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Abstract: A better understanding of how behavioral performance emerges from interacting brain systems
may come from analysis of functional networks using functional magnetic resonance imaging. Recent stud-
ies comparing such networks with human behavior have begun to identify these relationships, but few
have used a time scale small enough to relate their findings to variation within a single individual’s behav-
ior. In the present experiment we examined the relationship between a psychomotor vigilance task and the
interacting default mode and task positive networks. Two time-localized comparative metrics were calcu-
lated: difference between the two networks’ signals at various time points around each instance of the stim-
ulus (peristimulus times) and correlation within a 12.3-s window centered at each peristimulus time.
Correlation between networks was also calculated within entire resting-state functional imaging runs from
the same individuals. These metrics were compared with response speed on both an intraindividual and an
interindividual basis. In most cases, a greater difference or more anticorrelation between networks was sig-
nificantly related to faster performance. While interindividual analysis showed this result generally, using
intraindividual analysis it was isolated to peristimulus times 4 to 8 s before the detected target. Within that
peristimulus time span, the effect was stronger for individuals who tended to have faster response times.
These results suggest that the relationship between functional networks and behavior can be better under-
stood by using shorter time windows and also by considering both intraindividual and interindividual
variability. Hum Brain Mapp 34:3280–3298, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

One critical question for cognitive neuroscience is: how
do cognitive processes and behavioral performance
emerge from interacting brain systems? Originally demon-
strated by Biswal et al. [1995], spontaneous low frequency
oscillations appear to be correlated in anatomically con-
nected regions [Fox et al., 2006; Hampson et al., 2002;
Raichle et al., 2001]. Techniques that identify these regions,
known as functional connectivity, map the brain’s func-
tional networks [Calhoun et al., 2001; Cordes et al., 2000]
which exist even when an individual is not performing a
task, referred to as the resting state [Raichle et al., 2001].
Variation in functional networks was initially investigated
in the context of Alzheimer’s disease [Greicius et al., 2004;
Rombouts et al., 2005] but has since been applied to pre-
diction of behavioral variability in healthy individuals per-
forming tasks. Tasks studied have included working
memory [Hampson et al., 2006; Tambini et al., 2010; Wang
et al., 2010], motor learning [Albert et al., 2009], language
[Hasson et al., 2009; Waites et al., 2005], executive control
or maintenance of attention against distractions [Eichele
et al., 2008; Kelly et al., 2008; Prado et al., 2011; Prado and
Weissman, 2011a,b; Seeley et al., 2007; Weissman et al.,
2006], and auditory or somatosensory stimulus detection
[Boly et al., 2008; Sadaghiani et al., 2009]. These studies’
results support the hypothesis that functional networks
and the associated BOLD signal are linked to cognitive
processing.

Though the majority of studies use similar functional
magnetic resonance imaging (fMRI) protocols, the func-
tional network metrics extracted from these data vary
[Hampson et al., 2006; Kelly et al., 2008; Prado and Weiss-
man, 2011a; Seeley et al., 2007; Waites et al., 2005; Weiss-
man et al., 2006]. In general, only a few studies, examining
mean signal within networks over time, have considered
the temporal evolution of functional connectivity before
and after performance of the task [Boly et al., 2008; Eichele
et al., 2008; Sadaghiani et al., 2009; Weissman et al., 2006].
In a recent review by Sadaghiani et al. [2010] it was noted
that both the type of task and the time point around the
instance of the stimulus (peristimulus time) affect how the
signal in the network will be related to performance. This
matches what is seen in models of spontaneous brain ac-
tivity which suggest that the correlated/anticorrelated net-
works seen are due to the spatiotemporal structure of
activity rather than a direct agonistic/antagonistic relation-
ship; for a recent review see Deco et al. [2011]. Such results
suggest that functional network activity on a scale of sec-
onds may contain information about cognition; informa-
tion that may be lost when longer time scales are used.

While the majority of studies have used one or more
entire fMRI runs, typically 6 to 10 min, to calculate correla-
tion values (or independent components, etc.) [Albert
et al., 2009; Hampson et al., 2006; Hasson et al., 2009; Kelly
et al., 2008; Seeley et al., 2007; Tambini et al., 2010; Waites
et al., 2005; Wang et al., 2010], notable exceptions exist.

Chang and Glover [2010] illustrated that dominant fre-
quency within networks changes on a scale of tens of sec-
onds or less. A resting-state study by Majeed et al. [2011]
demonstrated highly reproducible spatiotemporal dynam-
ics in the low-frequency BOLD signal. A similar pattern
on a similar time scale was observed by Grigg and Grady
[2010], who claimed it as one of two fundamental states of
a network known as the default mode network. At least
two studies have examined functional connectivity in 30-s
windows and suggested that it may be more diagnostic
than functional connectivity calculated from entire fMRI
runs [Honey et al., 2007; Sakoglu et al., 2010]. The overall
impression is that the time scales involved (including the
window lengths used) in functional network analysis
could be much shorter.

The present experiment set out to apply both traditional
functional connectivity (using entire functional imaging
runs to calculate correlation) and short-window correlation
methods to performance prediction in healthy individuals
both across the group (interindividually) and approximat-
ing per-individual results (intraindividually). The time
windows used in the windowed correlation analysis were
short enough to only reflect momentary, second-scale dif-
ferences such as those seen by Majeed et al. [2011].

The psychomotor vigilance task (PVT) [Dinges and
Powell, 1985] was chosen for this study because it is a
measure of sustained attention and both the default mode
network and regions related to attentional control (i.e., the
task positive network) [Lim and Dinges, 2008] are known
to be involved. Using fMRI and the general linear model
to study the PVT, Drummond et al. [2005] demonstrated
that optimal performance was associated with a greater
response in regions associated with sustained attention
(e.g. inferior parietal and premotor cortex) whereas subop-
timal performance was associated with activity in the
default mode network (e.g. posterior cingulate and medial
frontal cortex). Both the default mode network and the
task positive network, which overlaps with attentional
control networks [Fox et al., 2005; Fransson, 2005], were
involved in the second-scale activity observed by Chang
and Glover [2010] and Majeed et al. [2011]. Additionally,
the default mode network deactivates in response to task
performance on time scales as short as only a few seconds
[Singh and Fawcett, 2008]. Such results suggest dynamic
properties of both the default mode and task positive net-
works, and that dynamic interaction between these net-
works may be responsible for performance variation in the
PVT.

In the present study we compare functional connectivity
metrics on different time scales (an entire fMRI run, a
12.3-s window or a single data point) with multiple statis-
tical interpretations of reaction time (interindividual linear
regression and two-group analysis using interindividual
and intraindividual separations). Knowledge of which
functional connectivity metrics predict fast PVT perform-
ance will demonstrate if short-time scale analysis can be
used to produce similar results to traditional entire-run
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functional connectivity. Furthermore, comparing intraindi-
vidual performance with functional connectivity will sug-
gest whether performance prediction can be analyzed on a
per individual basis or can only be analyzed using a
group. We aspire to motivate future work to both consider
shorter time scales for functional connectivity analysis and
the possibility of using intraindividual variations in func-
tional connectivity to predict performance.

MATERIALS AND METHODS

A brief summary of the methods used can be found in
Figure 1 and Table I.

Data Collection

Seventeen healthy human individuals were recruited
(nine males and eight females) with an age range of 18 to
26 years. Informed consent was obtained from all individ-
uals. All studies were performed in compliance with the
Georgia Institute of Technology Institutional Review
Board. All data were acquired at the joint Georgia Institute
of Technology/Georgia State University Center for
Advanced Brain Imaging.

