initially, differences in waveforms 
were amplified and compared. Subsequently, develop- 
ment of the transfer function (TF) approach for fault 
diagnosis [2-41 was a milestone. The computed transfer 
functions at different voltage levels were compared and 
any deviation amongst them was considered to be due 
to a fault in the transformer. The main philosophy of 
this approach is that it is independent (at least theoret- 
ically speaking) of the shape of the applied voltage, 
chopping times, amplitude, bushing flashover and 
impulse-generator component faults, if any, which 
would not show up in the transfer function. But, con- 
trary to this belief, practical experience in transformer 
testing has indicated some problems with regard to it 
being independent of the input excitation and chopping 
times [5].  The possible sources leading to errors and 
ambiguity in the transfer function comparison can be 
due to one or more of the following reasons: 

(a )  noise inherent in the acquired data, in spite of good 
shielding 

(h )  errors due to sampling, quantisation, A/D errors, 
finite record length 

(cj different signal processing methods being adopted: 
windowing, filtering etc. 

It is, perhaps that due to these many unanswered ques- 
tions, this approach has not yet found its way into the 
relevant standards [6]. 

This paper presents simulation results of an entirely 
new approach, based on the time-frequency analysis of 
signals, for detecting faults from the neutral current 
waveforms. Of course, detection of major faults has 
never been an issue. Hence, the focus is on being able 
to detect accurately the smallest or minor type of 
faults, which are hard to detect using the TF approach. 

2 The underlying principle 

frequency varies with time) can be analysed with this 
tcchnique. The primary rcasoii for most real-world sig- 

rials being nonstationary is that the production of Par- 
ticular frequencies depends on the physical parameters 
and conditions of the system, which may change in 
time due to many reasons. It is important to be able to 

 



detect these changes accurately. There are a number of 
ways in which the input signal can be subjected to 
time-frequency analysis and, among them, the short- 
time Fourier transform and wavelet transform are pop- 
ular and, hence, have been considered here (Wigner 
distributions, Gabor transforms, bilinear transforms 
etc. have also been used for this purpose). 

Time-frequency analysis of nonstationary signals 
indicates the time instants at which different frequency 
components of the signal come into reckoning. One 
direct consequence of such a treatment will be the pos- 
sibility to accurately locate in time all abrupt changes 
in the signal and estimate their frequency components 
as well. It is in this very application that we are inter- 
ested in here, i.e. to locate low-magnitude abrupt 
changes in the neutral current waveforms. In this con- 
text, we can visualise the neutral current as a nonsta- 
tionary signal whose properties change or evolve in 
time, when there is a fault. This is particularly so when 
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there is a momentary short-circuit between adjacent 
turns due to high stresses. This short-circuit lasts for a 
short interval only, say 1-2p, and can be considered to 
manifest itself as a fast decaying oscillation superim- 
posed on the neutral current. During such momentary 
short circuits, the circuit conditions are definitely 
altered, but due to the low magnitude and transient 
nature, the influence of such a short-circuit on the 
transfer function is almost insignificant, as will be 
shown later in the simulations. 

3 
transform (STFT) [71 

Brief introduction to short-time Fourier 

The primary objective of time-frequency analysis is to 
be able to define a function that will describe the 
energy density of a signal simultaneously in time and 
frequency, and is commonly used in applications to 
speech, sonar and acoustic signals. Among the few 
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Fig. 1 
a Case 1 ,  no fault 
b Case 1, with fault 
c Case 2, no fault 
d Case 2, with fault 
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tools, STFT happens to be very common and popular, 
because the concept behind it is simple yet powerful. 

