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Abstract—Shift and rotation invariance properties of linear
time-frequency representations are investigated. It is shown
that among all linear time-frequency representations, only the
short-time Fourier transform (STFT) family with the Her-
mite–Gaussian kernels satisfies both the shift invariance and
rotation invariance properties that are satisfied by the Wigner
distribution (WD). By extending the time-bandwidth product
(TBP) concept to fractional Fourier domains, a generalized
time-bandwidth product (GTBP) is defined. For mono-component
signals, it is shown that GTBP provides a rotation independent
measure of compactness. Similar to the TBP optimal STFT, the
GTBP optimal STFT that causes the least amount of increase in
the GTBP of the signal is obtained. Finally, a linear canonical
decomposition of the obtained GTBP optimal STFT analysis
is presented to identify its relation to the rotationally invariant
STFT.

Index Terms—Fractional Fourier transform, generalized time-
bandwidth product, linear time-frequency representations, rota-
tion invariance, short-time Fourier transform.

I. INTRODUCTION

R
ESEARCH on time-frequency domain characterization
of signals has been focused on the variants of short-time

Fourier transform (STFT) [1]–[7] and Wigner distribution
(WD) [8], [9]. The absence of undesirable cross terms [1], [10]
and computational simplicity [11]–[13] are the major factors in
the wide-spread use of the STFT in practice. With the advance
of faster processors, the efficiency of the STFT techniques have
become less important. However, the ability of representing
time-frequency content of signals free of cross terms is still the
major advantage of the STFT techniques over the WD-related
quadratic time-frequency distributions.

Among its many important properties, the STFT has a fun-
damental property that simplifies the interpretation of the resul-
tant distribution: magnitude-wise shift invariance in both time
and frequency. In this paper, we first prove that the STFT is
the only linear distribution that has the magnitude-wise shift in-
variance property in both time and frequency. Then, we investi-
gate time-frequency domain rotation property within the general
class of linear distributions. This lesser known property, which
is satisfied by the WD, is defined as follows: A time-frequency
distribution satisfies the rotation property if the distribution of
an arbitrary signal and the distribution of its th-order fractional
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Fourier transformation are rad rotated versions of each
other [14], [15]. We start our investigation on linear time-fre-
quency distributions by showing that STFT satisfies the rota-
tion property only if the STFT kernel is a Hermite-Gaussian
function. Thus, we reach the conclusion that the linear time-fre-
quency distributions, which satisfy both the rotation property
and the magnitude-wise time and frequency shift property, are
the STFT with Hermite-Gaussian kernels.

The choice of the STFT kernel determines the time-frequency
signal localization properties of the distribution. Among the
Hermite-Gaussian function family, since it has the minimum
time-bandwidth product (TBP), the Gaussian function is the
most commonly used kernel function. However, STFT with
the Gaussian kernel still suffers from the problem of limited
resolution. To overcome the inherent tradeoff between the time
and the frequency localization of the STFT, several alternatives
have been investigated in the literature. In [5], using two kernel
functions of different supports, a wideband and a narrowband
spectrogram are obtained. In order to preserve the localization
characteristics of both, a combined spectrogram is formed by
computing the geometric mean of the corresponding STFT
magnitudes, whereas in [6], the STFT is evaluated by using a
kernel function with an adaptive width in order to analyze the
transient response of radar targets. In [16], a kernel matching
algorithm is developed by locally adapting the Gaussian kernel
functions to the analyzed signal. Although these investigations
provide significant improvements in the time-frequency lo-
calization of signal components, in the presence of chirp-like
signals, they still provide descriptions whose localization prop-
erties depends on the chirp rate of the components. Recently,
[7] introduced an improved instantaneous frequency estimation
technique using an adaptive STFT where the kernel functions
are chosen from a set of functions through adaptation rules
and computation of the STFT with varying kernel functions at
each time instance. In addition, apart from the analysis of de-
terministic signals, there have been studies where time-varying
spectra of random processes are investigated [17].

