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Local structure characterization with the bond-orientational order parameters q4, q6, . . . introduced
by Steinhardt et al. [Phys. Rev. B 28, 784 (1983)] has become a standard tool in condensed mat-
ter physics, with applications including glass, jamming, melting or crystallization transitions, and
cluster formation. Here, we discuss two fundamental flaws in the definition of these parameters that
significantly affect their interpretation for studies of disordered systems, and offer a remedy. First,
the definition of the bond-orientational order parameters considers the geometrical arrangement of
a set of nearest neighboring (NN) spheres, NN(p), around a given central particle p; we show that
the choice of neighborhood definition can have a bigger influence on both the numerical values and
qualitative trend of ql than a change of the physical parameters, such as packing fraction. Second, the
discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coor-
dinates; this discontinuity, inherited by ql, leads to a lack of robustness of the ql as structure metrics.
Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure
metrics q ′

l . These q ′
l are of a similar mathematical form as the conventional bond-orientational order

parameters and are mathematically equivalent to the recently introduced Minkowski tensors [G. E.
Schröder-Turk et al., Europhys. Lett. 90, 34001 (2010); S. Kapfer et al., Phys. Rev. E 85, 030301(R)
(2012)]. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774084]

In 1983, Steinhardt et al.1 proposed the family of local
ql and global Ql bond-orientational order (BOO) parameters
as a three-dimensional generalization of the ψ6 hexatic order
parameter in two dimensions.2 Bond orientation analysis has
become the most commonly used tool for the identification
of different crystalline phases and clusters, notably fcc, hcp,
and bcc,3–9 or icosahedral nuclei.10–12 They are also used to
study melting transitions10, 13, 14 and interfaces in colloidal flu-
ids and crystals.15 For the study of glasses and super-cooled
fluids, q6 and Q6 have become the most prominent order pa-
rameters when searching for glass transitions16–19 and crys-
talline clusters.4, 8, 11, 20–22 While ql is defined as a local param-
eter for each particle, other studies have used global averages
of bond angles (Ql) to detect single-crystalline order across
the entire sample.23–25

The BOO parameters ql and Ql are defined as structure
metrics for ensembles of N spherical particles. For a given
sphere a, one assigns a set of nearest neighbors (NN) spheres
NN(a). The number of NN assigned to a is n(a) = |NN(a)|.
Any two spheres a and b are said to be connected by a bond if
they are neighbors, i.e., if a ∈ NN(b).26 The set of all bonds is
called the bond network. The idea of bond orientation analysis
is to derive scalar metrics from the information of the bond
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d)Electronic mail: Klaus.Mecke@physik.fau.de.

network (i.e., the set of bond vectors). The precise definition
of the bond network is therefore crucial.

For a sphere a, the set of unit vectors nab points from a to
the spheres b ∈ NN(a) in the neighborhood of a. Each vector
nab is characterized by its angles in spherical coordinates θab

and ϕab on the unit sphere. Following Steinhardt et al.,1 the
local BOO ql(a) of weight l assigned to sphere a is defined as

ql(a) =

√√√√√ 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣
1

n(a)

∑
b∈NN(a)

Ylm (θab, ϕab)

∣∣∣∣∣∣

2

, (1)

where Ylm are spherical harmonics (see, e.g., Appendix in
Ref. 31). This formula can be interpreted as the lowest-order
rotation-invariant (that is, independent of the coordinate sys-
tem in which θab and ϕab are measured) of the lth moment in
a multipole expansion of the bond vector distribution ρbond(n)
on a unit sphere. Higher-order invariants, often termed wl , are
defined in a similar way.1, 32, 33

There are other structure metrics derived from the bond
network, such as centro-symmetry metrics,27 Edwards con-
figurational tensor,28 fcc/hcp-order metrics,29 or the number
of bonds as the most simple topological characteristic,30 but
the Steinhardt bond orientational order parameters are most
commonly used.