The basic idea of STFT is to slice up the signal into 
suitable overlapping time segments (using windowing 
methods) and then to Fourier analyse each slice to 
ascertain the frequencies contained in it. The accumula- 
tion of such spectra indicates how the spectrum is vary- 
ing in time and is called the spectrogram. It is assumed 
that frequency information is associated with the time 
index in the middle of each slice of windowed data. 
STFT of a continuous-time signal x( t )  is defined as: 

STFT(f, T )  = J’ z(t)w(t  - T )  e x p ( - j 2 7 ~ f t ) d t  

where w(t)  is the window function whose position is 
translated in time by z. There are some limitations 
associated with STFT, the first being the window 
length. It is obvious that a wide window yields a good 

- -oo<t<oo (1) 
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(7 

resolution in the frequency domain, but poor resolu- 
tion in the time domain, and vice versa. So, in practical 
situations, a compromise between the two resolutions 

has to be made. Secondly, raw STFT is computation- 

ally expensive, but ways of accelerating it by avoiding 
redundant calculations are available in the literature. 
These drawbacks notwithstanding, STFT is an ideal 

tool in many respects, the most important being its 
excellent spectrogram structure, which is consistent 
with our intuition regarding frequency spectra, thereby 
qualifying as a good visualisation tool. 

4 

[8,91 

Signal processing using wavelet theory has emerged as 

a powerful tool over the past ten years and has led to 
significant developments in data analysis, data com- 

pression, image and speech processing, multiresolution 

Brief introduction to wavelet transforms (WT) 
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analysis etc. The WT like the Fourier transform 
decomposes a given signal into its frequency compo- 
nents, but differs in providing a nonuniform division of 
the frequency domain. In addition, unlike the Fourier 
transform which gives a global representation of the 
signal, WT provides a local representation in both time 
and frequency. This results from the fact that the ana- 
lysing basis functions in the case of the Fourier trans- 
form (namely sines and cosines) extend over infinite 
time, whereas they are compactly supported functions 
in the case of WT, thus giving them the localisation 
property. This property greatly facilitates analysis of 
nonstationary signals, transient detection etc. A mathe- 
matical definition of WT follows: 

Let x(t) denote a continuous-time finite energy 
signal, then WT of x(t) is defined as: 

z ( i ) g ( , , b ) ( t ) d t  - 00 < t < 00 (2) 

where 

g ( a , b ) ( t )  = lal(-1’2)g((t - b ) / a )  ( 3 )  

is called the base function or mother wavelet. a,  b (real, 
a # 0) are the dilation and translation parameters, 
respectively. A restriction on the choice of g( t )  is that it 
must have a zero average value and be of short dura- 
tion, which, mathematically, is called the admissibility 
condition on g(t). Daubechies’ wavelet, Morlet wavelet, 
Harr wavelet are some examples of popularly used 
functions for g( t )  [8, 91. 

In general, STFT and WT may be interpreted as 
inner products of the signal and a set of analysing 
functions located throughout in the time-frequency 
and time-scale planes, respectively. The function WT(a, 
b) gives an idea of the contributions to the signal 
around time b, at a scale u and hence leads to a time- 
scale decomposition when compared to the time-fre- 
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Fig.3 
n Magnitude, no fault 
0 Phase, no fault 
c Magnitude, with fault 
d Phase, with fault 
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quency decomposition obtained from STFT. The quan- 
tities frequency and scale are inversely related, i.e. a 
small value of a implies a high frequency and vice 
versa. Time-scale decomposition obtained from the WT 
is referred to as a scalogram. Among the many wavelet 
functions, the Morlet wavelet 

g ( t )  = exp(- jwot)  exp(-t2/2) (4) 

has been shown to yield the best time-frequency locali- 
sation [lo], and, hence, has been chosen here. Briefly, 
the steps involved in computing scalograms are given 
by the following pseudocode: 

Input: sampling rate, minimum, maximum and step- 
size of scale-factor a, input signal 

