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Short wave phase shifts by large free surface solitary waves: Experiments
and models

Katell Guiziena) and Eric Barthélemy
Laboratoire des Ecoulements Géophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France

~Received 2 May 2000; accepted 17 July 2001!

In this paper, we compare experiments on short gravity wave phase shifting by surface solitary

waves to a Wentzel–Kramers–Brillouin–Jeffreys ~WKBJ! refraction theory. Both weak interactions

~head-on interaction! and strong interactions ~overtaking interaction! are examined. We derive a

dispersion relation and wave action conservation relation which are similar to the ones obtained for

short waves refraction on slowly varying media. The model requires an exact solitary wave solution.

To this end, a steady wave solution is numerically computed using the algorithm devised by

Byatt-Smith @Proc. R. Soc. London, Ser. A 315, 405 ~1970!#. However, two other solitary wave

solutions are incorporated in the model, namely the classical Korteweg and De Vries ~KdV! @Phil.

Mag. 39, 422 ~1895!# solution ~weakly nonlinear/small amplitude solitary wave! and the Rayleigh

@Phil. Mag. 1, 257 ~1876!# solution ~strongly nonlinear/large amplitude solitary wave!.
Measurements of the short wave phase shift show better agreement with the theoretical predictions

based on the Byatt-Smith numerical solution and the Rayleigh solution rather than the Korteweg and

De Vries one for large amplitude solitary waves. Theoretical phase shifts predictions based on

Rayleigh and Byatt-Smith numerical solutions agree with the experiments for A/h0<0.5. A new

heuristic formula for the phase shift allowing for large amplitude solitary waves is proposed as a

limiting case when the short wave wave number increases. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1409964#

I. INTRODUCTION

In the present paper we analyze how short surface waves

are modulated by free surface solitary waves. This approach

may be considered as a model of a more complex interaction

problem, namely nonlinear internal wave–surface wave in-

teraction. The latter is of importance for ocean remote sens-

ing applications. Indeed, on synthetic aperture radar ~SAR!

images of the ocean surface, signatures of long internal

waves are due to Bragg wave modulations. From a theoreti-

cal point of view free surface solitary wave and short wave

interactions is a challenging problem. Indeed standard theo-

ries for short waves do not encompass long nonlinear waves

and vice versa. As a first cut one may consider two linear

waves one of which is very long compared to the other. This

is the approach initiated by Longuet-Higgins and Stewart.1

They analyzed the change of the form of short surface waves

riding on longer ones within the framework of linearized

theory for finite depths. Interaction terms are derived from

the second order of Stokes’ theory, which requires the as-

sumption of small steepness for both long and short waves.

They show that the short wave has a shorter wave length and

increased amplitude at the long wave’s crest. This Doppler

effect is interpreted as the work done by the long wave

against the radiation stress of the short one. In the same

paper, the authors suggest to generalize the wave action con-

servation and the dispersion relation valid for surface waves

refracted by a steady current to the case of surface waves

riding upon a much longer wave ~Sec. IV!. This implies to

introduce an effective gravity resulting from the vertical ac-

celerations of the long wave. Longuet-Higgins and Stewart1

then show that this latter approach yields the same result as

their calculations within the second-order Stokes theory as

long as the vertical accelerations of the longer wave is neg-

ligible, like in shallow water ~Sec. V!. In a companion paper,

Longuet-Higgins and Stewart2 made a further step forward.

They analyzed the change in amplitude of a short surface

wave on a steady nonuniform current. Under the slowly spa-

tially varying current assumption they derive the laws ruling

wave amplitude, namely wave action conservation, and wave

length modulations.

The linear behavior of the long wave was relaxed by

Garrett3 and later, Bretherton and Garrett4 who generalized

the results obtained by Longuet-Higgins and Stewart.2 In a

very general setting, using the averaged Lagrangian formu-

lation, they show that the wave action conservation is a very

general result for short linear wave of small steepness as long

as they propagate on a spatially and temporally slowly vary-

ing basic state. As just mentioned, the flow characteristics

of the basic state do not need to be linear and effective

gravity is introduced accounting for vertical accelerations in

the underlying basic state. This is highlighted by

Longuet-Higgins.5 He applied wave action conservation to

show that when the long wave is steep, up to the Stokes

wave maximum steepness of 0.4432, the steepness of the

short wave riding on it undergoes much more enhancement

a!Present address: Observatoire d’Océanologie Biologique, BP 44, 66650
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than would be predicted by the second-order of Stokes’ lin-

ear theory developed in his 1960 paper. Longuet-Higgins

also underlined the need for a very accurate description of

the long wave, which he did through a particularly efficient

algorithm.

The paper of Bretherton and Garrett4 is an encourage-

ment to make alternative choices on the basic state. Naciri

and Mei6 derived analytically the solution for a short wave

riding on a long wave given by the explicit formula for Ger-

stner’s rotational wave. They qualitatively reproduce

Longuet-Higgins’ numerical results, and show that instabili-

ties can appear for sufficiently large short wave steepness

compared to the long to short wave frequency ratio.

The choice of a solitary wave has been made by a few

authors and is the one made in this study. Using a method-

ology similar to the one proposed by Zhang and Melville7 for

infinite depth, Shen et al.8 derive a nonlinear Schrödinger

equation and wave action conservation for short waves

riding on a solitary wave. This confirms the suggestion by

Bretherton and Garrett.4 They explicitly assume the perturb-

ing wave to be a short deep water wave. They also retrieve a

‘‘wave crest’’ conservation equation. Wave number, wave

amplitude, and frequency modulations of the short wave are

thus computed along a solitary wave profile. The latter is

computed by Evans and Ford’s9 procedure. Wave number

modulations along the solitary wave is an important step

towards phase shift computations. Using a WKBJ perturba-

tion method within the shallow water theory, Clamond and

Germain10 allowed for solitary waves of the KdV type to

coexist with short waves. Predicted short wave phase shifts

are shown to agree with those measured during earlier ex-

periments on interactions between a short monochromatic

surface wave and an external solitary wave in shallow water

~mean depth h0 of 25.5 cm! by Clamond and Barthélemy.11

Indeed, Clamond and Barthélemy11 experimented two

short waves frequencies of 1.5 and 2.3 Hz ~k`h0 of 2.35 and

5.42 where k` is the short wave wave number!. They only

considered the case of waves propagating in opposite direc-

tion ~head-on interaction!, referred to as a weak interaction.