The existence of spheres with values of q4 and q6 close
to those of an ideal ordered structure (see Table I) has been
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interpreted as evidence of ordered clusters. The local struc-
ture metrics ql have been used to identify fcc, hcp, bcc
or icosahedral structures in condensed matter and plasma
physics (e.g., in colloidal particle systems,4 random sphere
packings,23, 34 or plasmas35) by analyzing histograms over the
(q4, q6)-plane or combinations of similar order parameters.6

Frequently, histograms of one order parameter only, namely,
q6, are used to qualitatively compare disorder in particulate
matter systems.5, 20, 36, 37 Our previous work38 has raised the
caution that local configurations can exist that are clearly
non-crystalline but have the same values of q6 as hcp or
fcc environments. Several authors have defined bond order
functions39 closely related to the ql for the identification of
crystalline clusters.11, 15, 21, 40

As a different application from the identification of lo-
cally crystalline domains, it has been proposed to use averages
〈ql〉 over all spheres to quantify the degree of order of a con-
figuration. Averages 〈q6〉 have been analyzed (as functions of
some control parameters such as temperature, pressure, strain,
or packing fraction) for random sphere packings,20 granular
packing experiments,41 model fluids,42 molecular dynamics
simulations of water,43 or polymer melts.44 This use of 〈ql〉
to quantify the overall degree of order implies a monotonous
relationship between the value of ql and the degree of or-
der. In contrast to the identification of individual crystalline
cells as those with ql the same as for the crystalline reference
cell q

cryst
l , one now assumes that larger values of � := |ql −

q
cryst
l | correspond to “larger” deviations from the crystalline

configuration, even for clearly acrystalline local configura-
tions with large values of �. The validity of this assumption
is difficult to assert, in the absence of an independent defini-
tion of the degree of the “deviation from crystalline structure.”
(Note also the obvious problem for the case of monodisperse
hard spheres, where two distinct crystal reference states, fcc
and hcp, exist, which however have different values of ql.)
Nevertheless, q6 has been used to quantify order in disordered
packings, under the assumption that higher values of q6 cor-
respond to higher degree of order.45 Unless the system rep-
resents a small perturbation of one specific crystalline state,
this use of q6 is, in our opinion, not justified. q6 is not a suit-
able order metric to compare the degree of order of disordered
configurations that are far away from a crystalline reference
state. We use the term structure metric to emphasize that a
priori ql does not quantify order in disordered systems.

We here demonstrate a further aspect, distinct to those
described above, that should be taken into account when in-
terpreting ql data for disordered systems, namely, a very sig-
nificant dependence of the ql values on details of the defini-
tion of the bond network: changes of the NN definition do
not only affect the absolute values (which are of great impor-
tance, as the comparison to the crystalline reference values
is in terms of these absolute values) but they can also affect
functional trends. This observation highlights the problem in
the interpretation of anomalies of the BOO parameters (that
is, local extrema as function of some thermodynamic parame-
ter) as being connected to thermodynamic anomalies;42, 43 see
also the discussion of the anomalies of water46 in terms of a
parameter similar to the BOO parameters. Rather than being
a mere inconvenience, the dependence on the details of the

bond network definition is of direct relevance to the physical
interpretation.

AMBIGUITY OF THE NEIGHBORHOOD DEFINITION
AND ITS EFFECT ON ql

The choice of a set of nearest neighbors—at the heart
of bond orientation analysis—is not unique (see Fig. 1).
Steinhardt et al.1 proposed to use “some suitable set” of bonds
for the computation of ql; they used a definition based on a
cutoff radius of 1.2σ , where σ is the particle diameter.1 That
is, each sphere that is closer to a given sphere a than a cutoff
radius rc is assigned as a NN of sphere a. Neighborhood defi-
nitions based on cutoff radii are widely used, e.g., with cutoff
radii 1.2σ and 1.4σ 11, 18, 24, 37, 47 or with the value of the cut-
off radius determined by the first minimum of the two-point
correlation function g(r).9, 14, 15, 25, 48