Do Loop scale-factor = minimum, maximum, step- 
size: 

for each scale-factor 

compute length, lw, of Morlet wavelet required 

compute Morlet wavelet sequence with b = 0 

convolve this with the input signal 

accumulate convolution result after discarding ini- 
tial and final lw/2 points 

End Loop 

Plot magnitude and phase of accumulated results to 
yield scalograms 

(Note: For computing the Morlet wavelet, a value of 
-6 to +6 time units is used because its values are negli- 
gibly small for Abs(t) > 6 time units. Based on this and 
the sampling rate, Iw is obtained, using which a linear 
time-space is generated for computing the Morlet 
wavelet sequence. Anonymous FTP sites for download- 
ing useful wavelet transform and related programs are: 
playfair.stanford.edu in /pub/wavelab, ftp.tsc.uvigo.es 
in IpubNvi-Waveimatlabl) 
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n Magnitude, no fault 
b Phase, no fault 
c Magnitude, with fault 
d Phase, with fault 
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5 Simulation 

In this work, two neutral currents (case 1 and case 2) 
corresponding to two chopped voltages (4096 points, 
sampled at 50ns) with different chopping times are 
used [ll]. Owing to the chopped wave and its conse- 
quences, the transformer insulation is subjected to very 
high stresses which are usually the cause of failures. 
Failure detection under these conditions is a good 
index of any method. Also, it has been well established 
that initial effects of the fault manifests itself in the 
neutral current with a delay of about 1 - 2 p  after the 
instant of chopping [l]. This situation is simulated by 
superposing a short-duration (exponentially decaying) 
oscillating transient onto the neutral current, starting at 
time instant t = 6 . 5 ~ .  Its frequency, decay time con- 
stant and amplitude are chosen as 2MHz, 0 . 2 5 ~  and 
about 6% of the neutral current peak, respectively. 
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Fig. 5 
a Magnitude, no fault 
b Phase, no fault 
c Magnitude, with fault 
d Phase, with fault 
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Addition of the fault component does not produce any 
appreciable observable change in the neutral current as 
can be seen in a later Figure. To see the possible 
impact of proximity of chopping time and occurrence 
of fault, different chopping times, viz. two times to 
chop 5ps and 4 . 4 ~  (case 1 and case 2, respectively), 
were chosen. The goal is to detect as small a change as 
possible under these circumstances. 

6 Results and discussion 

First, the ability of the transfer function approach to 
such superposed faults is investigated. Transfer func- 
tions calculated with and without superposition of fault 
are shown in Fig. 1, for case 1 and case 2. As can be 
seen, owing to the inclusion of the fault, there are only 
small variations in the transfer function, but its effect is 
global, i.e. spread throughout the spectrum. Therefore, 
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neither the frequency content of fault nor the time of  
its occurrence can be determined using the TF 
approach. During simulations, it has been observed 
that, when the frequency of the superposed fault coin- 
cides with one of the poles of the system, even this 
small variation is not apparent. Hence, such small dis- 
turbances are difficult, if not impossible, to resolve by 
the transfer function approach. 

As already mentioned in the STFT approach, choice 
of window length plays an important role. Various 
window lengths have been tried out. As locating the 
time instant of fault occurrence is important, a narrow 
window o f  length 64 and 32 points were found suitable, 
even though the frequency resolution was poor. A 
Hamming window translated each time to the right by 
4 data points was used. As any phenomenon in the 
neighbourhood of the chopping time is of interest, only 
the first 1024 points were processed. Such a selective 
segmentation of the time records is not possible with 

I n  

the transfer function approach. Spectrogram magnitude 
and phase plots for case 1 and case 2 are shown in 
Figs. 2 and 3, respectively. The dark patch parallel to 
the frequency axis is due to the high-frequency compo- 
nents in the neutral current corresponding to the chop- 
ping action. The occurrence of the fault can be 
visualised with some effort in both the magnitude and 
phase plots, just after the chopping time. A colour plot 
will definitely be of more help. Using a narrower win- 
dow, as expected, yields an improved time localisation 
of the fault. Higher-magnitude faults can be visualised 
more easily. 