In this paper, we characterize the time-frequency domain lo-
calization by STFT and investigate the effect of the STFT kernel
on the obtained time-frequency representation of signals. We in-
troduce the generalized time-bandwidth product (GTBP) defini-
tion to provide a rotation-invariant measure of signal support in
the time-frequency domain. Then, we obtain the optimal STFT
kernel that provides the most compact representation consid-
ering the GTBP of a signal component. The proposed time-fre-
quency analysis is shown to be equivalent to an ordinary STFT
analysis conducted in a scaled fractional Fourier transform do-
main. The obtained GTBP optimal STFT representation yields
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optimally compact time-frequency supports for chirp-like sig-
nals on the STFT plane. In general, the GTBP optimal STFT
representation does not satisfy the rotation property. However,
as shown in detail, there exists a linear canonical decomposition
of the GTBP optimal STFT that provides the link between the
GTBP optimal STFT and the rotation invariance property.

This paper is organized as follows. In Section II, we show
that the STFT is the only linear time-frequency representation
that satisfies the magnitude-wise shift invariance property. In
Section III, we define the rotation property of shift-invariant
time-frequency distributions and obtain the class of STFT ker-
nels satisfying the rotation property. In Section IV, we introduce
the GTBP and obtain the GTBP optimal STFT kernel. In Sec-
tion V, we present a linear canonical decomposition of the GTBP
optimal STFT and relate it to the rotation property. Furthermore,
the performance of the GTBP optimal STFT representation is il-
lustrated by using simulated data. Finally, the paper is concluded
in Section VI with future research directions.

II. LINEAR SHIFT-INVARIANT

TIME-FREQUENCY DISTRIBUTIONS

Time-frequency distributions are designed to characterize
the time-frequency content of signals. Since time or frequency
shifts do not change the time-frequency content of a signal,
except to relocate it correspondingly, it is important that
time-frequency representations satisfy the magnitude-wise
shift invariance property. A precise statement of this property is
given as follows: A time-frequency representation is
magnitude-wise shift invariant if for

(1)

In this section, we investigate the magnitude-wise shift invari-
ance property within the class of linear time-frequency repre-
sentations.

The magnitude-wise shift invariance of linear time-frequency
distributions can be characterized fully as follows. The gen-
eral kernel-based form of a linear time-frequency distribution

is given by1

(2)

where is the kernel of the distribution [18]. By
making use of the general theorem on linear systems given in
Appendix A, it can be shown easily that the magnitude-wise
shift invariance in time requires to have the following
form:

(3)

Since the magnitude of time-frequency distributions are related
to the energy distribution of the signals in the time-frequency

plane, will be ignored in the rest of the derivations. The

1All integrals are from �1 to +1 unless otherwise stated.

implications of magnitude-wise shift invariance in frequency
can be investigated in the Fourier domain as

(4)

where is the Fourier transform of , and
. The magnitude-wise

shift invariance with respect to frequency requires that

(5)

Thus, the kernel has the following representation:

(6)

Since the phase and can be ignored, the general
form of a magnitude-wise shift invariant linear time-frequency
distribution is

(7)

which has the same form of the STFT [1], [3] with the kernel
. Consequently, STFT is the only distribution that is

linear and magnitude-wise shift-invariant under both time and
frequency shifts.

III. LINEAR TIME-FREQUENCY DISTRIBUTIONS

AND THE ROTATION PROPERTY

The lesser known rotation property of time-frequency distri-
butions is defined as follows:

Definition 1: A time-frequency distribution satis-
fies the rotation property [19] if for all and

(8)

where is equal to , and is the th-order fractional
Fourier transformation (FrFT) of given by [20], [21]

(9)

where is

(10)
and the rotation operator acting on a two-dimensional (2-D)
function is defined as

(11)
It has been shown that a quadratic time-frequency distribu-

tion satisfies the rotation property only if it has a rotationally
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symmetric kernel [22]. The most widely known quadratic dis-
tribution satisfying the rotation property is the WD

(12)

where is the WD of [14], [15], [19]. As the time
and frequency variables have different units, a dimensional
normalization of the time-frequency plane is required before
performing the rotation operation [23]. It is assumed that the
time and frequency domain representations of a signal are
confined to [ ] and [ ] intervals,
respectively. Then, a scaling parameter is introduced, where
the dimension of time and scaled coordinates and are
used as new coordinates. This way, the time and frequency
representations of the signal are confined to intervals of length

and . We choose so that the lengths
of both intervals are equal to , which is a dimensionless
quantity. In numerical examples, signals can be represented in
both domains with samples spaced apart.
In the paper, we assume that a dimensional normalization has
already been done and all the coordinates represent dimension-
less quantities.