Alternatively, the Delaunay graph of the particle
centers49, 50 is used to define NN.5, 20, 23, 41, 51 In this parameter-
free method, every sphere which is connected to a sphere a by
a Delaunay edge is considered a NN of a. A rarely used def-
inition is to assign a fixed number nf of NN to each particle,
n(a) = nf.42, 43 In three dimensions, the nf = 12 other spheres
closest to the central sphere are chosen as neighbors. The dif-
ference between these definitions is illustrated in Fig. 1. Note
that while the definitions via cutoff radius and via the Delau-
nay graph are symmetric, i.e., b ∈ NN(a) ⇔ a ∈ NN(b), the
definition of neighborhood as the nearest nf spheres is not, see
Fig. 1(d). The definitions of NN discussed so far will be called
bond network neighborhoods in the following; in this picture,
each nearest neighbor is equivalent to the other neighbors. By
contrast, we use the term morphometric neighborhood if the

(a) (b)(a) (b)

(c) (d)

FIG. 1. Widely used NN definitions: (a) Voronoi diagram (red) and its dual,
the Delaunay graph (blue). (b) Delaunay definition of nearest neighbors
(NN): the Delaunay neighbors of the red sphere are highlighted in green.
(c) NN definition with cutoff radius rc. (d) nf closest NN, here nf = 6.
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FIG. 2. Average local bond order parameter 〈q6〉 in the super-cooled HS fluid
with several definitions of the nearest neighbors: orange squares: rc = 1.2σ ,
green bullets: rc = 1.4σ , blue crosses: Delaunay definition, and black stars:
nf = 12. The turquoise triangles represent data for the Minkowski structure
metrics (MSM) 〈q ′

6〉 defined in Eq. (2).

neighborhood relation is additionally weighted with geomet-
rical features.

A principal weakness of structure metrics based on bond
network neighborhoods is their lack of robustness: Small
changes of particle positions can delete or add entries in the
set of neighbors. This discontinuity with respect to the parti-
cle positions is inherited by the structure metrics defined via
bond network neighborhoods. Small changes in the particle
coordinates can lead to large changes in the structure metrics,
which is undesirable.

We demonstrate the very strong effect of the NN def-
inition on the BOO parameter q6 by the example of a
super-cooled fluid. Using non-equilibrium molecular dynam-
ics (MD) simulations,52–54 super-cooled configurations are
generated that represent entirely disordered states with den-
sities larger than the fluid-crystal coexistence density of hard
spheres (HS) of φ ≈ 0.494.55

Figure 2 shows the average local BOO 〈q6〉 for four dif-
ferent choices of bond network neighborhood definition. To
distinguish between the different definitions of neighborhood
discussed above, we use the symbols q

rc
6 , qD

6 , and q
nf
6 . First,

the absolute values of q
rc=1.2σ
6 , q

rc=1.4σ
6 , q

nf=12
6 , and qD

6 dif-
fer significantly, which is important when comparing these
values to that of a specific crystalline phase such as fcc. Sec-
ond, and of greater concern for the use of q6 as a structure
metric, the behavior of q

rc=1.2σ
6 , q

rc=1.4σ
6 , q

nf=12
6 , and qD

6 is
qualitatively different as a function of the packing fraction
φ. For example, 〈qrc=1.2σ

6 〉(φ) shows a slight negative trend
without pronounced extrema, whilst 〈qrc=1.4σ

6 〉(φ) increases
for φ < 0.56 and decreases above. 〈qnf=12

6 〉(φ) and 〈qD
6 〉(φ)

show a maximum at slightly different positions with a signif-
icantly different absolute value. Each of these trends is spe-

-0.1

-0.05

0

 0.05

 0.1

 0.5  0.55  0.6

〈q
6〉

-〈
q 6’

 〉

packing fraction φ 

rc=1.2

rc=1.4

nf=12

Delaunay

 0.5  0.55  0.6
-18

-16

-14
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-6

-〈
n〉
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rc=1.4

nf=12

Delaunay

(a) (b)