This terminology was first introduced by Miles12 for solitary

wave interactions. In contrast the case of a solitary wave

propagating in the same direction ~overtaking interaction! is

called a strong interaction. It was shown that the surface

wave train, after interaction, was phase-shifted compared to

the surface wave train before. Phase shifts in this context had

never been mentioned before in the literature. Previous theo-

ries or experiments on phase shift predictions dealt with

sinusoidal waves.

Longuet-Higgins and Phillips13 showed that when two

sinusoidal waves of very different wave numbers interact,

the phase velocity of the shorter one will be decreased or

increased ~depending on the relative direction of propagation

of the waves! by an amount proportional to the mass trans-

port at the surface of the longer wave. Mass transport in

solitary waves produces a small but finite displacement L of

the water particles. Thus, on the same ground as Longuet-

Higgins and Phillips,13 it is expected that short waves inter-

acting with solitary waves will be phase shifted by the dis-

placement. Assuming linear superposition of motion and

instantaneous displacement, the phase shift Dw undergone by

the short wave is expressed by

Dw5

2pL

l
5k`L , ~1!

where l is the short-wave wave length. This heuristic for-

mula depends on the expression of L5L(A ,h0) where A is

the solitary wave amplitude and h0 is the depth of water at

rest. In the present paper we discuss the relevancy of the

instantaneous interaction assumption underlying ~1!.
Experimentally, the phase shift undergone by the short

wave is measured using an harmonic analysis technique. The

order of magnitude of the phase shift corresponds to a short

wave time shift of 0.1 second. Determination of such a small

phase shift is very sensitive to a variety of perturbing phe-

nomena. In Clamond and Barthélemy’s experiments, solitary

waves had strong dispersive tails trailing the main pulse that

authors claim to affect the determination of the phase shift.

We improved the solitary wave generation procedure in order

to minimize the undesired trailing waves. Moreover, other

perturbing causes are examined.

Hereinafter, we present in Sec. II A a derivation of the

wave action conservation and a new dispersion relation for

first-order Stokes waves interacting with a solitary wave us-

ing a WKBJ perturbation method in the rectilinear coordi-

nates. This approach is similar to Shen et al.,8 except that we

allow for intermediate water depth and the wave crest con-

servation equation is simplified in order to obtain an alge-

braic dispersion relation. The solitary wave may be described

either by the analytical solutions of Rayleigh14 or KdV15 or

by Byatt-Smith’s16 numerical solution. Assuming a KdV

solitary wave, Clamond and Germain10 analytical expression

of the phase shift is retrieved. We discuss in Sec. II B the

relevance of these different solitary wave approximations in

the scope of solitary wave interaction with a short wave. The

theoretical results are then compared with experiments pre-

sented in Sec. III which are complementary to Clamond and

Barthélemy.11 Indeed, for the first time, strong interactions

have been produced. Moreover, a broader range of short

wave wave numbers has been examined ~k`h0 varies from

2.73 to 7.54!. In Sec. IV, the wave number modulations de-

duced from Sec. II A are tested through comparison with the

measured phase shifts undergone by the short waves. In

some cases, short waves breaking has been observed. Predic-

tions of the maximum short wave steepness when breaking

was observed are reported.

II. THEORETICAL ANALYSIS

The aim is to devise a two-dimensional ~2D! model to

study short surface waves modulations when the short waves

ride on a solitary wave. We use a nonviscid, incompressible

and homogeneous fluid with a depth at rest h0 . We assume

irrotational motions, therefore, the velocity field can be de-

rived from a velocity potential F(x ,z ,t) and hs(x ,t) denotes

free surface displacement with respect to the rest level.

The key step is to consider a long wave which is an

exact stationary solution of this flow in a reference frame

moving at the wave phase speed c. To this end, the new

3625Phys. Fluids, Vol. 13, No. 12, December 2001 Short wave phase shifts by free surface solitary waves



horizontal variable X5x2ct that describes the co-moving

frame is introduced. It has long been known that this prob-

lem has an exact stationary solitary wave solution

~Lavrentiev17!. At the present level of derivation it is not

necessary to specify its expression and we denote the veloc-

ity potential and the free surface displacement associated

with this exact stationary wave by fe(X ,z) and he(X) ~see

Fig. 1!. Other exact solutions exist, amongst which are peri-

odic solutions.

We now seek for infinitesimal disturbances of this exact

solution. The free surface elevation and velocity potential are

expanded as series of a small parameter d of the following

form:

hs~X ,t !5he~X !1dh~X ,t !, ~2!

F~X ,z ,t !5fe~X ,z !1df~X ,z ,t !. ~3!

As in the Stokes theory, d is known to be proportional to

the short wave surface slope. Assuming that the perturbation

is sinusoidal in time of high-frequency v and that its ampli-

tude a is small compared to both its wavelength l and depth

h0 , the first-order then reduces to a classical set of linear

partial differential equations. The perturbation potential

f(X ,z ,t) is a harmonic function and the bottom is imperme-

able. The free surface displacement for the perturbation is

given by

h~X ,t !3G~X !5ivf2~ue2c !
]f

]X
2ve

]f

]z
, ~4!

where ue5feX , ve5fez and G(X)5g1(ue2c)veX

1vevez written on z5he(X). One recognizes G(X) to be

the effective gravity introduced by Longuet-Higgins and

Stewart1 and later Bretherton and Garrett.4 The effective

gravity is the sum of the gravity and vertical acceleration at

the free surface.

The free surface kinematic condition in addition to Ber-

noulli’s relation leads to the following equation for the per-

turbation velocity potential at the free surface z5he(X):

ae~X !f1be~X !
]f

]X
1ce~X !