The rotation property has some important conceptual and
practical implications [14], [15], [24]–[27]. It implies that the
inherent time-frequency domain characteristics of a signal
remains unchanged in all the fractional Fourier domains.
Therefore, there is nothing special about any of the fractional
Fourier domain representations of a signal including the
commonly used time or frequency domains. Among the linear,
shift-invariant time-frequency distributions, only the STFT
with Hermite-Gaussian kernels satisfies the rotation property.
This can be shown as follows:

Proposition 1: STFT satisfies the rotation property only if
the window function is a Hermite-Gaussian function.

Proof: The STFT of the fractionally Fourier transformed
is

STFT (13)

By using (9) and the property [21], we
obtain

STFT

(14)

where . The rotation prop-
erty requires that the magnitude of (13) is equal to the magnitude
of STFT , which imposes the following condition on

to hold true for all

(15)

where does not depend on but may be a function of . The
equality in (15) can only be satisfied if is one of the eigen-
functions of the FrFT operator. The Hermite-Gaussian functions
form the complete set of eigenfunctions of the FrFT operator de-
fined in (9) [21]. Then, will be the eigenvalue of the FrFT
such that equals , where is the Hermite polynomial
order.

The rotation property of the STFT with the zeroth-order Her-
mite-Gaussian kernel is illustrated in Fig. 1(c) and (d), which
corresponds to the STFT of the time domain signal and the
0.5th-order fractionally Fourier transformed signal in Fig. 1(a)
and (b), respectively. The rotation property fails if the STFT
of both of these signals are computed with a scaled Gaussian
window function, as shown in Fig. 1(e) and (f) .

It will be shown next that the rotation property fails when the
STFT kernel is a linear combination of many Hermite–Gaussian
functions.

Proposition 2: The rotation property fails when the STFT
kernel is a linear combination of Hermite–Gaussian functions.

Proof: The Hermite–Gaussian functions are the eigen-
functions of the FrFT. For each FrFT order

(16)

where is the th-order Hermite–Gaussian function, and
. If is a combination of Hermite–Gaussian

functions as with arbitrary nonzero
coefficients, then on the left-hand side of (15) is

(17)

The condition in (15) requires (17) be equal to
. However, for arbitrary , if ,

then . Therefore, any linear combination of
Hermite–Gaussian functions fails to satisfy the rotation
property of STFT.

IV. TIME-FREQUENCY DOMAIN LOCALIZATION BY STFT

An important criterion for the success of time-frequency rep-
resentations is how well it preserves the time-frequency domain
support of signals. Among the commonly used time-frequency
representations, WD is the best in this respect. However, the
cross-terms of the WD clutters the obtained time-frequency rep-
resentation. Therefore, in a way, it disturbs the actual support of
the signal in the time-frequency domain. The STFT family pro-
vides cross-term free time-frequency representations. So, sup-
port preservation criteria is applicable to measure the success
of the alternative STFT representations. In this section, we in-
vestigate the effect of the STFT kernel on the obtained time-fre-
quency support of the signal components. This investigation will
require generalized definition of the time-bandwidth product.
Furthermore, it will lead to signal adaptive STFTs.
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Fig. 1. STFT satisfies the rotation property only with Hermite-Gaussian
kernels. To illustrate this, a two-component chirp signal is used. (a) Real part
of the signal. (b) Real part of the a = 0:5th-order FrFT of the signal. (c)
STFT of the signal. (d) STFT of its a = 0:5th-order FrFT with zeroth-order
Hermite–Gaussian kernel. The STFT of the transformed signal is the rotated
version of the original STFT shown in (c). However, as shown in (e) and
(f), the STFT fails to satisfy the rotation property if its kernel is not a
Hermite-Gaussian function. (e) STFT of the signal. (f) STFT of the fractionally
Fourier transformed signal with the kernel h(t) = e .

The time-frequency domain support of a signal is com-
monly measured by its time-width and its frequency domain
bandwidth , which are defined as

(18)

(19)

where

(20)

(21)

for a Fourier transform pair and . Therefore, the TBP,
which is defined as

TBP (22)

has been commonly used as a measure for the time-frequency
domain support of the signal. The well-known uncertainty prin-
ciple dictates that is a lower bound on the TBP of a

signal, and only the Gaussian signal has a TBP equal to this
lower bound [21].