FIG. 3. (a) Average number of nearest neighbors identified by the different
definitions of neighborhood, for the same data as shown in Fig. 2. Difference
〈qX

6 〉 − 〈q ′
6〉 between q6 values for different definitions of the bond network

neighborhood, X = {rc = 1.2σ , rc = 1.4σ , D, nf = 12}. (b) Comparison of
the functional trend of these data to −〈n〉(φ) demonstrates the strong negative
correlation of the value of q6 with the number of NN spheres n identified by
the specific neighborhood definition.

cific to the neighborhood definition. These discrepancies raise
a caution flag about the use of q6 as a local structure metric
in disordered systems. This is in accordance with several re-
ported difficulties in the application of q6 in ordered and dis-
ordered systems.45, 56, 57 The choice of the NN definition has
a dominant effect on the values and on the functional trend of
〈q6〉(φ) that conceals the behavior due to genuine structural
changes induced by the physics of the system. Results for q6

obtained by different studies are not only difficult to compare
quantitatively, but also the qualitative behavior may be mis-
leading.

The behavior of 〈q6〉 can be rationalized by considering
the average number of nearest neighbor spheres 〈n〉(φ) iden-
tified by the different neighborhood definitions.

Figure 3(a) shows 〈q6〉 − 〈q ′
6〉 as function of φ. q ′

6 is a
structure metric based on morphometric neighborhood, which
is discussed in detail in the section “Minkowski structure
metric by Voronoi-cell weighting”. Figure 3(b) shows −〈n〉.
These data demonstrate a very close correlation between
〈q6〉 − 〈q ′

6〉 and −〈n〉, valid for all neighborhood definitions.
This result asserts that 〈q ′

6〉 captures physical structure proper-
ties, while various variants of 〈q6〉 are predominantly indica-
tive of the typical number of NN spheres 〈n〉 identified by the
respective NN definitions.

Figure 4 further corroborates this observation by the anal-
ysis of 〈qnf=n

6 〉 as a function of n for the super-cooled hard
sphere fluid at φ = 0.600. The average 〈qnf=n

6 〉(n) system-
atically decreases with higher prescribed numbers nf of NN.
This effect is further amplified for large nf > 12, when spheres
in the second coordination shell are also identified as neigh-
bors. The stronger decrease in q6 when encountering the sec-
ond coordination shell also explains why 〈qD

6 〉 generally has
lower values compared to the other neighborhood definitions,
since the typical number of Delaunay neighbors is higher than
for the other neighborhood definitions, 〈nD

a 〉 ≈ 14.

MINKOWSKI STRUCTURE METRIC
BY VORONOI-CELL WEIGHTING

This section introduces the Minkowski structure metrics
(MSM) q ′

l that were already alluded to above. The Minkowski
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q 6n f
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n >

number of NN      n 

(a)

φ=0.6
ideal gas

(b)

FIG. 4. (a) Mean 〈qnf=n

6 〉 as a function of the fixed number n of neighbors
assigned to each sphere. The squares are data of a super-cooled fluid with φ =
0.6 and the red solid line of the ideal gas (〈qnf=n

6 〉 ∝ n−1/2, see Ref. 58). The
dotted lines are fits for the first coordination shell for n < 12, and first and
second shell n > 12. The first shell exponent is −0.24 and the second shell
exponent is −1.48. (b) Illustration for the discontinuity of the topology of
the Voronoi diagram as function of center point coordinates: An infinitesimal
particle displacement can destroy or create Voronoi cell facets (and hence
bonds in the neighborhood definition based on the Delaunay graph).

structure metrics are obtained by an adaption of the conven-
tional BOO parameters. The MSM differ from the conven-
tional ql, Eq. (1), by the fact that the contribution of each
neighbor to the structure metric is weighted by an associ-
ated relative area factor A(f)/A. In this factor, A(f) is the
surface area of the Voronoi cell facet f separating the two
neighboring spheres that correspond to a given bond, and
A = ∑

f ∈F(a) A(f ) is the total surface area of the Voronoi
cell boundary F(a) of sphere a. This simple change leads
to robust, continuous, and parameter-free structure metrics q ′

l

that avoid the shortcomings of the conventional ql discussed
above. (Note also the similar suggestion by Steinhardt et al.1

to weigh Delaunay edges by the solid angle subtended by the
corresponding Voronoi facet.)