]f

]z
1de~X !

]2f

]X]z

1ee~X !
]2f

]X2 1 f e~X !
]2f

]z2 50, ~5!

with

ae~X !52v2
2ivS uezheX2vez2

~ue2c !

G~X !
@GX

1heXGz# D ,

be~X !52G~X !heX1~ue2c !~ueX2vez12uezheX

2~ue2c !@GX1heXGz# !22iv~ue2c !,

ce~X !5G~X !2ve~vez2uezheX!2~ue2c !S ve

G~X !
@GX

1heXGz#2veX2heXvezD
2iv@ve1heX~ue2c !# ,

de~X !5~ue2c !@ve1~ue2c !heX# ,

ee~X !5~ue2c !2,

f e~X !5ve~ue2c !heX .

A. The WKBJ approximation

Length scales associated with the perturbation are as-

sumed to be very small compared with the length scales of

the long wave. The short wave is continuously adapting its

characteristics to maintain itself as a high-frequency mono-

chromatic wave. This assumption of WKBJ type is equiva-

lent to that of Shyu and Phillips.18 A small parameter m
5l/L ~where l is the short wave wavelength and L is a

characteristic length of the solitary wave! is naturally in-

volved and a new variable X*5mX is introduced. The

WKBJ approximation postulates slow variations of the am-

plitude A(X ,z) and rapid variations in the phase S(X ,z).

This is written in the following form:

~6!

f*~X*,z !5A*~X*,z !e , iS*~X*,z !/m ,

where f*(X*,z)5f(X ,z) and A*(X*,z)5A(X ,z) and

S*(X*,z)5mS(X ,z) are real numbers. The amplitude and

phase are expanded in even series of m of the form

A*~X*,z !5A0
*~X*,z !1m2

A2
*~X*,z !1¯1O~m2n!,

~7!

S*~X*,z !5S0
*~X*,z !1m2S2

*~X*,z !1¯1O~m2n!.

~8!

At the lowest orders ~m22 and m21!, the only nontrivial

relation is S0
*5S0

*(X*). The modulated wave number

k(X)5S
0X*
* is then introduced.

Depending on the relative scale of m and d, Eq. ~5! will

simplify differently. Indeed, when m;d orders correspond-

ing to m and d cannot be separated. Dingemans19 reports

studies of the refraction of waves by currents for which ver-

tical dependency predominates over horizontal and temporal

variations by assuming m!d . Regarding the interaction

problems, the correct assumption is m@d as made by Mei20

to study the refraction of waves on slowly varying currents.

The main difference here with the available literature is not

to assume that the long wave is a linear one either in finite

FIG. 1. Definition sketch.
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depth or in infinite depth. Moreover, most authors have fo-

cused on amplitude modification and Doppler shift. In con-

trast, we will analyze the phase shift of the short wave. Our

approach also differs from that of Clamond and Germain10

since they explicitly assumed a solution in the small ampli-

tude approximation. In contrast, the exact solitary wave so-

lution we consider can be of large amplitude. However, the

coefficients of Eq. ~5! contain terms of different orders in

s5h0 /L , that can be sorted out. The two leading orders are

given in Table I.

Assuming s;m (l;h0), the perturbation fulfills the

following dispersion relation obtained by considering the or-

der m0:

V2
5gk~X !tanh@k~X !~he~X !1h0!# . ~9!

It appears that the effective gravity reduces to gravity.

The wave action conservation is retrieved at the order m1

Fa2~Cg1c2ue~X !!

V
G

X

50, ~10!

with V5v2k(X)(ue(X)2c), a5A0V/g the short wave

amplitude at the first order and Cg5dV/dk the intrinsic

group velocity. The dispersion relation ~9! for given ue(X),

he(X) and c is solved numerically for k(X) using a

Newton–Raphson method.

We briefly discuss qualitative behaviors. At x56` the

short wave has a constant wave number k` , the one ob-

served in the laboratory. Note that ~9! differs from the dis-

persion relation obtained for refraction on a slowly varying

current. Indeed, changes in depth as the short wave rides on

the long wave are embedded in ~9! since (he(X)1h0) ap-

pears instead of h0 alone. The phase shift Dw is easily com-

puted when the modulated wave number k(X) is obtained. It

reads

Dw5E
2`

1`

~k~X !2k`!dX , ~11!

where k(X) is the wave number in the physical space.

Assuming a solitary wave solution of KdV type, the ba-

sic state reads

he~X !5e f ~X !h0 , ~12!

ue~X !5ec f ~X !, ~13!

c5c0~11e/2!, ~14!

with e5A/h0 , f (X)5sech2(bX/2), b/25A3e/4h0
2 and c0

2

5gh0 . We also assume that the wave number expands as a

series of e

k~X !5k`1ek11O~e2!. ~15!

Expansions of the right and left-hand side of Eq. ~9! in

series of e including the first two leading orders yield

V2
5~v1k`c0!2

1e@2c0~v1k`c0!~k12k` f !#

1O~e2!, ~16!

gk tanh~k~he1h0!!5gk` tanh~k`h0!

1e@gk1 tanh~k`h0!1gk`h0~k1

1k` f !~12tanh2~k`h0!!#

1O~e2!. ~17!

At the lowest order, formula ~9! together with ~16! and ~17!
provides the undisturbed dispersion relation for X56`

~v1k`c0!2
5gk` tanh~k`h0!. ~18!

At the next order ~e!, formula ~9! gives

k1

k`
5G f ~X !, ~19!

with G5(c01v lab/2k`2cg)/(c01cg! where cg

5dv lab /dk` and v lab
2

5(v1k`c0)2. The phase shift ~11!
then reads

Dw5ek`GE
2`

1`

f ~X !dX . ~20!

We retrieve in a more general framework the phase shift

DwKdV given by Clamond and Germain10

DwKdV

k`h0

5

4

)
GAA

h0

. ~21!

We may note that G tends to 1 when the short wave

frequency increases.