All 17 individuals underwent high temporal resolution
fMRI while performing a PVT. In this task participants fix-
ated on a centrally presented black dot subtending 0.28! of
visual angle on a gray background. When the dot changed

Figure 1.
Calculation of functional connectivity metrics to compare to
PVT performance. To calculate metrics from functional connec-
tivity to compare with PVT performance, masks are generated
from Pearson product-moment correlation coefficient (r) and
then the mean signal is compared. The left precuneus in the
most ventral image slice is found as an ROI using SPM8 and
marsbar (shown in white). The mean signal in this ROI is taken
and r calculated between it and every voxel in gray matter. The
1,639 (10% of whole image) voxels in gray matter most corre-
lated with the ROI are taken as the default mode network
(shown in white). The 1,639 voxels least correlated or most
anticorrelated with the ROI in gray matter are taken as the task

positive network (shown in white). The mean signal in each net-
work mask is taken to produce a default mode network signal
and a task positive network signal. The network signals are com-
pared in several manners. At a single time point at some shift
relative to an instance of PVT performance the mean signal in
both networks and the difference in signal between networks
can be compared to performance. In a 12.3-s window at some
peristimulus time relative to an instance of PVT performance, r
between the two networks’ mean signals can be calculated and
compared with performance. Finally r between the entireties of
the two networks’ signals from each functional imaging run can
be compared to performance.
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to navy blue, participants pressed a button with their right
index finger as quickly as possible. If participants failed to
respond in 9 s, the dot returned to black. Each block lasted
8 min and the dot changed color between three and five
times. Change onset was random for each participant (the
delay time between onsets as an integer number of milli-
seconds randomly chosen from a range of 10,000 ms to
480,000 ms without replacement). Four fMRI runs of PVT
performance were collected from each individual. Two
fMRI resting-state runs were collected from each individ-
ual. In resting-state runs, individuals were told to lie qui-
etly. The order of runs was counterbalanced between two
options (Option 1: resting state, two PVT, resting state and
two PVT. Option 2: two PVT, resting state, two PVT and
resting state). In resting-state runs individuals fixated on
the black dot, but it never changed to navy blue. Partici-
pants were always informed that no change would occur
before the start of each resting-state run.

Functional images were acquired using echo planar
imaging (EPI) from four horizontal slices with voxels of
size 3.4 mm in the frequency and phase encoding direc-
tions and 5 mm in the slice direction, repetition time (TR)
300 ms, echo time (TE) 30 ms, and 1600 images. Slices
were manually positioned to include the precuneus,
medial prefrontal cortex, inferior parietal cortex, and angu-
lar gyri using Figure 3 from Fox et al. [2005; p 9679] as ref-
erence. Structural images were acquired using a T1-
weighted MP RAGE 3D sequence with 1 mm isotropic
voxels.

Data Preprocessing

The following preprocessing steps were done in Statisti-
cal Parametric Mapping 8 (SPM8) using the marsbar
region of interest (ROI) plug-in: T1 images were seg-
mented into gray matter, white matter, and cerebrospinal
fluid maps. The left precuneus ROI from the AAL Struc-
tural ROI library [Brett, 2002] was reverse normalized
[Chang and Glover, 2010] from the MNI brain template to
the individual T1 images. Individual T1 images were
spatially cropped and registered to same-individual EPI
images and this transformation was applied to all seg-
ments and left precuneus ROI as well. Reverse normaliza-
tion allowed analysis to be performed in individual space
rather than normalized space. This was necessary because
individual EPI images did not cover the whole brain and
had decreased signal-to-noise ratio due to the short TR
used in this study.

EPI data were first slice-time corrected and then motion
corrected through registration to a mean of all EPI images
using Analysis of Functional NeuroImages (AFNI). From
AFNI the maximum total movement in each direction (X,
Y, and Z) was recorded; 100 TR (30 s) were removed from
the beginning of EPI and motion data to eliminate stabili-
zation effects. EPI data were blurred with a spatial Gaus-
sian with sigma of 2 " 2 " 1 voxels and size of 3 " 3 " 1
voxels. A finite impulse response filter was used with a
length of 150 TR (45 s) and a pass band of 0.01 to 0.08 Hz.
As behavioral onset times were recorded in milliseconds
from the start of the functional imaging run in raw data,
they were corrected for the removed TRs and the phase
shift resulting from the filter. Each voxel within EPI data
was quadratically de-trended [Majeed et al., 2011] and di-
vided by one standard deviation, resulting in unit var-
iance. Mean signals were calculated for whole-brain and
white matter and these signals, in addition to filtered and
cropped motion parameter signals, were regressed from
EPI data. Final EPI data were again set to zero mean and
unit variance for each voxel. This produced a normalized
BOLD signal.

As it is debatable what to expect for a hemodynamic
response to spontaneous fluctuations [Logothetis et al.,
2009; Shmuel and Leopold, 2008], the normalized BOLD
signal was not de-convolved with any hemodynamic

TABLE I. Example of calculation of intraindividual and
interindividual human performance metrics from PVT

reaction times

Individual
1 (ms)

Individual
2 (ms)

Individual
3 (ms)

Overall median
Instances
classified
as ‘‘fast’’

942; 1,029 716; 693; 648 920

Instances
classified
as ‘‘slow’’

1,054; 1,329 1,331 1,204; 1,156;
1,314

Individuals’ own
medians
Instances
classified
as ‘‘fast’’

942; 1,029 693; 648 920; 1,156

Instances
classified
as ‘‘slow’’

1,054; 1329 716; 1,331 1,204; 1,314

Each individual has several instances of the PVT which, for test-
ing purposes, are divided into fast and slow groups in two man-
ners. An overall median is calculated for all performance times
from all individuals. In this example, it is 1,041.5 ms. Each indi-
vidual’s reaction times are classified as fast or slow based upon
being less than or greater than this median, respectively. This
metric can be compared with all predictive metrics calculated
from functional connectivity in this study. The groups of fast and
slow reaction times can be considered interindividual differences.
Each individual has a median calculated separately. Each individ-
ual’s own reaction times are classified as fast or slow based upon
being less than or greater than these individual median values,
respectively. In this case, each individual has approximately 50%
fast and 50% slow reaction times. This metric can be used to clas-
sify performance using a functional connectivity metric calculated
at some peristimulus time around performance but (in the present
study) cannot be used to classify performance using resting-state
functional connectivity. The groups of fast and slow reaction
times can be considered intraindividual differences.
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response function. To compensate for this the central time
point was placed at a delay of 4 s rather than 0 s [Miezin
et al., 2000, see ‘‘prediction using signal change’’ below).

Functional Network Generation

For each normalized EPI time-course (405 s after crop-
ping and filtering) masks for default mode network and
task positive network were created. The left precuneus
ROI in the most ventral image slice was chosen as a seed
region as it is a large, easily identified component of the
default mode network [Fox et al., 2005; Fransson, 2005].
The left side was chosen arbitrarily. The Pearson product-
moment correlation coefficient (r) was calculated between
the mean normalized time course for the seed region and
each voxel’s normalized time course for the entire fMRI
run.

The 1,639 voxels in gray matter with the highest positive
correlation with the precuneus were taken as the default
mode network. The 1,639 voxels in gray matter with the
weakest positive or strongest negative correlation were
taken as the task positive network. A constant number of
voxels was chosen to maintain constant signal-to-noise ra-
tio for mean signals from voxels within each network. The
number 1,639 was 10% of the total number of voxels in the
image (ceiling of 0.1 " 64 " 64 " 4). Percentiles of 5, 10,
15, 20, and 30 were tried and 10% was a sufficient number
of voxels to produce default mode maps that appeared
consistent to those presented by Fransson [2005] when
plotted against T1-weighted anatomical images. Functional
imaging runs where the gray matter did not have at least
1,639 voxels were excluded, but otherwise no exclusivity
was enforced for any voxel across different networks or
fMRI runs. For each individual and functional imaging
run a mean time course was taken from each of these net-
works to produce a default mode network signal and a
task positive network signal.

Exclusion

Functional imaging runs were excluded if the total range
of movement in any direction was greater than the size of
a voxel in the phase or frequency encoding direction (3.4
mm). However, functional imaging runs excluded due to
motion or mask parameters were not excluded for calcula-
tion of behavioral parameters. Furthermore, instances
where the individual failed to respond within 9 s were
recorded as failures and excluded from both BOLD and
behavioral data analysis.

Classification into Fast and Slow Responses

While reaction times theoretically are continuously vari-
able, for comparison with previous studies examining
spontaneous fluctuations temporally locked to task per-
formance it is desirable to divide reaction times into two

groups of good performance (here, fast performance) and
bad performance (here, slow performance) on the PVT
[Boly et al., 2008; Eichele et al., 2008; Sadaghiani et al.,
2009; Weissman et al., 2006]. Dividing instances into fast
response and slow response groups also allows the charac-
teristic spontaneous activity for fast response instances
and for slow response instances to be examined
separately.