If the TBP is chosen as the measure of support, a well-defined
optimization problem can be cast for the optimal STFT kernel
as follows. As shown in Fig. 2(a), for an STFT kernel , the
time-frequency domain support of the representation for
can be zoned into a rectangular region of respective time-fre-
quency dimensions of and [3]. To
choose the optimal window that adapts to the analyzed signal

, the following optimization criterion can be used:

(23)

It can be easily seen that the optimal solution must satisfy
the uncertainty principle with equality; therefore, it must be a
Gaussian kernel. Hence, the optimization problem can be solved
in this set by just obtaining the time-width of the Gaussian by
solving the following problem:

(24)

With a little effort the optimal can be obtained as

(25)

and the corresponding optimal Gaussian window is [3]

(26)

For , itself a Gaussian signal with , this
optimal time-support for the Gaussian kernel function reduces
to the commonly used rule-of-thumb of choosing the .
Otherwise, the optimal time support is always shorter than
the time support of the analyzed signal .

Although the TBP of a signal is commonly used, it is not a
satisfactory measure for the time-frequency support of signals.
This is illustrated in Fig. 2(c), where support of a signal and its
bounding rectangle of sides time and frequency widths and area
equal to TBP is shown. Even though the rotation operation just
rotates the support of , the TBP changes. In Fig. 2(b), the
dependence of the TBP on the FrFT order is shown for a scaled
Gaussian signal. The minimum TBP is reached when the signal
support lies along the time or frequency axes. As seen from this
example, TBP is always an upper bound to the support of the
signal in the time-frequency domain. Therefore, there is a need
for a tighter measure of the support. Here, we propose a new
measure that we call generalized TBP, which is defined as

GTBP TBP (27)

As illustrated in Fig. 2(d), the GTBP provides the tightest
bounding rectangle to the support of the signal in the time-fre-
quency domain, hence providing a more representative support
information than the TBP. As the well known lower bound on
the TBP, a lower bound for the GTPB also exists, and they
are equal to each other. A more detailed discussion of the
uncertainty relationship in the fractional Fourier domains can
be found in [28]–[31].
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Fig. 2. Time-frequency domain support of the STFT representation for x(t) with kernel g(t) can be zoned into a rectangular region of respective time-frequency
dimensions of (T + T ) and (B +B ) as shown in (a). Even though the rotation operation does not change the area of the support of a signal, the TBP
changes. (b) Dependence of the TBP on the FrFT order a is shown for an example signal. The minimum TBP is attained when the signal support lies along the
time or frequency axes with the corresponding FrFT orders 0 and�1. Therefore, TBP, which is the area of the dashed rectangle shown in (c), is not usually a tight
measure for the time-frequency support of signals. As illustrated in (d), the GTBP is the area of the tightest bounding rectangle to the support of the signal in the
time-frequency domain. Thus, it is a better measure for the time-frequency domain signal supports.

By using the order additivity and order periodicity property
of the FrFT, it can be easily shown that the GTBP of a signal

and its th-order FrFT is the same for any .

As it has been investigated for the TBP, it is important to ob-
tain the optimal STFT kernel, considering the GTBP of a signal.
Actually, this investigation is relatively straightforward and can
be conducted as follows. As shown in Fig. 2(b), for a signal
whose bounding rectangle is oriented at an angle , which is
not equal to 0 or , the fractionally Fourier transformed signal

, where , has its bounding rectangle ori-
ented along the time axis. The transformed signal has its
TBP and GTBP equal to each other. Therefore, for , the
optimal STFT window is the Gaussian window given in (26)
with and as the corresponding time and bandwidth
of the transformed signal. The desired time-frequency represen-
tation of can be obtained as the counter-clockwise rotation

of the optimal STFT for by an angle of . Since, as in
(14)

STFT

(28)

with optimal Gaussian kernel , where
, then the desired representation of can be

written as

STFT (29a)

(29b)
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In (29b), the expression in the brackets can be recognized as the
th-order FrFT of , which is simply the time

and frequency shifted form of the kernel . Using the time
and frequency shift properties of the FrFT, D is computed
as

(30)

where , and the optimal
kernel is

(31)

where . Since the phase
can be ignored in , it is easy to see that the de-

sired representation in (30) has the form of STFT with kernel
. This explicit form of the GTBP optimal STFT dis-

tribution provides significant computational saving in practice.
Once the fractional order is determined, the computational
complexity of (30) is the same as the computational complexity
of the ordinary STFT. The discrete STFT is defined as [1]

STFT

(32)
where and are integers, and and are the sampling inter-
vals of time and frequency, and it can be efficiently implemented
by using FFT techniques.