The ability of the wavelet transform approach to 
detect faults is investigated next. The first 512 points of 
the neutral current record are taken for the purpose o f  
analysis. The scale factor a is varied from 0.22 to 1.0 in 
steps of 0.01 (corresponding to a frequency range of 
4.5 MHz to 1 MHz). Smaller step sizes will lead to finer 
resolution of the scalograms, which of course will con- 
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sume more computation time. If a low-frequency phe- 
nomenon has to be investigated, then values of a 

greater than 1.0 are to be chosen. Scalogram magni- 
tude and phase plots for the two cases are plotted in 
Figs. 4 and 5 ,  respectively. Visualisation of the fault 
and the time instant of its occurrence are very clearly 
and accurately detectable in these plots. In addition, 
the initial delay of lp can also be seen in the magni- 
tude plots. High-resolution colour monitors and plots 
are recommended for improving visualisation of the 
results. Occurrence of a fault can be inferred from these 
plots, whenever a sharp protrusion-like structure is 
present. The magnitude plot in Fig. 4a shows two such 
sharp protrusion-like structures within the first 10 p, 
with the first one at lp corresponding to the initial 
delay followed by the other due to the chopping phe- 
nomenon. When the fault is superposed, an additional 
protrusion appears (see Fig. 4c) corresponding to the 
fault. The time instant and frequency content of the 
fault component are more easily discernable in this 
case. Similar results are obtained for case 2 as well 
(Fig. 5) .  In all cases, unwrapped phase angle has been 
shown. It is a fact that phase plots are difficult to inter- 
pret, more so when the input signals are complex 
(highly oscillating), as in the present case. Only a care- 
ful comparison of phase plots (with and without fault 
superposed) indicates changes. Thus, when compared 
to STFT, the wavelet transform yields results from 
which faults are clearly distinguished and are easy to 
interpret. 

Another possible approach, when given two neutral 
current records with slightly different chopping times 
and one of the records having a superposed fault, 
would be to subtract the two currents and thereafter 
compute the scalogram. Scalogram plots along with the 
difference current are shown in Fig. 6. Here, the magni- 
tude and time instant at which the transient is super- 
posed is the same as in the previous cases. We see that 
there are four such sharp protrusion-like structures 
(within the first l o p )  and it is easy to interpret them. 
The first one matches with the beginning of the signal. 
The next two of them (very close to each other) are due 
to the two different chopping times, and the last one is 
due to the fault. The ability to distinguish from the 
scalogram the two chopping instants followed by a 
fault is illustrated. 

Detection of small or minor faults, particularly dur- 
ing chopped voltage tests is still considered as a diffi- 
cult task, even in the T F  approach. It is worth 
mentioning here that the proposed approach processes 
the neutral current directly, as in the conventional way. 
It only acts as an additional visualisation tool for the 
test engineer. The ability to detect unambiguously such 
low-amplitude fault-initiated transients directly from 
the neutral current records, with sufficient accuracy in 
time and acceptable accuracy in frequency simultane- 

ously, is the great advantage of this approach over the 
prevalent transfer function methods. Also, the possibil- 
ity to selectively process any length of the signal record 
from the acquired data is unique to this method. How- 
ever, this paper only describes, perhaps, the first 
attempt that is found to be robust and presumably bet- 
ter suited for the task of fault diagnosis. Further inves- 
tigations have to be carried out to verify its 
applicability for practical data from various impulse 
tests. 

7 Conclusions 

A new approach based on time-frequency analysis of 
signals has been proposed, for analysing the neutral 
currents directly, for fault diagnosis during impulse 
tests on power transformers. Two popular time-fre- 
quency tools, the short-time Fourier transform and 
wavelet transform were investigated for this purpose. 
Preliminary simulation results presented highlight their 
advantages over the conventional transfer function 
approach, and go on to indicate its potential and suita- 
bility as a possible future tool for fault detection. 
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