Two performance metrics are desired: one which relates
to variation within an individual’s own performance, and
a different metric which considers the entire group. To
this end, instances of change onset, when the circle
changed color from black to navy blue and the individual
responded, were classified into fast response and slow
response groups based on two metrics.

The first interindividual metric was calculated by identi-
fying the overall median value for all 17 individuals’
response times combined. Instances were grouped into a
fast response group and a slow response group whether
the response time fell below or above this overall median,
respectively. Data falling into the central 5% of response
times was excluded from this analysis to ensure separation
between the two groups.

The second intraindividual metric was identical, except
the median value to which any given instance was com-
pared was calculated only using instances from the spe-
cific individual to which that instance belonged. Therefore
individuals’ instances were only compared with their own
reaction times and each individual had approximately 50%
of reaction times classified as fast and 50% as slow. Table I
shows an example of each metric.

Prediction Using Comparative Metrics

Two comparative metrics (short-window correlation and
local difference in magnitude) were chosen for their ability
to extract a time-localized relationship between activity in
the default mode network and the task positive network.
Such metrics would thus target the time scale of the spa-
tiotemporal dynamics of the default mode and task posi-
tive networks which have been observed to have phase
differences between networks on a scale of seconds [Grigg
and Grady, 2010; Majeed et al., 2011]. These metrics are
described more fully in their own sections below.

Both metrics were calculated at time locations from 16 s
before to 24 s after each instance of the task. The time dif-
ference between the stimulus and the time location where
the metric was calculated is referred to as the peristimulus
time [Boly et al., 2008; Sadaghiani et al., 2009, 2010]. Peri-
stimulus times was centered at 4 s, which is the expected
peak hemodynamic response in the motor cortex to a sim-
ple visual stimulation motor response task [Miezin et al.,
2000]. This interval also ensures with 95% confidence that
no other change onset occurred at a peristimulus time that
would be analyzed for the current onset, and is a large
enough time span to compare with results seen in analysis
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of similar tasks, such as the flanker task which also meas-
ures attention, though in terms of cognitive control rather
than maintenance [Eichele et al., 2008; see discussion). If
the peristimulus time was such that it fell outside of avail-
able normalized BOLD data, then that peristimulus time
was excluded from analysis for that instance.

Each metric at each peristimulus time was compared
with reaction time in two manners. First, a linear regres-
sion was performed between the value of the metric and
reaction time, producing an R2 value, slope and slope
standard error. Based on the slope and its standard error a
P value was calculated (assuming a T distribution) and
this was used as a probability of null hypothesis. The
resulting 42 P values (21 time points, correlation, and mag-
nitude) were tested to control family-wise error rate (see
below). This method has higher statistical power as every
point is used, but can only look at interindividual differen-
ces due to the limited number of points per individual in
this study.

Second, fast response and slow response groups were
compared using a two-sample t-test at every peristimulus
time. The resulting 84 P values (21 time points, overall
and own medians, correlation, and magnitude) were tested
to control family-wise error rate (see below). This method
has lower statistical power but allows comparison of intra-
individual and interindividual differences. Two-group sta-
tistical testing may produce different results than linear
testing, e.g. one group may follow a linear trend but show
no difference in mean when compared with the other
group.

Short-Window Correlation

As frequencies above 0.08 Hz were greatly attenuated
by filtering, r in a window shorter than 12.5 s (1/0.08 Hz
¼ 12.5 s) reflected only similarity in time-local magnitude.
Here 41 TRs (41 " 0.300 s ¼ 12.3 s) were chosen for the
correlation window as 12.3 s < 12.5 s.

Local Difference in Magnitude

If the mean signal from the task positive network is sub-
tracted from the mean signal from the default mode net-
work it provides a measure of the current relationship
between the two networks. This was calculated point-by-
point on normalized data.

Intraindividual Prediction Within Fast and Slow
Groups

Individuals were separated into a fast individuals group
and a slow individuals group depending upon whether an
individual’s own median response time was above or
below the overall median response time. Response instan-
ces from all individuals in each group (fast individuals
and slow individuals) were then divided into fast and

slow response instances based upon each individual’s own
median response time as described above (see Table I for
an example) to approximate intraindividual performance.

As statistical power was greatly reduced by separating
individuals into fast and slow groups, a reduced number
of peristimulus times were used. Only peristimulus times
found to be significant using either of the intraindividual
two-group metrics (see section Intraindividual prediction
using comparative metrics in Results and Fig. 6) were
used.

At each remaining peristimulus time, the short-window
correlation and local difference in magnitude metrics (see
above) were calculated. The fast response instances for
each metric (short-window correlation and local difference
in magnitude) and each set of individuals (fast individuals
and slow individuals) were compared with the slow
response instances for the same metric and set of individu-
als using a two-sample t-test at every peristimulus time.
Family-wise error rate control was used on the fast indi-
viduals group and the slow individuals group separately
with six hypotheses in each family (three time points,
short-window correlation and local difference in
magnitude).

Resting-State Correlation

For comparison with the many functional connectivity
studies on the time scale of entire fMRI runs [Albert et al.,
2009; Hasson et al., 2009; Kelly et al., 2008; Tambini et al.,
2010; Waites et al., 2005; Wang et al., 2010], r was calcu-
lated between the mean normalized BOLD signal within
the default mode network and the task positive network
for the entirety of each individual’s resting-state functional
imaging runs. Each resulting correlation value was used
as a data point compared with whether an individual’s
own median response time was above or below the overall
median response time. This was tested with a two-sample
t-test. This was done to assess the relationship between
network interaction and performance on an interindivid-
ual, entire-functional-imaging-run basis. No family-wise
error rate control was performed.

Family-Wise Error Rate Control

The purpose of this study was data-driven: to identify
functional network properties predictive of individual per-
formance rather than to model all such possible factors.
Therefore, the results include multiple hypotheses, each
represented by a probability (P value). Hypotheses are
separated into families based on similarity in purpose as
shown in Table II.

As multiple P values resulting from multiple hypotheses
are calculated, it was necessary to control against Type I
statistical errors (false positives). In this study the family-
wise error rate (FWER) was chosen instead of false
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discovery rate as it detects families of viable hypotheses
instead of testing hypotheses on an individual basis.

The sequential goodness of fit (SGoF) method was used
to control FWER at 5% chance that all rejected null
hypotheses are false positives [Carvajal-Rodriguez et al.,
2009]. SGoF performs an exact binomial test onto the
expected distribution of P values under the complete null
hypothesis (no results significant). Therefore unlike stand-
ard Bonferroni FWER correction, SGoF will not increase in
Type II error (false negative) rate as the number of P val-
ues tested increases.

As SGoF assumes comparisons are independent, and
comparisons in this study are likely to be nonindependent,
the possibility exists that this nonindependence will create
a cluster of small P values which will be incorrectly
reported as significant. Therefore standard Bonferroni cor-
rection, which decreases the chance of reporting signifi-
cance if comparisons are correlated, was also performed.
Bonferroni correction has a high Type II error rate, so not
all hypotheses found to be significant by SGoF are
expected to be found significant by Bonferroni. However,
if any hypotheses are significant by Bonferroni it suggests
SGoFs results are not due to clustering randomly small
P values.

As SGoF uses the distribution of P values to calculate
significance it does not automatically consider a P value of

zero to be significant, unlike Bonferroni. Therefore when P
values are calculated using bootstrapping (see Supporting
Information) only SGoF will be used.

Control

The type of functional imaging run (resting state vs.
PVT), change onsets and response times were randomly
permuted between all functional imaging runs and all sub-
jects. These randomly permuted behavioral data were
compared with original-order BOLD data using the signal
change and comparative metrics. Other than randomiza-
tion of behavioral data, analysis was identical to the
descriptions above and in Supporting Information, includ-
ing separate control of family-wise error rate for each
family of hypotheses.

Table II illustrates the 12 families of hypotheses that
were included in this study. Excluding families 1 and 8, 10
families had a control significance test performed. From 10
families, it is likely (40.1% chance, from binomial distribu-
tion) that at least one will show a false positive, but less
than 5% likely (1.15%, from binomial distribution) that
three will show a false positive. Therefore if more than
three control tests show a false positive, it suggests that
there was a methodological error in significance testing.