We define

q ′
l (a) =

√√√√√ 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣
∑

f ∈F(a)

A(f )

A
Ylm(θf , ϕf )

∣∣∣∣∣∣

2

, (2)

where θ f and ϕf are the spherical angles of the outer normal
vector nf of facet f. Note that the direction of this vector co-
incides with the bond vector that is used in conventional bond
orientation analysis (see Fig. 1).

Because of the weighting of each bond by its cor-
responding Voronoi facet area A(f)/A, these newly con-
structed structure metrics q ′

l are continuous functions of the
spheres’ center point coordinates, and hence robust. Fur-
thermore, this geometrical neighborhood is symmetric and
parameter-free.

The definition of q ′
l results naturally from a multipole

expansion in spherical harmonics of the Voronoi cell surface
normal distribution function,

ρ(n) = 1

A
·
∑
f ∈F

δ(n(f ) − n)A(f ), (3)

on the unit sphere: ρ(n) = ρ(θ, ϕ) = ∑∞
l=0

∑l
m=−l

q ′
lmYlm(θ, ϕ), where q ′

lm evaluates to

TABLE I. Values of ql in perfectly symmetric configurations. For these
highly symmetric cases (fcc, hcp, icosahedron, sc), all the definitions of
neighborhood discussed in this article yield the same crystallographic neigh-
bors, and hence, values of ql (assuming infinite precision for the point coordi-
nates such that the Delaunay diagram has edges to all nearest crystallographic
neighbors). Spheres in bcc configuration have 8 nearest neighbors at distance
σ , where σ is the particle diameter, and 6 second nearest neighbors at distance√

2σ have 14 Delaunay neighbors. n is the number of nearest neighbors.

bcc fcc hcp Icosahe- Simple cubic
Im3̄m Fm3̄m P63/mmc dral Pm3̄m

n = 8 n = 14 n = 12 n = 12 n = 12 n = 6

q2 0 0 0 0 0 0
q3 0 0 0 0.076 0 0
q4 0.509 0.036 0.190 0.097 0 0.764
q5 0 0 0 0.252 0 0
q6 0.629 0.511 0.575 0.484 0.663 0.354
q7 0 0 0 0.311 0 0
q8 0.213 0.429 0.404 0.317 0 0.718
q9 0 0 0 0.138 0 0
q10 0.650 0.195 0.013 0.010 0.363 0.411
q11 0 0 0 0.123 0 0
q12 0.415 0.405 0.600 0.565 0.585 0.696

∑
f ∈F(a)(A(f )/A)Y ∗

lm(θf , ϕf ); the asterisk (*) denoting
complex conjugation.

By contrast, the l-th moment of the distribution ρ(n) in
Cartesian coordinates is

W
0,l
1 :=

∑
f ∈F

n(f ) ⊗ . . . ⊗ n(f )︸ ︷︷ ︸
l times

A(f ), (4)

where ⊗ denotes the tensor product. The moment tensors
W

0,l
1 are special types of Minkowski tensors.53, 59 These ver-

satile shape metrics have been studied in the field of integral
geometry60 and successfully applied to analyze structure in
jammed bead packs,38, 61 bi-phasic assemblies,62, 63 foams,64

and other cellular structures.59, 64 There is a one-to-one corre-
spondence between this class of Minkowski tensors and the
multipole expansion of the surface normal vector distribution
ρ(n) of a convex Voronoi polytope F(a).65, 66

For ideal crystals where all Voronoi facets have equal
size, the values of the BOO ql and of the MSM q ′

l are the
same; these symmetries are fcc, hcp, the icosahedron, and sc
(simple cubic). In the case of bcc, where Voronoi cells have
in total 14 facets, of which 8 correspond to closest neighbors
and 6 to neighbors in the second shell, ql differ from q ′

l (see
also Table I).