B. Short wave modulation for different solitary wave
solutions

At this level, the exact solitary wave solution ~basic state

around which a perturbation is sought! is not specified to

obtain ~9! and ~10!. A different solitary wave approximation

may be used, as long as the terms neglected in Eq. ~5! using

this approximation are at least an order of magnitude smaller

than the perturbation contribution. This is required so that the

basic flow and the perturbation can be solved separately. The

numerical solution proposed by Byatt-Smith16 will easily ful-

fill this assumption, as the error allowed when computing it

can be less than 1024 on the free surface elevation whereas

the short wave amplitude is of order 1022. We compute

Byatt-Smith numerical solution up to A/h050.7165 using

the accurate and efficient algorithm devised by Byatt-Smith

and Longuet-Higgins.21 The accuracy of Byatt-Smith nu-

merical solution is checked against measurements of both

free surface elevation and phase speed @see Figs. 2 and 3~a!#

TABLE I. First two orders in m of the coefficients in ~5! and of the effective

gravity G(X).

O~1! O~m!

ae(X) 2v2 ivvez

be(X) 22iv(ue2c) 2gheX1(ue2c) (ueX2vez)

ce(X) g iv @ve1(ue2c)heX#

de(X) 0 (ue2c) @ve1(ue2c)heX#

ee(X) (ue2c)2 0

f e(X) 0 0

G(X) g 0

3627Phys. Fluids, Vol. 13, No. 12, December 2001 Short wave phase shifts by free surface solitary waves



for A/h0<0.5. Indeed, we were not able to produce larger

solitary wave because of the device capabilities ~see Sec.

III!.
We shall also consider analytical solutions ~which are

not strictly speaking exact solutions! including the KdV or

shallow water approximation, which rely on both long waves

and small-amplitude assumptions ~weakly nonlinear theory!.
Within the shallow water theory, all series expand in either

even or uneven powers of e5A/h0 . This means that the

order of magnitude that separates two consecutive approxi-

mations is at least e2. Accordingly if first-order approxima-

tion is of order 1, corrections to obtain a second-order ap-

proximation will be of order e2. Between 1 and e2, we ought

to be able to solve separately the perturbation first order

(;d5ak) leading to ~9! and giving the rapid variation of

the phase, and the second-order ~;dm! leading to ~10! and

describing the slow variations in the amplitude of the pertur-

bation. This means that it is necessary for e2
!md , which

can be met in the KdV domain of validity when e is less than

0.15.

Avoiding the latter restriction of small amplitude,

namely allowing e to be of order 1 ~strongly nonlinear

theory!, Rayleigh14 derived the following solitary wave so-

lution, reported by Lamb22 ~Sec. 252!:

h~x ,t !5A sech2@b~x2ct !/2# , ~22!

b

2
5A 3A

4h0
2~h01A !

, ~23!

c5Ag~h01A !, ~24!

with the depth-averaged velocity given by

ū~x ,t !5cS 12

h0

h01h~x ,t !
D , ~25!

and the horizontal and vertical velocity given by

u~x ,z ,t !5 ū1

~h1h0!2

6
ūxx2

~z1h0!2

2
ūxx , ~26!

v~x ,z ,t !52 ūx~h01z !. ~27!

This is the steady solution of the set of equations pro-

posed by Serre23 and later by Su and Gardner24 in a strongly

nonlinear framework.

Since we assume s;m and in order to be consistent

with our WKBJ perturbation method, the horizontal velocity

at the free surface ue(X ,he) will be taken equal to ū when

truncating terms of order m2 and higher in ~5! for Rayleigh

and KdV approximations. For Byatt-Smith exact numerical

solution, since this order separation is not possible, ue(X ,he)

will be taken equal to the full free surface horizontal velocity

contribution. Moreover, separating orders, we require that

s4
!md , which means d@s3. This condition will be ful-

filled in the experiments.

FIG. 2. Dimensionless free surface elevation at one location vs time ~a! and

in the steady reference frame ~b! obtained for Byatt-Smith’s numerical so-

lution ~—!, KdV ~- -!, or Rayleigh’s ~¯! analytical solutions and experi-

ments ~s!.

FIG. 3. Froude number F5c/Agh0 vs solitary wave dimensionless ampli-

tude A/h0 ~a! and outskirts decay coefficient b vs Froude number ~b! ob-

tained for Byatt-Smith’s numerical solution ~b is then the Stokes outskirts

decay coefficient solution of the relation F2
5tan(b)/b) ~—!, KdV ~- -!, or

Rayleigh’s ~¯! analytical solutions and experiments ~s!.
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As mentioned in the Introduction, the short wave phase

shift can be deduced heuristically from the particle displace-

ment L at the free surface of the solitary wave. The particle

displacement L at the free surface is defined in general by

L52E
0

` c2u~x ,h !

u~x ,h !
dx , ~28!

where u(x ,h) denotes the horizontal velocity at the solitary

wave free surface in the co-moving frame and c is the soli-

tary wave phase speed.

In the Korteweg and De Vries15 approximation, the hori-

zontal velocity at the free surface is the mean horizontal

velocity and L is given explicitly by

L5

4

)
h0AA

h0

. ~29!

Thus, we note that formula ~21! tends to the heuristic

formula ~1! where L is given by ~29! for high-frequency

short wave. For large amplitude solitary waves (0.4<A/h0

<0.7), Longuet-Higgins25 showed that formula ~29! is rather

inaccurate and underestimates the horizontal displacement

by 25% to 40%. However, it is still possible to derive from

Rayleigh and Byatt-Smith velocities at the free surface other

estimations for L to be included in the heuristic formula ~1!.
We shall also consider an approximation for L based on the

depth averaged velocity ū of Rayleigh solution, which lead

to the following analytical expression for L:

L5

4

)
h0AA

h0
S 11

A

h0
D . ~30!