TABLE II. Statistical families

Mask creation Metric type Test type SGoF significance Family number

Entire run Masks Two group None 1
Entire run Mag. dif. and 12.3 s r Linear $0.05 2
Entire run Mag. dif. and 12.3 s r Two group $0.005 3
Entire run Mag. dif. and 12.3 s r Two group, Fast $0.005 4
Entire run Mag. dif. and 12.3 s r Two group, Slow $0.05 5
Entire run DMN and TPN Linear $0.005 6
Entire run DMN and TPN Two group None 7
12.3 s window Masks Two group $0.05a 8
12.3 s window Mag.dif. and 12.3 s r Linear $0.005 9
12.3 s window Mag.dif. and 12.3 s r Two group $0.005 10
12.3 s window DMN and TPN Linear $0.1 11
12.3 s window DMN and TPN Two group None 12

The 12 statistical families used in this study. Each family was tested separately to control family-wise error rate (FWER). Each statistical
family also had a control calculated using randomized onset times, except for families 1 and 8 where the data with randomized onset
times was instead used to calculate bootstrapping significance cutoffs (see Supporting Information). As only one hypothesis was tested
for resting-state data, it is not considered a ‘‘family.’’ See Table SI in Supporting Information for more details. The columns include:
mask creation: method of creating default mode and task positive network masks. Either the entire fMRI run or a 12.3 s window cen-
tered on the peristimulus time was used. Metric type: ‘‘masks’’ is comparison between the probability of a voxel occurring in a fast per-
formance group’s masks and a slow performance group’s masks. Mag. dif. is difference in magnitude between the default mode and
task positive networks’ mean signals at the peristimulus time; 12.3 s r is correlation between the default mode and task positive net-
works’ signals in a window of 12.3 s centered at the peristimulus time. DMN (default mode network) and TPN (task positive network)
is the mean signal in that network at the peristimulus time. Test type: ‘‘two group’’ is where instances of task performance were divided
into two groups for comparison, in both an interindividual and an intraindividual manner. ‘‘Linear’’ is where metrics were compared
with reaction time using linear regression. ‘‘Fast’’ or ‘‘slow’’ indicates that only individuals either faster than or slower than the overall
median reaction time were used. SGoF significance: with the exception of the ‘‘Mask’’ metric, significance was tested using SGoF correc-
tion for FWER at 0.05, 0.1, and 0.005. The lowest probability cutoff where significance was found is shown, or ‘‘none’’ if no results
passed SGoF correction at 0.05 FWER. Family number: reference numbers for each statistical family.
aThe mask metric was tested using only 0.05.
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RESULTS

Twenty-two functional imaging runs were removed due
to excess motion, resulting in exclusion of two individuals.
One functional imaging run was removed due to the
required network size being larger than the entirety of
gray matter, preventing the creation of network masks.
The final number of functional imaging runs was 45 (from
68) over 15 individuals (from 17). Based on the peristimu-
lus time tested, a total of between 131 and 136 instances
occurred per usable peristimulus time within these 45
remaining functional imaging runs.

Maps of the default mode and task positive networks
were successfully obtained in all functional imaging runs
for all remaining individuals. Figure 2 shows probability
maps illustrating how often any given voxel was placed
within a mask. In Figure 2, all masks were registered
using per-slice, rigid-body registration to demonstrate
their similarity across subjects (Sochor; available at:
http://www.mathworks.com/matlabcentral/fileexchange/
19086), though further analysis was performed in individ-
ual space. The majority of masks had colocalized regions
corresponding to anatomical regions known to be con-
tained within the default mode network (precuneus, angu-
lar gyri, and medial prefrontal cortex) and the task-
positive network (dorsolateral prefrontal cortex, inferior
parietal cortex, and premotor cortex). Masks created from
PVT and from resting-state functional imaging runs are
similar, suggesting that task performance minimally per-
turbs the definition of the networks. Figure 3 shows masks
created from a single functional imaging run from one
individual and the mean BOLD time course within these
masks. As expected, these mean time courses are generally
anticorrelated (changing in a similar manner but with op-
posite sign) yet the degree to which they are anticorrelated
varies over the functional imaging run [Kelly et al., 2008].

Overall median reaction time was 971 ms; excluding the
central 5% of reaction times resulted in instances faster than
939 ms classified as fast and instances slower than 1,014 ms
classified as slow. Individual median reaction times varied,
with the mean individual median reaction time at 1,060 ms
with standard deviation 613 ms. Using an overall median,
within the group of fast response instances mean reaction
time was 697 ms with standard deviation 125 ms; within the
group of slow response instances mean reaction time was
2,001 ms with standard deviation 1,332 ms. Using a median
for each individual, within the group of fast response instan-
ces mean reaction time was 888 ms with standard deviation
365 ms; within the group of slow response instances mean
reaction time was 1,778 ms with standard deviation 1,413 ms.

Figure 4a shows a histogram of reaction times. In Figure 4b
these are separated into whether there was positive or nega-
tive correlation between the signals from the two networks in
a 12.3-s window centered at the change onset (not corrected
for hemodynamic response delay). The overall median reac-
tion time of 971 ms is shown as a light dashed line; 971 ms is
approximately centered in the large leftmost cluster of reac-

tion times. To the left of 971 ms most bins are dominated by
negative correlation, to the right most bins are dominated by
positive correlation. These results indicate that median was
an appropriate criterion for division of instances.

Interindividual Prediction Using
Comparative Metrics

Figure 5 illustrates how comparative metrics relate to
interindividual performance at peristimulus times from 16

Figure 2.
Probability maps for generated masks. In this study masks were
generated on a per-functional-imaging-run basis due to the high
temporal resolution EPI used (method shown in Fig. 1). Images
shown are four transverse image slices from ventral (upper left)
to dorsal (lower right) of human individuals with the nose point-
ing upwards, nonradiological convention. Masks are registered
(for visualization purposes only) using rigid-body registration
(Sochor; available at: http://www.mathworks.com/matlabcentral/
fileexchange/19086) of co-registered anatomical images on a
per-slice basis. Probabilities are shown that any given voxel
exists in any given mask of the default mode network or the
task positive network, in either the masks generated for PVT or
resting-state functional imaging runs. Zero (dark blue) indicates
that the voxel never appears in that location, one (dark red)
indicates that the voxel always appears in that location, 0.5 (light
green) indicates that the voxel appears in half of all masks. The
top row shows probabilities for masks generated for the default
mode network, the bottom row the task positive network. The
first column shows probabilities for masks generated from PVT
functional imaging runs, the second column resting-state func-
tional imaging runs. Compare masks with Figure 3 in Fransson
[2005]. Anatomical brain locations can be seen for the default
mode network corresponding to (a) precuneus (b) angular gyri
(c) medial prefrontal cortex, and for the task-positive network
corresponding to (d) dorsolateral prefrontal cortex, (e) premo-
tor cortex, (f) inferior parietal cortex.
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s before change onset to 24 s after. The first comparative
metric is local difference in magnitude, the signal in the
task positive network subtracted from the signal in the
default mode network at the peristimulus time around the
instance; it is shown in Figure 5a,c. The second compara-

tive metric is short window correlation, which is r in a
12.3-s window centered at the peristimulus time around
the instance; it is shown in Figure 5b,d. In Figure 5a,b
individual instances are separated into slow and fast
response groups by the overall median response time, and
the metrics from each group are plotted. Error bars are
one standard error. In Figure 5c,d linear regression was
performed between the metrics and reaction time (using
all response instances), and R2 values are plotted.