There are many alternative approaches to determine the op-
timal fractional order to be used in the GTBP optimal STFT
analysis. Since the optimal fractional order corresponding
to a signal and its orientation in the time-frequency plane are
related, the optimal order can be estimated by determining the
orientation of the signal in the time-frequency plane. One way
of determining the orientation of a signal in the time-frequency
plane is to search for the peaks in the FrFT magnitudes com-
puted at various fractional orders [14], [32], [33]. In practice,
the search for the optimal fractional order can be conducted
approximately by computing the FrFT of the signal at ten to
30 different fractional orders. Since each FrFT computation is

, the overall complexity of the required search is of
as well. The FrFT computation algorithm is given

in Table I [23], [27]. Alternatively, for mono-component signals,
the required fractional Fourier transformation order can also be
found based on the fractional moments of the signal. Efficient
ways of computing the fractional Fourier transform moments
of a signal are given in [34] and [35]. In addition, for signals
with strong harmonics, an alternative mean of determining the
required fractional Fourier transformation order can be found in

[36]. In practical applications, both the orientation angle of the
signal and parameters related to the dimensions of the bounding
rectangle in the appropriate fractional Fourier domain should be
adaptively chosen. As future work, the performances of alterna-
tive ways of determining these parameters can be compared.

In Fig. 3, time-frequency domain localization by TBP op-
timal STFT and GTBP optimal STFT of a quadratic FM signal

shown in Fig. 3(a) is com-
pared. The STFTs are evaluated with the kernels determined by
using (26) and (31), as shown in Fig. 3(c) and (d), respectively.
Time-frequency support of the GTBP optimal STFT illustrated
in Fig. 3(f) is significantly better localized when compared with
the TBP optimal STFT illustrated in Fig. 3(e).

The GTBP optimal STFT in (30) does not possess the
rotation property because is not a member of the
Hermite–Gaussian function family; however, it has an envelope
that is a scaled zeroth-order Hermite–Gaussian function. If
the scaling is not equal to 1, the rotation property cannot be
satisfied. In the next section, we will provide a canonical
decomposition of GTBP optimal STFT such that the rotation
invariance is satisfied in a certain scaled fractional Fourier
domain.

V. GTBP OPTIMAL STFT AND ROTATION PROPERTY

In Section IV, we have demonstrated that GTBP optimal
STFT can be evaluated as efficiently as ordinary STFT. Using
(30) and (31), the GTBP optimal STFT of a signal with a
support oriented at an angle of with respect to the time axis
in the time-frequency plane is as in (33), shown at the bottom
of the page.

Although (33) provides an efficient implementation method
for the GTBP optimal STFT analysis, we would like to introduce
a multistage implementation of it, as shown in Fig. 4(b), with its
explicit derivation detailed in Appendix B. This decomposition
is a linear canonical representation of the GTBP optimal STFT
analysis with a sequence of operations explained and illustrated
in Fig. 5. First, the th-order FrFT of the input signal is com-
puted using (9). As shown in Fig. 5(d), the time-frequency sup-
port of the transformed signal [which is shown in Fig. 5(c)] is
oriented along the time axis.

After this operation, the major axis of the time-frequency do-
main support of the transformed signal is along the time axis.
Hence, the conventional TBP provides a good support informa-
tion on the transformed signal. Assuming that the time and fre-
quency widths of the transformed signal are and , respec-
tively, the time scaling of the transformed signal by an amount
of results in a signal whose time and fre-
quency widths are equal. Hence, after the scaling, the time-fre-
quency support will fit into a circular support. As shown in
Fig. 5(f), the time-frequency support of the scaled signal [shown
in Fig. 5(e)] fits into a circular region. Once the support of the

STFT (33)
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TABLE I
FAST FRACTIONAL FOURIER TRANSFORM ALGORITHM PROPOSED IN [23]

signal becomes circular, the GTBP optimal STFT and the TBP
optimal STFT becomes identical. Hence, as it can be shown
easily by using (26), the kernel of the GTBP optimal STFT is
the following zeroth-order Hermite–Gaussian function

(34)