The construction of the weighted q ′
l has no adjustable pa-

rameters. However, the choice of the Voronoi diagram as the
partition that defines local neighborhood and that is used for
the definition of q ′

l may be viewed as arbitrary. Its use can be
justified as follows: First, the use of any partition of space into
cells associated with the beads for the neighborhood defini-
tion guarantees symmetric neighborhoods, (a ∈ NN(b))⇔(b ∈
NN(a)). Second, the use of the Voronoi diagram ensures that
the following minimal requirements are met: (a) convex cells,
(b) invariance under exchange of spheres decorating the seed
points, and (c) the possibility to reconstruct the seed point co-
ordinates uniquely from the facet information.67 The authors

Downloaded 19 Feb 2013 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



044501-5 Mickel et al. J. Chem. Phys. 138, 044501 (2013)

are unaware of an alternative to the Voronoi diagram that ful-
fills these requirements.

GEOMETRIC INTERPRETATION
OF THE MINKOWSKI STRUCTURE METRICS,
IN PARTICULAR OF q′

2

For the use of both BOO parameters and MSM, an im-
portant issue is the choice of the weights l that are considered.
Many studies restrict themselves to only q6, possibly supple-
mented by q4 and the associated higher-order invariants w4

and w6. This is likely to be motivated by q6 being the appar-
ent generalization of the two-dimensional hexatic order pa-
rameter ψ6. The relation between the l = 6 structure metrics
and ordering, however, is not as direct in 3D as it is in 2D: q6

is maximized by icosahedral bond order, which is incompat-
ible with translational order. The perception that large values
of certain structure metrics, in particular q6, are intrinsically
connected with crystallization is therefore deceiving, and it
is useful to discuss the relevance of the individual weights to
physical problems.

In all cases, q ′
0 is trivially 1, while q ′

1 trivially vanishes
due to the so-called envelope theorems of Müller68 (note, this
does not apply to q1). Thus, the first weight that captures per-
tinent information about a disordered system is l = 2; for hcp
and fcc crystals, q ′

2 vanishes. The invariants q ′
3 and q ′

5 (and
odd weights in general) vanish in configurations symmetric
under inversion, but capture deviations from this symmetry
(see Table I). Hence, they might be robust candidates for de-
fect detection like centro-symmetry metrics27 or to separate
hcp from fcc, since the hcp Voronoi cell is not inversion sym-
metric (see Table I), while fcc is inversion symmetric (m3̄m)
with respect to the sphere centers. Including Steinhardt et al.’s
original paper1 we are not aware of any applications of odd
weights l. The lowest weight to discriminate a sphere from a
cube is l = 4, and thus, plays an important role in ordered ma-
terials. The cubic-symmetry fcc, bcc, and simple cubic lattices
all have non-vanishing q ′

4 values (for the conventional BOO
parameters though, great care is needed for the bond defini-
tion, as different sets of NN for bcc reveal a dramatic change
on conventional q4). q6 is the first non-vanishing weight for
icosahedral symmetry (and adopts its maximal value for the
regular icosahedron). Note that the q6 values for fcc can be
matched by deformed icosahedral bonds.