Unlike prediction using signal change (shown in Sup-
porting Information Fig. S1), prediction using comparative
metrics (Fig. 5) shows many significant differences before

Figure 3.
Example masks and mean time courses. Example masks are
shown for the first individual, first PVT functional imaging run.
Images shown are four transverse image slices from ventral
(upper left) to dorsal (lower right) of one individual with the
nose pointing upwards, nonradiological convention. The masks
are shown against coregistered anatomical T1-weighted MPrage
images. The mask on the left, shown in blue, is for the default-
mode network and anatomical brain locations can be seen cor-
responding to (a) precuneus, (b) angular gyri, (c) medial pre-
frontal cortex. The ventral left precuneus seed region used to
generate these masks is shown in red. The mask on the right,
shown in green, is for the task-positive network and anatomical
brain locations can be seen corresponding to (d) dorsolateral
prefrontal cortex, (e) premotor cortex, (f) inferior parietal cor-
tex. The mean time course from each of these masks is plotted
with the mean signal from the default mode network in blue
and the mean signal from the task positive network in green.
Note that while in general the two signals are anticorrelated,
the degree of anticorrelation appears to vary over time [Kelly
et al., 2008].

Figure 4.
Histograms of reaction times on PVT. Number of instances of
the PVT where individuals responded within a bin of possible
reaction times is plotted as a histogram versus the entire possi-
ble range of reaction times from 0 s to 9 s. The 20 bin cent-
roids are exponentially distributed from 0 s to 9 s. (a) Reaction
times are shown together in each bin. (b) Each bin is separated
into two new bins based upon Pearson product-moment corre-
lation coefficient (r) between the default mode network and the
task positive network in a 12.3-s window around the change
onset [equivalent to 0 s peristimulus time on Fig. 5b; approxi-
mately 4 s before the expected hemodynamic response to neu-
ral activity due to task performance, see Miezin et al., 2000]
before PVT performance where reaction time was measured. If
correlation is negative, the instance is placed in the white bin on
the left; if positive the instance is placed in the black bin on the
right. The dashed line indicates the overall median reaction time
(971 ms). Note that it is centered within the large distribution
on the left side of the histogram. Also note that to the left of
this median instances with negative correlation between net-
works dominate, while to the right of this median instances with
positive correlation between networks dominate.
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change onset (0 s) or the expected hemodynamic response
to neural activity (4 s).

For fast versus slow group analysis, tests passing SGoF
correction at 0.05 FWER included: using magnitude differ-
ence at peristimulus times of 4 s and 6 s (fast response

greater negative difference indicating task positive signal
was greater, P ¼ 1.60 " 10%2, 5.36 " 10%3), and using short-
window correlation at peristimulus times of %16 s to %6 s
and 0 s to 16 s (fast response greater negative correlation,
3.28 " 10%4 $ P $ 1.13 " 10%2). Two of these tests passed

Figure 5.
Interindividual results from comparative metrics. (a) Mean signal
in default mode network with mean signal in task positive net-
work subtracted from its value. Instances faster than the overall
median reaction time are shown as dashed lines; instances
slower than the overall median reaction time are shown as solid
lines. X axis is the amount of time between the calculated value
and the change onset cue to perform the task (negative is
before task, positive is succeeding task). Error bars are one
standard error. (b) Pearson product-moment correlation coeffi-
cient (r) for 12.3 s square window between mean default mode
network signal and mean task positive network signal. Instances
faster than the overall median reaction time are shown as
dashed lines; instances slower than the overall median reaction
time are shown as solid lines. X axis is the amount of time
between the calculated value and the change onset cue to per-
form the task (negative is before task, positive is succeeding
task). Error bars are one standard error. (c) R2 values for linear
regression (using all response instances) between reaction time

and mean signal in default mode network with mean signal in
task positive network subtracted from its value. X axis is the
amount of time between the calculated value and the change
onset cue to perform the task (negative is before task, positive
is succeeding task). (d) R2 values for linear regression (using all
response instances) between reaction time and Pearson prod-
uct-moment correlation coefficient (r) for 12.3 s square window
between mean default mode network signal and mean task posi-
tive network signal. X axis is the amount of time between the
calculated value and the change onset cue to perform the task
(negative is before task, positive is succeeding task). Compari-
sons found to be significant are shown include magnitude differ-
ence at peristimulus times of %6 s, %4 s and %4 s to 8 s,
correlation at peristimulus times of %16 s to 16 s. They are
demarcated as follows: *passes SGoF at 0.05; **passes SGoF at
0.01; ***passes SGoF at 0.005; ypasses standard Bonferroni cor-
rection at 0.05.
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Bonferroni correction: separating instances by overall me-
dian response time and using short-window correlation at
peristimulus times of %12 s and %10 s (fast response
greater negative correlation, P ¼ 4.59 " 10%4, 3.28 " 10%4).

For linear analysis, tests passing SGoF correction at 0.05
FWER included: magnitude difference at peristimulus times
of %6 s and %4 s (P ¼ 2.11 " 10%2, 9.69 " 10%3, R2 ¼ 4.43
" 10%2, 5.52 " 10%2, negative slope suggesting slower per-
formance is related to lower default mode minus task posi-
tive) and at peristimulus times of 4 s to 8 s (2.95 " 10%3 $
P $ 2.42 " 10%2, 4.38 " 10%2 $ R2 $ 7.56 " 10%2, positive
slope suggesting slower performance is related to greater
default mode minus task positive) and using short-window
correlation at peristimulus times of %12 s, %8 s to %2 s, 2 s,
and 4 s (1.23 " 10%2 $ P $ 2.77 " 10%2, 4.13 " 10%2 $ R2 $
5.19 " 10%2, positive slope suggesting slower performance
is related to greater correlation). Significant results at nega-
tive peristimulus times for linear analysis but not two
group analysis were in part due to that slow response
instances followed a linear trend while fast response instan-
ces had high variance (Supporting Information Fig. S3).

Intraindividual Prediction Using
Comparative Metrics

Figure 6 illustrates how comparative metrics relate to
intraindividual performance at peristimulus times from 16

s before 24 s succeeding change onset. The first compara-
tive metric is local difference in magnitude which is the
signal in the task positive network subtracted from the sig-
nal in the default mode network at the peristimulus time
around the instance; it is shown in Figure 6a. The second
comparative metric is short-window correlation which is r
in a 12.3-s window centered at the peristimulus time
around the instance (Fig. 6b). Individual instances are sep-
arated into slow and fast response groups by each individ-
ual’s own median response time, and the metrics from
each group are plotted. Error bars are one standard error.

Unlike interindividual comparisons (Fig. 5), intraindivid-
ual comparisons (Fig. 6) isolate significant results to only
peristimulus times before task performance.

Tests passing SGoF correction at 0.05 FWER included:
using magnitude difference at peristimulus times of %8 s
to %4 s (fast response greater positive difference indicating
default mode signal was greater, 4.15 " 10%3 $ P $ 1.21 "
10%2), and using short-window correlation at peristimulus
times of %8 s and %6 s (fast response greater negative cor-
relation, P ¼ 8.78 " 10%3, 1.03 " 10%2).

Intraindividual Prediction Within
Fast and Slow Groups

Figure 7 illustrates how comparative metrics relate to
intraindividual performance at peristimulus times from %8

Figure 6.
Intraindividual results from comparative metrics. (a) Mean signal
in default mode network with mean signal in task positive net-
work subtracted from its value. Instances faster than each indi-
vidual’s median reaction time are shown as dashed lines;
instances slower than each individual’s median reaction time are
shown as solid lines. X axis is the amount of time between the
calculated value and the change onset cue to perform the task
(negative is before task, positive is succeeding task). Error bars
are one standard error. (b) Pearson product-moment correla-
tion coefficient (r) for 12.3 s square window between mean
default mode network signal and mean task positive network

signal. Instances faster than each individual’s median reaction
time are shown as dashed lines; instances slower than each indi-
vidual’s median reaction time are shown as solid lines. X axis is
the amount of time between the calculated value and the change
onset cue to perform the task (negative is before task, positive
is succeeding task). Error bars are one standard error. Compari-
sons found to be significant include magnitude difference at %8
s to %4 s and correlation at %8 s to %6 s. They are demarcated
as follows: *passes SGoF at 0.05; **passes SGoF at 0.01;
***passes SGoF at 0.005; ypasses standard Bonferroni correction
at 0.05.
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s to %4 s, when fast and slow individuals are separated.
These peristimulus times were chosen as these were the
only points significant for prior intraindividual analysis
(see %8 s to %4 s on Fig. 6). The first comparative metric is
local difference in magnitude which is the signal in the

task positive network subtracted from the signal in the
default mode network at the peristimulus time around the
instance (Fig. 7a,c). The second comparative metric is short
window correlation which is r in a 12.3-s window centered
at the peristimulus time around the instance (Fig. 7b,d).