The obtained STFT representation with the zeroth-order
Hermite–Gaussian kernel should be operated in two successive

stages to provide the final answer. First, a time-frequency
domain inverse scaling should be performed:

(35)

where is the input, and is the output of the time-
frequency inverse scaling operation. The effect of this scaling
operation is shown in Fig. 5(f) and (g). Then, the final GTBP
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Fig. 3. Time-frequency domain localization by the TBP and GTBP optimal
STFT of a quadratic FM signal x(t) = e e shown in
(a) is compared. The rectangles whose area are equal to the TBP and GTBP,
respectively, are illustrated in (b). The TBP optimal STFT is evaluated with the
kernel shown in (c), and the GTBP optimal STFT is evaluated with the kernel
shown in (d). The GTBP optimal STFT illustrated in (f) has a significantly
improved time-frequency support than the TBP optimal STFT illustrated in (e).

optimal STFT distribution is obtained by the following rotation
operation:

STFT (36)

The effect of this operation is shown in Fig. 5(h), which yields
a high-resolution time-frequency description corresponding to
the original signal.

The main reason behind the introduction of this canonical
decomposition is that the rotation invariant STFT with the
zeroth-order Hermite-Gaussian kernel is explicitly shown to
be part of every GTBP optimal STFT analysis. Therefore, for
any arbitrary mono-component signal, there exists a “natural
domain,” where the rotation independent STFT analysis with
zeroth-order Hermite–Gaussian kernel provides the GTBP op-
timal STFT representation. The signals are transformed to their
“natural domains” by the first two operations of the canonical
decomposition. We believe this concept of “natural domain”
is theoretically significant and will provide further insight to
the research on time-frequency signal analysis.

In the rest of this section, the performance of the GTBP
optimal STFT is illustrated by using simulated data. In the simu-

lations, we use a quadratic FM signal embedded in 5 dB noise.
The analyzed signal is ,
where , , , and . The time
domain signal and the corresponding TBP optimal STFT are
shown in Fig. 6(a) and (b). In Fig. 6(c), the peak amplitudes of
the fractional Fourier transformed as a function of
is presented. The peak is observed at the angle .
Finally, the GTBP optimal STFT is shown in Fig. 6(d).

A significant improvement for the time-frequency localiza-
tion is observed when compared with the TBP optimal STFT
with similar computational complexity. As future work, optimal
STFT analysis will be extended to multicomponent signals. To
obtain a well-localized time-frequency representation of a mul-
ticomponent chirp signal with different chirp rates, the orienta-
tion angles of each component and, consequently, the required
FrFT orders to perform the STFT, should be determined. Fol-
lowing the individual GTBP optimal time-frequency analysis of
each signal component, the obtained time-frequency represen-
tations are combined so that the time-frequency localization of
each chirp component is optimally compact.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have investigated the magnitude-wise
shift invariance and time-frequency rotation properties of
linear time-frequency representations that are satisfied by the
quadratic WD. It is proven that STFT is the only linear distri-
bution that is magnitude-wise shift invariant in both time and
frequency. Furthermore, it is shown that the STFT satisfies the
rotation property if its kernel is chosen as a Hermite-Gaussian
function.

We investigated TBP optimal STFT analysis. By generalizing
the TBP to fractional Fourier domains, the GTBP definition is
introduced. It is shown that the GTBP provides a rotation in-
variant measure for the time-frequency support of mono-com-
ponent signals. Then, the GTBP optimal STFT analysis is pro-
posed for mono-component signals.

Along with the proposed efficient implementation of the
GTBP optimal STFT, a theoretically insightful canonical
decomposition of it is presented. This way, the GTBP optimal
STFT analysis is related to the rotationally invariant STFT
analysis with the zeroth-order Hermite–Gaussian kernel. In
addition, this decomposition provided a “natural domain”
concept for mono-component signals.

The proposed GTBP optimal STFT requires three important
parameters related to the time-frequency support of mono-com-
ponent signals. These are the dimensions and the orientation of
the bounding rectangle [37]. In practical applications, these pa-
rameters should be adaptively chosen. Comparison of the per-
formances of alternative ways of determining these parameters
requires further investigation.