On Fig. 4, we plot these estimations of L, together with

Longuet-Higgins25 experiments. We also report on Fig. 4

Fenton26 ninth-order theory and Longuet-Higgins27 calcula-

tions for large amplitude solitary waves up to the limiting

steepness (0.7<A/h0<0.8332). We also report this limiting

steepness on the plots of the Froude number versus solitary

wave amplitude @Fig. 3~a!# and of the outskirts decay coeffi-

cient versus the Froude number @Fig. 3~b!#.

It is clear that displacements at the free surface derived

from Rayleigh free surface velocity or even Rayleigh depth-

averaged velocity are very accurate for a broader range of

solitary wave amplitude than KdV. Up to A/h050.4, dis-

placements derived from the free surface velocity from

Byatt-Smith’s exact solution, Rayleigh’s analytical solution

and displacements derived from Rayleigh depth-averaged

velocity merge, whereas displacement derived from KdV’s

solution are much smaller since A/h050.15. For A/h0

>0.4, some discrepancies appear between the simplified ex-

pression ~30! and estimation of L obtained either from the

free surface velocity of Rayleigh or the numerical solution

from Byatt-Smith. However, up to A/h050.7 the deviation

between formula ~30! and Byatt-Smith is less than 10%

whereas it reaches 40% between formula ~29! and Byatt-

Smith. Besides, in the same range, the deviation between

~30! and Longuet-Higgins’ experiments is at most of 20%.

Part of this deviation might be due to a suspected bias in

Longuet-Higgins measurements owing to the added displace-

ment caused by a secondary hump following the solitary

wave. Using formula ~30! in the heuristic approach we over-

come the small amplitude KdV limit and short wave phase

shift is given analytically by

DwH

k`h0

5

4

)
AA

h0
S 11

A

h0
D . ~31!

Indeed, we show by comparing the free surface displace-

ment derived from the numerical solution of Byatt-Smith and

the displacement obtained from Rayleigh depth-averaged ve-

FIG. 4. Solitary wave dimensionless amplitude vs horizontal displacement

at the free surface obtained from Byatt-Smith’s ~—! numerical solution

complemented by ~3! ninth-order theory of Fenton ~Ref. 26! ~^! calculation

by Longuet-Higgins ~Ref. 27!, Rayleigh free surface velocity ~—!, formula

~30!, i.e., Rayleigh ~¯! and KdV ~- -! depth-averaged velocities and experi-

ments from Longuet-Higgins ~Ref. 25! ~s!.

FIG. 5. Wave number modulations along the solitary wave ~X50 at the

solitary wave crest! predicted by WKBJ theory for the strong interaction of

a 2 Hz shortwave ~k`516.09, h050.3 m! and a solitary wave of amplitude

A/h050.2025 ~a! and A/h050.4129 ~b! given by Byatt-Smith’s numerical

solution ~—!, KdV ~- -!, and Rayleigh ~¯!.
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locity that this simple formula accurately reproduce the heu-

ristic approach for solitary waves up to A/h050.4 and with

less than 10% error up to A/h050.7.

Finally, we have to compare the amplitude and wave

number modulation obtained using each analytical approxi-

mation of the solitary wave and the numerical solution. Wave

number modulations ~Fig. 5! associated with KdV show bet-

ter agreement than Rayleigh with the modulations obtained

using Byatt-Smith’s numerical solution. In all cases, the

highest maximum wave number modulations are given using

Byatt-Smith, with Rayleigh giving the lowest. The deviation

between Rayleigh and Byatt-Smith at the maximum of wave

number modulations reaches 40% for A/h050.5 in strong

interaction. With respect to amplitude modulations ~Fig. 6!,
the deviation between Byatt-Smith and Rayleigh ranges from

the double to four times the deviation between Byatt-Smith

and KdV when solitary wave amplitude increases. Yet,

Byatt-Smith predicts amplitude modulation at the solitary

wave peak that are less than 6% greater than KdV ~for

A/h050.5 in strong interaction!. As a consequence of both

wave number and amplitude modulations, when comparing

steepness maxima at the crest of the solitary wave @Figs. 7~a!
and 7~b!#, KdV and Byatt-Smith give close results up to

A/h050.3. For A/h0>0.3, predicted steepness maxima are

smaller for KdV than for Byatt-Smith. In all cases, using

Rayleigh’s solution, predicted steepness maxima are smaller.

Yet, the phase shifts deduced from wave number modula-

tions given by Rayleigh are in better agreement with Byatt-

Smith than KdV, as shown in Figs. 7~c! and 7~d!. This is in

line with our conclusion on particles displacements at the

free surface. We suggest this is due to the better description

of both the outskirts decay coefficient and the phase speed in

Rayleigh solution @see Figs. 3~a! and 3~b!#.

As a conclusion, granted that Byatt-Smith’s numerical

solution is the exact solitary wave solution required in the

theory, Rayleigh’s approximation appears to be better than

KdV’s to test the short wave phase shift in the interaction

with a solitary wave. But regarding Doppler effects and par-

ticularly steepness prediction at the solitary wave crest, KdV

would give a better approximation than Rayleigh.

III. EXPERIMENTAL PROCEDURE

The experiments are conducted in a 36 m long, 0.55 m

wide, and 1.2 m high flume as sketched out on Fig. 8. It is

equipped with two wave makers.

At one end of the flume a piston wave paddle can be

displaced horizontally. The piston is linked to a hydraulic

jack capable of a 600 mm stroke. The control system is

monitored by a computer. Different motions of the paddle

can be prescribed by the computer, enabling the generation

of either solitary waves or sinusoidal waves. This ability was

used for strong interactions when solitary waves and short

waves need to be generated at the same end of the flume.

Nevertheless the piston type wave maker, although not per-

fect, is more appropriate for long wave generation rather than

for short wave generation since it displaces the whole water

column uniformly. Ideally, the piston would need to flex in

such a manner as to reproduce the solitary wave vertical

distribution of the velocity. This is not possible with our

wave maker. However, we need to prescribe an appropriate

law of motion for the paddle in order to produce solitary

waves that are as pure as possible. Clamond and Germain10

used a law deduced from the first-order shallow water theory.