Figure 7.
Intraindividual results at previously significant peristimulus times
for fast and slow groups. Peristimulus times of %8 s to %4 s are
analyzed, as these were the only peristimulus times significant
for intraindividual analysis. (a) Mean signal in default mode net-
work with mean signal in task positive network subtracted from
its value. Instances faster than each individual’s median reaction
time are shown as dashed lines; instances slower than each indi-
vidual’s median reaction time are shown as solid lines. X axis is
the amount of time between the calculated value and the change
onset cue to perform the task (negative is before task, positive
is succeeding task). Error bars are one standard error. Only
instances from individuals whose own median response time
was above the overall median response time are used (slow
individuals group). (b) Pearson product-moment correlation
coefficient (r) for 12.3 s square window between mean default
mode network signal and mean task positive network signal.
Instances faster than each individual’s median reaction time are
shown as dashed lines; instances slower than each individual’s

median reaction time are shown as solid lines. X axis is the
amount of time between the calculated value and the change
onset cue to perform the task (negative is before task, positive
is succeeding task). Error bars are one standard error. Only
instances from individuals whose own median response time
was above the overall median response time are used (slow
individuals group). (c) As (a); except only instances from individ-
uals whose own median response time was below the overall
median response time are used (fast individuals group). (d) As
(b); except only instances from individuals whose own median
response time was below the overall median response time are
used (fast individuals group). Comparisons found to be signifi-
cant include magnitude difference at %8 s for slow individuals,
and magnitude difference at %6 s and %4 s and correlation at
%8 s to %4 s for fast individuals. They are demarcated as fol-
lows: *passes SGoF at 0.05; **passes SGoF at 0.01; ***passes
SGoF at 0.005; ypasses standard Bonferroni correction at 0.05.
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Individuals are first separated into slow and fast groups
first by the overall median response time, then individual
instances within each group are subdivided into fast and
slow response groups using each individual’s own median
response time. The metrics from each subgroup are plot-
ted. Figure 7a,c is for the slow individuals group while
Figure 7b,d is for the fast individuals group. Error bars are
one standard error.

Tests passing SGoF correction at 0.05 FWER included:
within the slow individuals group using magnitude differ-
ence at a peristimulus time of %8 s (fast response greater
positive difference indicating default mode signal was
greater, P ¼ 2.32 " 10%2), within the fast individuals group
using magnitude difference at peristimulus times of %6 s
and %4 s (fast response greater positive difference indicat-
ing default mode signal was greater, 3.57 " 10%2 $ P $
3.70 " 10%2) and within the fast individuals group using
short-window correlation at peristimulus times of %8 s to
%4 s (fast response greater negative correlation, 3.44 "
10%3 $ P $ 9.65 " 10%3).

Two tests passed Bonferroni correction within the fast
individuals group. These were short-window correlation at
peristimulus times of %8 s and %6 s (fast response greater
negative correlation, 3.44 " 10%3 $ P $ 4.39 " 10%3).

In every case whether the mean value for fast instances
was greater or less than the mean value for slow instances
matched what was seen when the groups were combined
(Fig. 6).

Resting-State Correlation

Using the traditional analysis method of correlation
between networks on the time scale of entire resting-state

functional imaging runs [Albert et al., 2009; Kelly et al.,
2008; Tambini et al., 2010; Wang et al., 2010] a significant
relationship was shown between faster reaction times and
anticorrelation between the default mode and task positive
networks (Fig. 8). This was similar to what was seen using
short-window correlation (see InterIndividual Prediction
Using Comparative Metrics above) and what has been
observed in other attention-requiring tasks [Kelly et al.,
2008].

The group of individuals with below median reaction
times had mean negative correlation between their default
mode network and task positive network (mean %0.134,
standard deviation 0.408), and individuals with above me-
dian reaction times had mean positive correlation (mean
0.333, standard deviation 0.312). This difference was signif-
icant (P ¼ 6.05 " 10%3).

No significant relationship was found between masks
generated for fast performers versus slow performers,
when the whole functional imaging run was used to gen-
erate the mask.

Control

No control tests included a P value that passed multiple
comparisons correction by SGoF or Bonferroni at 0.05
FWER or below. Eight out of 10 experimental tests showed
significant results at the 5% level. The likelihood of this
result being a false positive is vanishingly small (1.61 "
10%9%, from binomial distribution).

DISCUSSION

Summary of Results

All comparisons consistently demonstrated that a
greater difference between the signal in the default mode
network and the task positive network predicts faster per-
formance on the PVT. The results from comparing the
local difference in magnitude between the two networks
suggested that this difference may be directional and bi-
modal, with greater signal in the default mode network
sufficiently before the task associated with faster perform-
ance and greater signal in the task positive network dur-
ing or after the task associated with faster performance
(Figs. 5 and 6).

The relationship between task positive/default mode
anticorrelation and fast reaction times is statistically strong
and preserved across all time scales. The statistically
strongest result (when all peristimulus times were consid-
ered) was when an overall median reaction time and cor-
relation in 12.3 s windows was used (Fig. 5b). In the
Supporting Information, network masks are also generated
within 12.3 s windows (rather than entire functional imag-
ing runs). As networks generated in short windows are
likely to reflect temporary changes in network dynamics
[Deco et al., 2011; Honey et al., 2007] these results do not

Figure 8.
Resting-state results. The Pearson product-moment correlation
coefficient was calculated between the mean signal from the
default mode network and the mean signal from the task positive
network in each resting-state functional imaging run. The mean r
is shown for (left) individuals whose own median response time
was less than the overall median response time and (right) indi-
viduals whose own median response time was greater than the
overall median response time. Error bars are one standard error.
This difference was significant (P ¼ 6.05 " 10%3).

r Thompson et al. r

r 3292 r



completely match the results from the main text. However,
the statistically strongest result from the main text is simi-
lar even when using these temporary networks (Support-
ing Information Fig. S2bC). Therefore the result when only
a 12.3-s window is considered for both network generation
and correlation calculation largely matches the result
when the whole functional imaging run is considered for
these calculations (Fig. 8).

Using signal in a single network did not significantly
predict PVT performance before the task, suggesting rela-
tive difference between networks may be more important
than absolute signal within a single network (Supporting
Information Fig. S1). The only significant relationships
between signal and task performance were seen after the
likely neural response to the task itself (Supporting Infor-
mation Fig. S1b) and have already been documented in
similar tasks [Chee et al., 2008; Prado et al., 2011].

Significant results were found at peristimulus times
before task performance that suggest that speed of
response on individual instances of the PVT can be pre-
dicted on an instance-by-instance basis for a specific indi-
vidual, rather than only between different individuals.
Significant prior differences in network state were seen
using local difference in magnitude and correlation in a
12.3-s window for instances separated by each individual’s
own median reaction time (Fig. 6). However, a significant
predictive difference was not seen when using local differ-
ence in magnitude and an overall median reaction time to
separate instances (Fig. 5a) and could only be seen using
linear regression, which had higher statistical power (Fig.
5c). While using an overall median or linear regression
and correlation in a 12.3-s window shows similar results
to using individuals’ own medians at peristimulus times
of 6 s to 8 s before the task, it also shows similar results at
many other peristimulus times not present when medians
are calculated separately (Fig. 5b,d).

While the majority of results agreed that a greater differ-
ence between the signal dynamics of the networks is
required for optimal response times, two different time
scales were observed. Results from resting-state correlation
(Fig. 8), correlation within a 12.3-s window using an over-
all median response time (Fig. 5b) and local difference in
magnitude using linear regression (Fig. 5c) all showed a
persistent difference; this difference was significant for 15
out of 21 peristimulus times tested using windowed analy-
sis (with an identical trend for the six non-significant
results, Fig. 5b). However, if individual instances were
separated into fast and slow groups based on individual
median reaction times (so that each individual has approx-
imately half of reaction times classified as fast and half as
slow) the comparative metrics only showed a significant
difference before the change onset within a comparatively
small peristimulus time span (Fig. 6); significant results
were isolated to 4 to 8 s before the change onset.