In addition, the GTBP optimal STFT representation of multi-
component signals needs the determination of the required set
of parameters for each signal component. Efficient ways of their
determination and how the individual GTBP optimal STFT rep-
resentations should be combined require further research. In ad-
dition, further research is required in obtaining other forms of



DURAK AND ARIKAN: SHORT-TIME FOURIER TRANSFORM 1239

Fig. 4. (a) Block diagram of GTBP optimal STFT. (b) Linear canonical decomposition of it. The first two operational blocks in (b) transform the mono-component
signal x(t) to its “natural domain,” where the rotation invariant STFT with kernel h (t) provides the GTBP optimal STFT distribution.

Fig. 5. For a chirp-like signal shown in (a), the FrFT is computed so that the
chirp is converted to a sinusoidal, as in (c). The corresponding STFTs are shown
in (b) and (d), respectively. Through appropriate scaling x (t) is converted
to a zeroth-order Hermite–Gaussian enveloped sinusoidal, as illustrated in (e),
and its STFT is computed with the Gaussian window, as shown in (f). This is
followed by 2-D scaling, which inverts the scaling on the signal as shown in (g).
Finally, the distribution is rotated back to its original orientation removing the
FrFT effect, as illustrated in (h).

generalized time-bandwidth products that are invariant under
a more general area preserving time-frequency operations: the
symplectic transforms [38].

APPENDIX A

Theorem 1

If a linear system satisfies magnitude-wise shift invariance
in time, then there exist an and such that the output of

for any arbitrary input can be written as

(37)

Proof: By using the Riesz theorem, can be represented as

(38)

where is the kernel of the transformation. If satisfies
magnitude-wise shift invariance in time, the outputs to impulses

and , and , respectively, should satisfy
, which implies that

(39)

In general, the kernel function can be decomposed as
, where and are the magnitude and

phase functions, respectively. The condition in (39) requires that
; therefore, the kernel function can be decom-

posed as

(40)

Next, it will be shown that the phase function satisfies

(41)

To prove (41), the input can be chosen as a linear combination
of two weighted impulses ; then, the
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Fig. 6. To illustrate the effect of noise, the noisy quadratic FM signal shown
in (a) is analyzed by both the TBP optimal STFT and the GTBP optimal STFT.
The corresponding TBP optimal STFT is shown in (b). The optimum fractional
Fourier order for the signal can be identified automatically by using the peak
amplitudes of the FrFT magnitude data as a function of the orientation angle, as
shown in (c). The observed peak at the angle � = 65 is used in the GTBP
optimal STFT distribution shown in (d).

output is . For the shifted input
, the output becomes

. The magnitude-wise shift invariance implies
. Thus, the kernel should satisfy

(42)

for all . Using the definition in (40), (42) can be
re-expressed as

(43)

Assuming that is not identically zero, (43) can only be sat-
isfied if

(44)

After rearranging the terms in (44), we obtain the following con-
dition:

(45)

It can be shown that if satisfies (45), then
exists. Thus, in the limit approaching 0, (45)

implies that

(46)

Therefore, satisfies the following partial differential
equation:

(47)

which is solved by

(48)

where , and is an arbitrary phase func-
tion. Thus, the kernel has the following form:

(49)

Hence, the input–output relationship of the linear system can be
written as

(50)

where .

APPENDIX B

In this Appendix, we prove that the linear canonical decom-
position of the GTBP optimal STFT described in Section V and
its computationally efficient form in (33) are explicitly equiva-
lent.

The multistage implementation of the GTBP optimal STFT
analysis shown in Fig. 4(b) starts with the FrFT operation
at the optimum fractional order and scaling the signal

by so that is obtained. The

rotation-invariant STFT of with the kernel of the
zeroth-order Hermite-Gaussian function is computed as

STFT (51)

The STFT operation is followed by a 2-D time-frequency do-
main scaling through transforming time and frequency variables
( , ) to ( , ) so that the resultant distribution is

(52)

Using the definition in (9) and the property
of the FrFT kernel, can be re-expressed as

(53)

The expression in the square brackets in (53) is the th-order
FrFT of the scaled, time and frequency shifted zeroth-order Her-
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mite-Gaussian function . Using
the FrFT properties in [21], can be expressed as

(54)

where , ,
, and

.
Finally, is rotated by in the counter

clockwise direction, and is obtained as

(55)

(56)

where

Since the phase can be ignored, it is simply seen that (56) is
an STFT with the kernel function

(57)

(58)

Since in (58) and in (31) are related as , and
and are

(59)

(60)

(58) can be re-expressed as

(61)

which equals the kernel function in (31).
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