All solitary waves generated with this motion exhibit a main

pulse followed by a dispersive tail with no more than 10% of

the amplitude of the leading pulse. In order to decrease the

amplitude of the dispersive tail, different laws of motion for

the piston wave maker were tested. It appears that solitary

waves generated using a paddle motion law conforming to

~25! are purer ~smaller dispersive tail than with the original

law! and more rapidly established. Moreover, by reproducing

different experiments concerning solitary wave generation

with any generation law, we assess that it is highly reproduc-

ible. So that for a given paddle law, we could know the

solitary wave amplitude at any location in the flume given

the probe accuracy. The law deduced from the Rayleigh so-

lution implies larger paddle displacement than other laws.

With regard to the finite stroke of the jack, this latter law lead

to smaller solitary wave amplitudes. For a water depth of

h050.3 m the upper bound of the solitary wave dimension-

less amplitude is 0.35 while the first-order shallow water law

allows a dimensionless amplitude up to 0.5.

For weak interactions, a plunging wedge wave maker

was used to generate high-frequency monochromatic sinu-

soidal waves. It is driven through a scotch-yoke ~Welt28! by

an electric motor rotating at constant speed. The frequency of

the wedge motion ranges from 1 to 10 Hz. The amplitude of

the motion is adjusted by prescribing a fixed eccentricity.

This wave maker can be located at will anywhere along the

flume. For the set of weak interactions, it was located at 28

m from the piston wave maker.

FIG. 6. Amplitude modulations ~same legend as Fig. 5!.
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The depth at rest was fixed throughout the experiments

at h050.3 m. It is a compromise between the capabilities of

the solitary wave wave maker and the high frequency wedge

wave maker. In addition for this depth the short wave has a

dimensionless wave number k`h0 ranging from 2.73 to 7.54

for frequencies varying from 1.5 to 2.5 Hz. It indicates that

experiments were performed for intermediate to deep water

depths conditions. The short wave is in fact a wave group as

shown on Fig. 9~a!. The front part is highly unstable. Enve-

lope solitons can be generated in this front part and at least

strong modulations of the amplitude are systematically ob-

served. The central part of the record @Fig. 9~b!# shows a

slight modulation in amplitude along with an asymmetry be-

tween crests and troughs due to second-order nonlinearities.

Harmonic analysis of this central zone shows that the first

harmonic component is a very small fraction of the funda-

mental component. Thus it is considered to be a nearly pure

monochromatic wave. Care is taken so that the measurement

of the interaction is made in the central part. Over 2.5 Hz the

wave is severely damped and propagates no further than 3 m

away from the plunging wave maker. It was noticed during

the experiments that damping was less pronounced after the

tank had just been refilled, in other words when the free

surface was clean. We thus attributed this damping to the free

surface contamination, as Van Dorn29 already suggested.

Thus, as it is not possible, given the size of the tank, to

maintain the free surface clean enough, we did not proceed

over 2.5 Hz.

Surface displacements during the experiments on the in-

teraction between short surface waves and surface solitary

waves are measured in fixed locations by resistive probes.

Probe precision was estimated at 0.5 mm for free surface

elevations lower than 5 cm and at 1 mm beyond this limit.

This is due to probe calibration. These probes are combined

in arrays and the distance between probes is fixed. The array

can be moved along the flume, between 11 and 22 m from

the piston wave maker depending on the experimental con-

ditions. An extra probe can be dedicated to the measurement

of the solitary wave before it has interacted. All experimental

recordings of interactions are measurements of free surface

displacement against time ~between 15 and 25 seconds dura-

tion!. The probes are located along the center line of the

FIG. 7. ~a! and ~b! Steepness maxima at the crest of the solitary wave and ~c! and ~d! phase shifts deduced from wave number modulations predicted by

WKBJ theory for weak and strong interaction of a 2 Hz short wave ~k`516.09, h050.3 m! of amplitude 1 cm and a solitary wave given by Byatt-Smith’s

numerical solution ~—!, KdV ~- -!, and Rayleigh ~¯!.

FIG. 8. Sketch and dimensions of the

experimental equipment.

3631Phys. Fluids, Vol. 13, No. 12, December 2001 Short wave phase shifts by free surface solitary waves



flume to avoid lateral perturbations. We generate a solitary

wave of amplitude A, a short wave of frequency f ~wave

number k`!, and of amplitude a` . A typical example of an

interaction is presented on Fig. 10, on which four zones can

be differentiated. Zone A is the recording of the short wave

before interaction, zone B is the recording of the interaction

between the solitary wave and the short wave when the soli-

tary wave contribution is predominant, and zone C is the

recording of the short wave after it has interacted. The slight

modulation is due to the dispersive tail trailing the soliton.

Zone D is a useless part of the recording. Indeed the reflected

solitary wave interacts with the dispersive tail and the short

wave.

From the theoretical point of view, we know that the

short wave undergoes wave number modulations during the

interaction. The modulations are difficult to obtain directly

from the measurements. However, phase shift of the wave

train A with respect to the wave train B is a consequence of

wave number modulations. The data processing to obtain this

phase shift is based on a harmonic analysis technique de-

tailed in Clamond and Barthélemy.11 This was found to be

the most precise method. The methodology was tested on

pure synthetic sinusoidal signals with no other contribution.

In this case the phase shift between two arbitrary zones with

such signals is 0 since no other wave is present. This method

applied to such signals yields a phase shift as low as the

machine roundoff error in double precision, namely

10216 rad. Concerning our experiments, we also tested the

error induced by the dispersive tail that follows the solitary

wave main pulse in zone C. To this end, two tests have been

considered. First, we apply harmonic analysis to the super-

imposition of a pure synthetic sinusoidal signal and a mea-

sured free surface elevation for a single solitary wave. We

considered solitary waves generated by the different paddle

motion laws we tested. But in the whole range of solitary

wave amplitude, the improvements in reducing the disper-

sive tail did not show a significant reduction in phase shift

error due to inaccuracy in the method because of the disper-

sive tail. This error is at most 0.1 rad. Second, all interaction

experiments were repeated with solitary waves generated ei-

ther with Rayleigh or KdV paddle motion law. Phase shifts

obtained from one or the other experiment series do not

separate more than the error than can be estimated for a

single experiment. Indeed a large contribution to the error

comes from irregularities in the measured short wave signals.