Further support for the existence of a second, shorter,
time scale was that intraindividual prediction was possible
even when the analysis only considered individuals who

were generally fast or slow (Fig. 7). When individuals
were separated into fast and slow groups, difference in
magnitude was still significantly greater for comparatively
faster response instances both for generally slow and gen-
erally fast responders (Fig. 7a,c). When only individuals
classified as generally fast were used, correlation in a 12.3-
s window was still significantly more negative for compa-
ratively faster response instances (Fig. 7d). When only
individuals classified as generally slow were used, the
mean result for comparatively faster response instances
was lower correlation, but the difference was not signifi-
cant (Fig. 7b).

The Default Mode Network and Anticorrelation

Why does the brain have a default mode, and why
would it fluctuate in an anticorrelated manner with
regions associated with attention? One possible answer for
the first part of this question, which was proposed by the
initial work of Raichle et al. [2001], is that regions within
the default mode network provide useful functions when
a subject is at rest. They suggested that the precuneus may
gather information and the medial frontal cortex may eval-
uate its salience. Both the present study’s results, and pre-
vious work [Kelly et al., 2008; Prado and Weissman,
2011a), move us closer to answering the second part of the
question (i.e., the purpose for the anticorrelated fluctua-
tions). These studies have demonstrated that performance
is optimized when the task-positive and default mode net-
works are anticorrelated and, conversely, coactivation of
the task positive network and the default mode network is
detrimental to performance. The mechanism by which
anticorrelation results in improved performance requires
further study; however, some possible answers have al-
ready been suggested. One possibility is that anticorrela-
tion itself may not causally affect performance but instead
serves as ‘‘an index of the degree of regulation of activity
in those networks’’ [Kelly et al., 2008; p 528]; in this case
anticorrelation is a biomarker of the underlying processes
that regulate behavior. Another possibility is that activity
within one functional network may interfere with initia-
tion or sustenance of activity within a different functional
network, such as the default mode network interfering
during task performance [Eichele et al., 2008]. Anticorrela-
tion creates a situation where cross-activation and hence
cross-interference is unlikely.

How then can the brain ensure at least occasional activa-
tion of the default mode network, but also discourage
coactivation between it and task positive regions? The spa-
tiotemporal dynamics observed in studies by Grigg and
Grady [2010] and Majeed et al. [2011] provide one poten-
tial hypothesis. Through repeated, dynamic alternation
between default mode and task positive regions, the
human brain can both activate the default mode network
at some interval and also ensure these activations do not
coincide with activations in the task positive network. The
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present results thus support the importance of competition
between the default mode and task positive functional net-
works to optimal performance [Kelly et al., 2008], but
append the important result that this competition varies
on a much smaller time scale than had been suspected
based on interindividual studies, and that intraindividual
behavioral prediction is possible. This time scale is consist-
ent with the spatiotemporal dynamics which take approxi-
mately 10 to 20 s to switch between networks (Fig. 2 in
Grigg and Grady, 2010; Fig. 5 in Majeed et al., 2011].

The present study used regression to remove the whole-
brain signal before analysis. It has been demonstrated that
this can potentially create artifactual deactivation resulting
in artifactual anticorrelation [Gavrilescu et al., 2002]. How-
ever, recent work by Fox et al. [2009] demonstrated that
the global signal in fMRI is not preferentially located, sug-
gesting regression is unlikely to create artifactual net-
works; Fox et al. also demonstrated that observed anti-
correlated networks are highly consistent, suggesting such
networks cannot be attributed to global signal removal
alone [Fox et al., 2009]. If anticorrelation was completely
artifactual, the network driving behavior should be related
to behavior itself; the relationship between the artifactual
anticorrelated network and behavior should mimic the net-
work driving behavior with opposite sign and greater
noise. However, the present study does not support this;
rather, before the task the amount of anticorrelation
between networks was significantly related to behavior,
whereas the inherent activity within a single network was
not (compare Fig. 5 and Supporting Information Fig. S1).
This supports Fox et al.’s hypothesis of a ‘‘biological basis
to anticorrelated networks’’ [Fox et al., 2009; p 3280].

Correlation Within Entire Functional Imaging
Runs Versus 12.3-s Windows

Few studies have examined resting-state correlation in
short time windows; typically the entire fMRI run is used.
Sakoglu et al. used 30 s windows in data from patients
with schizophrenia as compared with normal controls to
find greater diagnostic information than from whole func-
tional imaging runs [Sakoglu et al., 2010]. Chang and
Glover observed that the low frequency fluctuations which
make up functional networks vary in terms of power and
dominant frequency band over time [Chang and Glover,
2010]. A simulation of resting-state activity in the Macaque
brain by Honey et al. [2007] demonstrated that functional
networks gradually change over time if correlation in 30 s
windows is used as opposed to entire simulated functional
imaging runs. A recent review by Deco et al. [2011] also
noted that, in such simulations, correlation coefficients vary
based upon the window size used to perform analysis.

The results presented here suggest that the relationship
seen in previous work between behavioral differences and
entire-functional-imaging-run correlation [Kelly et al.,
2008] may be a summation of global differences between

individuals and numerous low-frequency yet second-scale
processes, the latter of which can be examined on their
original time scales of only a few seconds. Using the same
overall median response times and same mask-generation
methods as were used for resting-state analysis, the anti-
correlation in fast instances was seen at peristimulus times
both following and before the hypothesized hemodynamic
response to neural activity (Fig. 5b); here about 4 s [Miezin
et al., 2000]. The 12.3 s window was short enough such
that it could not have contained a full cycle of the fastest
fluctuation after filtering. Therefore, the anticorrelation
which was related to fast responses could only have been
based upon momentary differences between networks
which can be characterized on a scale of seconds.

On an individual basis, the second-scale relationship
between these two networks is also significantly related to
behavior; however, at fewer peristimulus times. When
each individual’s own median was used to classify instan-
ces as fast or slow, the same effect was seen: greater anti-
correlation predicts faster performance. However, in this
case a significant effect was only seen at 6 s to 8 s before
task performance (Fig. 6b).

Difference in Mean Signals

A mean signal in the default mode network greater than
the mean signal in an anticorrelated network was signifi-
cantly related to faster response times before task perform-
ance and slower response times following task
performance (Figs. 5a and 6a). However the prior result
was significant only if individuals’ median reaction times
were used and the latter significant only if an overall me-
dian reaction time was used. This may be due to intraindi-
vidual differences on an instance by instance basis being
more predictive of the general waiting state needed to
respond quickly: the intraindividual differences in mean
occur at two out of three of the same peristimulus times
as intraindividual differences in correlation between net-
works. Also, as the automatically generated anticorrelated
networks include premotor regions (Figs. 2 and 3); a motor
response that is similar in all individuals may occlude
results unless a global median response time is used. Inter-
estingly, the ideal (fast response) state for the difference in
mean signals overall is alternation between networks at
approximately 0.05 Hz, on the order of what has been
observed in studies of spatiotemporal dynamics [Grigg
and Grady, 2010; Majeed et al., 2011].

Comparison With Previous Research That Used
Distracting Stimuli

The present study used the PVT. Other investigations
into the effects of brain networks on attention have used
other tasks, many of which include distracting stimuli. For
example, in the flanker task, an individual must respond
to a centrally presented target while ignoring surrounding

r Thompson et al. r

r 3294 r



distracting symbols such as arrows or letters [Eriksen and
Eriksen, 1974].

As the flanker task and the PVT both require an individ-
ual to attend to visual stimuli and react with motor move-
ment, results from these tasks should be similar. However,
as the flanker task is a two-choice task that involves inhibi-
ting the effects of distracting stimuli, it may require more
attentional control to selectively attend to the target loca-
tion than the PVT. Thus the flanker task may be more reli-
ant on functions associated with task positive brain
regions such as inhibition and maintenance of attention
[Fox et al., 2005; Fransson, 2005] while the PVT may be
more reliant on function associated with default mode
brain regions such as gathering of salient information
[Raichle et al., 2001]. However there is no reason to believe
that competition between networks [Kelly et al., 2008]
would be desirable in either task, so anticorrelation
between networks might be expected in both tasks.