While in ordered states, the ql are easily interpreted, in
disordered states the lack of a well-defined reference state
renders the interpretation more difficult. Figure 5 shows
〈q ′

2〉, 〈q ′
4〉, and 〈q ′

6〉 of hard-sphere systems in a wide
range of packing fractions. The plot includes data from
Monte Carlo (MC) simulations of the thermal equilibrium
fluid/solid,53 from fully disordered and partially crystalline
jammed Lubachevsky-Stillinger (jLS),61, 69 and also from un-
jammed non-equilibrium simulations (uLS) from LS simula-
tions before jamming,70 and the data from Fig. 2 (Matsumoto
algorithm (MA-MD)).52

Empirically, we find that disordered cells virtually al-
ways have finite q ′

2 values; for order (cubic-symmetry or close
packed), q ′

2 vanishes. Therefore, distributions of q ′
2 in a par-
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FIG. 5. Minkowski structure metrics q ′
2, q ′

4, and q ′
6 for equilibrium hard

spheres Monte Carlo (MC)53 simulations, jammed Lubachevsky-Stillinger
(jLS),61 non-equilibrium unjammed Lubachevsky-Stillinger (uLS),71 and
non-equilibrium Matsumoto algorithm (MA-MD) simulations;52 (see text).
β

0,2
1 is the anisotropy index, i.e., the ratio of the smallest and the largest

eigenvalue of the Minkowski tensor W
0,2
1 ; see Eq. (4) and Ref. 61.

tially ordered system are bimodal, which is convenient for
the separation of both phases. Conversely, if the abundance of
small values q ′

2 ≈ 0 in a sample vanishes, one can conclude
that it is fully disordered. The information contained in the
lowest weight q ′

2 is also captured in the anisotropy index β
0,2
1

derived from Minkowski tensors,72 see the comparison of 〈q ′
2〉

and 1 − 〈β0,2
1 〉 in Fig. 5. The observation that q ′

2 vanishes for
ordered configurations corresponds to the fact that β

0,2
1 = 1,

and q ′
2 > 0 corresponds to β

0,2
1 < 1 (cf. Refs. 38, 53, and 61).

Both structure metrics, q ′
2 and β

0,2
1 , capture well the

different features in local structure of hard-sphere systems
(Fig. 5, panels (a) and (c)). The thermodynamic phase tran-
sition from the fluid to the solid (fcc) phase at packing frac-
tions around φ ≈ 0.49 is clearly visible. Furthermore, jammed
sphere packs are well distinguished from the equilibrium con-
figurations. Starting from the equilibrium and avoiding crys-
tallization, the non-equilibrium MA-MD protocol continues
the fluid branch into a super-cooled fluid regime. The uLS
protocol generates further non-equilibrium states with larger
q ′

2, up to jammed configurations. In both diagrams, (a) and (c),
the non-equilibrium fluid states are found above the linear ex-
trapolation of the equilibrium fluid branch, while the ordered
phase is below. The diagram (b), showing 〈q ′

6〉, reproduces
(though “upside down”) quite well the qualitative features ob-
tained from 〈q ′

2〉 or 〈1 − β
0,2
1 〉. The agreement of these two

plots, however, is coincidental. While the separation of the
fluid and solid branches in the q ′

2 diagram is due to the fact
that only ordered clusters have vanishing q ′

2, there is a large
number of possible disordered clusters that have q ′

6 ≈ qfcc
6 ,

in particular, perturbed icosahedral bond arrangements. These
are, however, not present in the data in large numbers and thus
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can be neglected.38, 73 If they occurred in significant abun-
dance in the systems, an increase of 〈q ′

6〉 would be the conse-
quence. Values of q ′

6 close to q
hcp
6 do, however, occur even in

disordered systems.38 Thus, deviations from q ′
2 = 0 arguably

are a better criteria for disorder than deviations from qfcc
6 .

Since both fcc and hcp have q ′
2 = 0, they cannot be dis-

cerned using q ′
2 alone. The dense (φ > 0.649) jLS pack-

ings, for example, consist of a significant fraction of hcp and
fcc clusters on a disordered background. Increasing pack-
ing fraction reduces the amount of disordered configura-
tions, and proportionally, their weight in the 〈q ′

l 〉 averages.
Consequently, the q ′

2 curves tend towards q ′
2 = 0 as the or-

dered clusters take over a larger amount of the system, while
the terminus of the q ′

6 curves reflects an average of qfcc
6

and q
hcp
6 , weighted with the relative fraction of fcc and hcp

domains. A separation of all the regimes cannot be seen in the
q ′

4 plot (d), since q ′
4 takes for crystalline (fcc and hcp) phases

fixed values, which are lying on a strong random background
from the disordered parts of the system.