This was assessed by the following test. A record of a freely

propagating short wave is split in two. Phase shift between

both parts is computed. This was repeatedly done and it was

found that phase shifts could reach 1.5 rad without any ap-

parent disturbances. This error in phase computation is

mainly attributed to uncertainties in the frequency determi-

nation of short signals ~records less than 10 s!. The reliability

of the frequency of the wave maker was checked. It was felt

that the best way to estimate and reduce errors in phase shift

determination was to repeat the measurements. All the phase

shifts presented in this section are, therefore, an average on 5

or 6 values obtained at locations spanning 2 m ~probe array!.

All the values presented fulfilled the criteria of an error lower

than 1 rad, estimated from two times the standard deviation

of the 5 or 6 values. Experiments for which this criteria was

not fulfilled have been excluded. More details regarding ex-

perimental errors can be found in Guizien.30 As mentioned

above, given a short wave frequency and a solitary wave

FIG. 9. Recording of a high-frequency wave group at 10 m from the wedge

wave maker; f 52 Hz, h050.3 m. ~b! is a close-up of the recording plotted

in ~a! showing evidence of second-order contribution.

FIG. 10. Free surface elevation against time at 19.423

m from the piston wave maker; for the solitary wave

A/h050.3 and the frequency of the short wave is f

52.5 Hz ~k`525.15! for an amplitude of a`

55.7 mm (h050.3 m).
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amplitude, we carried out experiments for the different soli-

tary wave laws of generation, considered as repetition of the

same experiments. Besides, the short wave amplitude was

also allowed to vary, from 4 to 12 mm, as long as the short

wave out of the interaction was stable.

IV. RESULTS AND DISCUSSION

The interaction between a surface solitary wave and a

short wave can be analyzed using very simple arguments, as

recalled in the introduction. The short wave phase shift is

then given by formula ~31!. We emphasize that this formula

is obtained by considering only displacement due to solitary

waves, linearly and instantaneously. As a consequence, the

short wave direction of propagation is not taken into account.

It should be noted that ~31! is independent of the short wave

amplitude a`. Figure 11 shows the experimental results of

nondimensional phase shifts Dw/(k`h0) against AA/h0 for

strong and weak interactions and various short wave frequen-

cies. We do not identify on the plots of Fig. 11 the short

wave amplitude. Indeed, it was not possible to show experi-

mentally any dependency of the short wave phase shift on

the short wave amplitude.

Heuristic phase shift DwH given by formula ~31! is plot-

ted as a dotted curve. In this representation, it is the same

curve in all cases. Experimentally, weak interactions give

smaller phase shifts than DwH while strong interactions give

larger ones. Moreover it appears that for strong interactions

the higher the frequency of the short wave, the closer the

nondimensional experimental phase shifts are to

DwH /(k`h0). This is not surprising since formula ~31! as-

sumes that the short wave does not propagate during the

interaction. Indeed, this assumption is met with decreasing

error as the frequency increases since then the short wave

phase velocity also decreases. For weak interactions, since

the induced phase shifts are smaller, it remains difficult to

observe this effect as clearly. In order to clearly show this

argument, we plot on Fig. 12 the relative deviation between

phase shifts given by formula ~31! and experimental values

or formula ~9! for a Rayleigh solitary wave as the short wave

wave number increases. In fact, this graph shows that the

relative error one would do when using formula ~31! to es-

timate the short wave phase shift, decreases when the short

wave frequency increases. This error is less than 10% when

FIG. 11. ~1! Experimental phase shifts versus the

square root of solitary wave dimensionless amplitudes;

~¯!: DwH ; ~—!: DwR ; ~- -!: DwKdV ; ~—!: DwBS ; ~*!:
short wave was observed breaking; ~s!: short wave

suspected to be breaking from pictures; ~a! strong and

~d! weak: f 51.5 Hz; ~b! strong and ~e! weak: f

52.0 Hz; ~c! strong and ~f! weak: f 52.5 Hz with h0

50.3 m.

FIG. 12. Relative deviation between phase shifts given by formula ~31! and

experimental values for ~s!: strong interaction; ~1!: weak interaction and

given by formulas ~31! and ~9! for a Rayleigh solitary wave for ~—!: strong

interaction; ~– –!: weak interaction.
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k`h0>30. However, the departure of DwH from the dimen-

sional phase shift increases when the short wave frequency

increases as shown by Clamond and Germain.10 This is be-

cause the wave number increases more rapidly than the

phase velocity decreases with increasing frequency.

On Fig. 11 we also plot the phase shifts DwKdV given by

formula ~21!, DwR given by formula ~9! for a Rayleigh ~R!

solitary wave and DwBS given by formula ~9! for a Byatt-

Smith ~BS! solitary wave. Up to A/h050.15, formulas ~21!

and ~9! give very close results, which is in agreement with

the KdV theory limit. Indeed, we already showed in Sec. II A

how ~9! reduces to ~21! under the small amplitude assump-

tion. Formula ~9! for a Rayleigh or a Byatt-Smith soliton

allows to predict phase shifts for a wider range of solitary

waves, theoretically up to the limiting dimensionless ampli-

tude of 0.8332 ~Longuet-Higgins25!. In our experiments, we

were limited to A/h0<0.5. In weak interactions, taking into

account the experimental error ~represented by the error bars

on Fig. 11!, it is not possible to conclude on a better agree-

ment with one or the other formula. However, the advantages

of this formulas appear for strong interactions when phase

shifts are the largest. Indeed, the experimental results for

large solitary waves in strong interaction are closer to pre-

dictions of formulas ~9! ~either based on the Rayleigh soli-

tary wave approximation or Byatt-Smith numerical solution!

for frequencies of 2 and 1.5 Hz. Repeated experiments ~es-

pecially at 2 Hz! confirm this trend. For 2.5 Hz, this ten-

dency is not as clear, partly due to the early breaking ob-

served.