Consistent with this prediction, it was demonstrated by
Kelly et al. [2008] that an individual’s ability to maintain an
anticorrelated relationship between the default mode net-
work and the task positive network predicted consistent
reaction times on a flanker task, suggesting that mainte-
nance of anticorrelation should improve performance. Our
finding, that anticorrelation during the resting state predicts
lower median response times, demonstrates that this idea
extends to the PVT as well. In addition, using the short-
window correlation metric, a significant difference was
found between fast and slow instances on an intraindivid-
ual level for individuals classified as fast for resting-state
analysis, but not for individuals classified as slow (Figs.
5b,d and 6b). This would suggest that individuals who per-
form optimally are better at modulating competition
between networks as Kelly et al. suggested. However, Kelly
et al. did not use correlation within windows, but rather
maximal change inside 8 s windows to look for transient
events; they were unable to relate these to performance.
Using an even more time-localized method, local difference
in magnitude, both overall fast and overall slow performers
on the PVT did show significant differences between their
fast and slow instances (Figs. 5a,c and 6a).

However, in the present study, the specific signal
changes around each instance of task performance differ
from what has been observed for the flanker task. Ground-
breaking work by Weissman et al. [2006] demonstrated
that fast performance on a visual letter-based task was
associated with a prior reduction in the default mode net-
work signal and increase in the task positive network sig-
nal. Eichele et al. followed the work of Weissman but used
a standard arrow-based flanker task and focused on pre-
diction of correct trials [Eichele et al., 2008]. They demon-
strated that these predictive changes in signal maintain
their directionality up to 30 s before the performance of
the task after correcting the BOLD signal for the hemody-
namic response delay.

In the present study, when an overall median value was
used to separate response times, the default mode network

signal was significantly lower than the anticorrelated net-
work’s signal at 6 s succeeding the task (neural electrical
differences expected 2 s after task occurrence), following
the peak of the hemodynamic response from motor
regions [Miezin et al., 2000]. When individual median val-
ues were used to separate response times, the default
mode network signal was significantly greater than the
task positive network signal from 4 s to 8 s before the
task; therefore peak neural electrical differences would be
expected 8 s to 12 s prior [Miezin et al., 2000]. The first of
these results was seen in the flanker task [Eichele et al.,
2008; Weissman et al., 2006] and supports fMRI activation
seen for the PVT by Drummond et al. [2005]. The present
study’s second result, where the default mode signal is
greater before the task, is in the opposite direction of
Eichele et al. and Weissman et al. The opposite result may
be due to the flanker task requiring greater cognitive con-
trol, and thus more sustained activation of the task posi-
tive network. Another possibility is suggested by data that
drowsiness both reduces performance on the PVT [Graw
et al., 2004; Jewett et al., 1999] and was recently observed
by Gular et al. [2009] to reduce the amount of signal
change in the default mode. If individuals exhibit a range
of drowsiness the loss of default mode may become a fac-
tor at some point sufficiently before task performance.
Thus, it is also possible that individual drowsiness is a
much greater risk in the PVT than the flanker task. As
drowsiness was not systematically tested in the present
experiment the exact relationship is unknown.

Comparing the present results with another recent study
of an attention task [Prado and Weissman, 2011a) also sug-
gests that comparisons between attention tasks are possi-
ble. Prado et al. used a task where subjects were required
to attend to either auditory (spoken letters) or visual (dis-
played letters) stimuli and ignore letters in the other mo-
dality, which were either congruent or incongruent with
the correct modality. They observed that greater connectiv-
ity between the precuneus (default mode) and dorsolateral
prefrontal cortex (task positive) was linked to increased
reaction time on the current trial but decreased reaction
time on the succeeding trial. As Prado et al. calculated
connectivity using psychophysiological interaction [Friston
et al., 1997] and a hemodynamic response function with a
peak at approximately 6 to 8 s [Josephs et al., 1997] their
results are most comparable to the current study’s local
difference in magnitude using linear regression at positive
peristimulus times of 6 s and 8 s (see Fig. 5c, peristimulus
times of 6 s and 8 s). Even though the PVT is a less com-
plicated task, the direction of the results (greater difference
and greater anticorrelation are linked to faster perform-
ance) is identical.

A Critical Period for Intraindividual Task
Performance?

As the intraindividual relationship between reaction
time and network activity was limited to 4 to 8 s before
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task performance (indicating neural activity 8 to 12 s prior)
this suggests that intraindividual variation may influence
studies where the time separation between trials falls
within this window. This may have been seen in the pres-
ent study. Using local difference in magnitude, two-group
analysis did not show a significant relationship in interin-
dividual analysis within the 4 to 8 s prior time span (Fig.
5a). However, with the increase in statistical power using
linear regression, this difference in intraindividual per-
formance was now seen interindividually (Fig. 5c).

Why does this critical period for intraindividual per-
formance exist? Its leftmost bound (%8 s) may be deter-
mined by the fact that the neural mechanisms for task
preparation may differ from those for task performance, as
Prado et al. observed that effects detrimental for the cur-
rent trial could enhance a future trial [Prado and Weiss-
man, 2011a). Alternately it may be due to a lack of
statistical power at long peristimulus times in the present
study. Its rightmost bound (%4 s) may be determined by
task interference from resting-state networks [Eichele
et al., 2008; Weissman et al., 2006]. It is also possible that
the time scale upon which spontaneous fluctuations affect
behavior is slow enough so that from 8 s before the neural
response itself (about 4 s succeeding) it isn’t possible to
resolve its effects.

Stimulus Detection Versus Speed of Response

Previous studies have shown a significant relationship
between stimulus detection and signal within the default
mode network and also within the dorsal attention system
which contains many of the same brain regions as the task
positive network such as the intraparietal sulcus and fron-
tal eye field [compare Kelly et al., 2005 with Sadaghiani
et al., 2009].

However, in the present study, no significant difference
was found before task performance between fast instances
and slow instances using individual networks (Supporting
Information Fig. S1). It should be considered that, in the
present study, there were not enough ‘‘miss’’ instances
(instances of the PVT where individuals did not respond)
to use in analysis (only 18 instances in the entire study
were missed, these occurred in only four subjects). There-
fore, every result analyzed can be considered a ‘‘hit’’ in
terms of stimulus detection. The evolution over time of the
mean signal in the default mode and task positive networks
(Supporting Information Fig. S1a,c) appears bimodal, poten-
tially similar to ‘‘hit’’ results seen by Sadaghiani et al. [2009]
using auditory detection. However, in future studies the
protocol would need to be changed to result in more
‘‘miss’’ instances for a comparative analysis to be done.

CONCLUSION

The results presented here extend previous results
regarding network anticorrelation to rapid performance on

the PVT. In addition to results that are comparable to pre-
vious studies, the present study suggests that the time
scale at which anticorrelation between the default mode
and task positive networks predicts improved performance
is very small, at least as short as a 12.3-s window both
inter and intraindividually, and potentially this opposing
relationship can be seen to predict performance on an
intraindividual basis at a single time point if one net-
work’s normalized signal is subtracted from the other (Fig.
6a). These results would allow researchers to use short
windows to evaluate the current condition of functional
networks without requiring long resting-state functional
imaging runs.

The present study also suggests that predictive metrics
resulting from spontaneous oscillations may reflect a com-
bination of both intraindividual and interindividual varia-
tion in network properties. However, most previous
studies have only considered either interindividual differ-
ences in spontaneous fluctuations or large scale interindi-
vidual network differences in resting-state networks. The
simple method used in the present study to group instan-
ces by both intraindividual and interindividual differences,
as well as using similar metrics for both resting-state data
and instantaneous data, can be applied in future studies to
better understand how both the individual’s transient state
and the individual themselves affect results.

The contribution of the global signal was simply
regressed in this study [Murphy et al., 2009; Scholvinck
et al., 2010], but for real-time performance prediction it
remains an open problem. Results generated using net-
work masks generated in 12.3-s windows (see Supporting
Information) are a promising future direction, even if they
are not expected to match results generated using more
stable networks [Fig. 2 and Supporting Information Fig.
S2, see also Deco et al., 2011]. However, the results pre-
sented here are, in general, promising for the future devel-
opment of second-scale, real-time performance prediction
using functional networks.
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