CONCLUSION

This article has clearly demonstrated that the conven-
tional bond-orientational order parameters ql, defined via
nearest neighbor bonds, Eq. (1), are very strongly affected
by the choice of neighborhood definition (cf. Fig. 2); this sen-
sitivity is observed both in the qualitative trend and in abso-
lute values. It was shown that for disordered systems with-
out crystallization, q6 strongly correlates to the average num-
ber of nearest neighbors. This effect overshadows the actual
structural changes induced by the physics of the system (cf.
Fig. 3). This dependence is a major drawback that needs to
be taken into account when using ql for the analysis of par-
ticulate matter, especially when comparing ql values across
different studies.

We have proposed a unique, well-defined, and robust
structure metric q ′

l , Eq. (2), that avoids the ambiguities that
come with bond network neighborhoods. Robustness of the
structure metric is achieved by quantifying the geometry of
the Voronoi tessellation. The MSM share the same mathe-
matical form with the conventional bond-orientational order
parameters, but the “bonds” are weighted with the associated
Voronoi facet area. This guarantees, in particular, that the new
Minkowski structure metrics are continuous as a function of
the sphere coordinates. For hcp, fcc, and simple cubic lattices,
this definition reproduces the values of the conventional ql (cf.
Table I). For super-cooled hard-sphere fluids, the MSM q ′

6 is
very similar to the conventional q6 with the (rarely used) nf

= 12 neighborhood definition, see Fig. 2.
The morphometric neighborhood has previously been

characterized using Minkowski tensors,38, 53, 61 which mea-
sure the distribution of normal vectors of the Voronoi cells.
The Minkowski structure metrics presented here can be
interpreted as the rotational invariants of a multipole expan-
sion of the same distribution of normal vectors; indeed, the
approaches of higher-rank Minkowski tensors and Minkowski
structure metrics turn out to be mathematically equivalent
ways to cure the shortcomings of bond-orientational order

parameters. There are further possibilities to address this
problem by introducing weighting factors, see, for example,
Ref. 56. Note, however, that these approaches need adjustable
parameters. The caution for the use of q6 as a sole determi-
nant of local crystallinity expressed in Ref. 38, however, is in-
dependent of the issues addressed by this paper, and remains
valid also for the Minkowski structure metric q ′

6.
Thus, Minkowski tensors and structure metrics both

provide a “geometrization” of the bond-orientational order
for spherical particles. This suggests a strategy to gener-
alize bond-orientational order parameters towards aspheri-
cal particles, such as ellipsoids, using generalized Voronoi
tessellations and the q ′

l . Even applications to non-cellular
shapes with arbitrary topology are possible, albeit with altered
interpretation.63, 74

Finally, our analysis supports the more frequent use of the
low-weight ql, in particular q ′

2, that have been largely over-
looked in the literature. q ′

2 carries the same information as the
anisotropy index β

0,2
1 of Refs. 38, 53, and 61 (cf. Fig. 5). Both

q ′
2 and β

0,2
1 can be used to robustly classify collective states in

particulate matter according to their structural features. Fur-
thermore, q ′

2 very strongly discerns between disordered con-
figurations and such of high symmetry, such as hcp, fcc, bcc,
simple cubic, and icosahedral order.

Clearly, 30 years after the seminal publication by Stein-
hardt et al.,1 the need for quantitative local structure analy-
sis is more evident than ever. The present paper reaffirms the
validity and usefulness of the multipole expansion method.
We have, however, described an amended version of the
bond-orientational order parameters that not only renders this
method robust and uniquely defined, but also gives a firmer
interpretation of their geometric meaning.
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