As a matter of fact, a 2.5 Hz short wave was observed

‘‘breaking’’ for a solitary wave of dimensionless amplitude

A/h050.25 whereas for 2 and 1.5 Hz frequencies, breaking

only occurred for the largest solitary waves, respectively, for

A/h050.4 and A/h050.45. We use here the term breaking to

refer to foam patches that one can see on the free surface.

This breaking is due to the steepening of the short wave

when both amplitude and wave number increase. Thus, short

waves of different amplitudes but with the same frequency

and interacting with the same solitary wave may be differen-

tiated by breaking, whereas if only the phase shift is consid-

ered they cannot. The maximum short wave steepness at the

crest of the solitary wave when the short wave was observed

breaking is computed from ~9! and ~10! using Byatt-Smith

numerical solitary wave solution. These values bound to ex-

perimentally observed breaking are given in Table II. We

also report in Table II the maximum steepness values pre-

dicted for the weak interaction with the largest solitary wave

experimented (A/h050.5). Breaking was never clearly ob-

served in our weak interactions ~no foam patches!. Because

of the uncertainty concerning the breaking limit, we may just

stress that for the same predicted steepness for f 52.5 Hz

(k`h057.54), short waves are observed breaking in the

strong interaction but not in the weak interaction case. More-

over, the predicted steepness when breaking is observed is

always smaller than the Stokes limit of 0.4461 for waves

propagating at rest. This all suggests that breaking is not

determined only by the steepness but also by the underlying

velocities.

V. CONCLUSION

Theoretically we found a dispersion relation ~9! to de-

scribe the wave number modulations of a short wave riding

on a solitary wave that is similar to the one obtained for the

refraction of waves in slowly varying media, except that it

includes free surface elevation. Wave action conservation

~10! is also obtained. Any solitary wave solution may be

used and, if assuming a small amplitude one, Clamond and

Germain’s10 analytical expression for the phase shift under-

gone by the short wave is confirmed.

We compare short wave wave number and amplitude

modulations obtained from ~9! and ~10! when using Byatt-

Smith’s numerical solution and KdV or Rayleigh’s analytical

solutions. The shape of the wave number modulation curve

associated with KdV appears to be closer than Rayleigh to

the one obtained with Byatt-Smith, but it misses the maxi-

mum that occurs at the crest of the solitary wave for large

solitary waves. Besides, phase shifts deduced from integra-

tion under the curve for Rayleigh’s solitary waves are in

better agreement with Byatt-Smith’s predictions than for

KdV’s solitary waves. We suggest this is due to the better

description in Rayleigh’s solution of the phase speed and

outskirts decay coefficient. Another feature is that particles

displacements at the free surface deduced from Rayleigh so-

lution are very accurate. We thus derived a new analytical

formula ~31! for the limiting case of high-frequency short

waves riding on large amplitude solitary waves. Experimen-

tally, strong interactions have been carried out for the first

time. They clearly show the influence on the phase shift de-

termination of the direction of propagation of the waves in-

teracting as far as small wave number are concerned. Be-

sides, the only case, when taking into account experimental

error, measurements enable to show a better agreement with

one of the theoretical formulas, occurs in strong interaction.

Thus, we show in that case that DwR and DwBS were in

better agreement than DwKdV with measurements. In addi-

tion, we show that when the short wave wave number in-

creases, phase shifts tends to the heuristic formula DwH .

Indeed, in our experimental set, we covered a broader range

of short wave wave number then Clamond and Barthélemy.11

During the experiments, some cases of breaking were

observed that may be attributed to significant steepening of

the short wave induced by both wave number and amplitude

modulations. Indeed, breaking enables a difference to be

made between two short wave trains with the same fre-

quency but different amplitudes, whereas phase shift depends

only on the frequency of the short wave. This latter appears

TABLE II. Maximum short-wave steepness at the crest of the solitary wave

computed from ~9! and ~10! when the short wave was observed breaking in

strong interaction and for the largest solitary waves experimented (A/h0

50.5) in weak interaction ~the short wave was NOT observed breaking in

these latter cases!.

k`h0 Strong Weak

2.73 0.267 0.189

4.83 0.320 0.296

7.54 0.150 0.535
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in the theory and is confirmed by the experiments. Relying

on theoretical predictions, the maximum steepness reached at

the crest of the solitary wave can be estimated using Byatt-

Smith’s numerical solution. It then appears that for similar

maximum steepness predictions, short waves might be

breaking in the strong interaction case whereas they do not in

the weak interaction case, showing the influence of the un-

derlying velocity.
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23F. Serre, ‘‘Contribution à l’étude des écoulements permanents et variables

dans les canaux,’’ La Houille Blanche 8, 374 ~1953!.
24C. H. Su and C. S. Gardner, ‘‘KdV equation and generalizations. Part III.

Derivation of Korteweg–de Vries equation and Burgers equation,’’ J.

Math. Phys. 10, 536 ~1969!.
25M. S. Longuet-Higgins, ‘‘Trajectories of particles at the surface of steep

solitary waves,’’ J. Fluid Mech. 110, 239 ~1981!.
26J. D. Fenton, ‘‘A ninth order solution for the solitary wave,’’ J. Fluid

Mech. 53, 257 ~1972!.
27M. S. Longuet-Higgins, ‘‘The trajectories of particles in steep, symmetri-

cal gravity waves,’’ J. Fluid Mech. 94, 497 ~1979!.
28F. Welt, ‘‘Plunger-type wave makers for high frequency waves,’’ in Roz-

prawy Hydrotechniczne ~Polska Akademia Nauk-Instytut Budownictwa

Wodnego, 1990!, pp. 139–146.
29W. G. Van Dorn, ‘‘Boundary dissipation of oscillatory waves,’’ J. Fluid

Mech. 24, 769 ~1966!.
30K. Guizien, ‘‘Les ondes longues internes: génération et interaction avec la
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