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Abstract

We present an alternative approach to shortcut fusion based on the
function unfoldr. Despite its simplicity the technique can remove
intermediate lists in examples which are known to be difficult. We
show that it can remove all lists from definitions involving zip-like
functions and functions using accumulating parameters.
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1 Introduction

Functional programmers like to write programs by composing
small, highly parameterised functions. When composed, these
functions use intermediate data structures to communicate with
each other. These intermediate data structures are often lists. A
standard example of such a function is the following:

sumTo n = sum (map square [1..n])

The example is written in Haskell [JH99b]. We will use Haskell
throughout this paper. This function produces two intermediate
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lists, one from the expression [1..n] which is immediately con-
sumed by map. Next, map produces a list which is immediately con-
sumed by sum. Both these lists are intermediate structures which
do not form part of the result.

It is by now well known that many intermediate lists can be re-
moved automatically by using program transformations and a con-
siderable amount of research has gone into developing more pow-
erful and easily applicable techniques, e.g. [Wad90, Mar96, TM95,
CDPR99, Ham01, Chi99].

Perhaps the most successful method for removing intermediate data
structures is shortcut fusion [GLJ93]. It relies on writing list pro-
cessing functions using two special functions foldr and build.
Whenever a list is produced by build and consumed by foldr,
that list can be removed. The technique has been shown to work
on many practical examples and it is very easy to implement. It is
incorporated in the Glasgow Haskell Compiler [PJTH01].

Despite its success, shortcut fusion (henceforth called the
foldr/build rule) has its shortcomings. Firstly, it cannot remove both
lists of the function zip. Secondly it cannot handle functions which
consume their lists using accumulating parameters.

In this paper we present the destroy/unfoldr rule as a new means for
shortcut fusion. It has the following characteristics:

� The technique can remove all argument lists from a function
which consumes more than one list, for example the function
zip. In the expression zip [1..n] [1..n] our method will
be able to remove all intermediate lists. The problem with
zip-like functions has been one of the main criticisms against
the foldr/build rule.

� The technique can remove intermediate lists from functions
which consume their lists using accumulating parameters. For
example, all intermediate lists can be removed from the func-
tion sumTo, even when sum is defined using an accumulating
parameter. Accumulating parameters are known to be prob-
lematic when fusing functions and most standard techniques
suffer from the inability to fuse functions defined using them.

� Like the foldr/build rule, our method is simple. It can be im-
plemented in the same manner and is therefore a good candi-
date for incorporating in a compiler.

It should be noted that the transformation itself is not new. It was
noted by Takano and Meijer that the foldr/build rule has a dual
[TM95]. They did not, however, consider this transformation but
instead focused on using hylomorphisms to express fusion.



In this paper we will only consider lists when we want to remove
intermediate data structures. But most things we present generalises
(like the foldr/build rule) directly to other data types.

The paper is organised as follows. We will begin by recapitulate the
foldr/build rule in section 2. Section 3 explains the destroy/unfoldr
rule and show how list processing functions can be defined in terms
of the functions destroy and unfoldr. In the next two sections
we will show how the destroy/unfoldr rule can remove intermediate
lists from definitions involving zip-like functions (Section 4) and
accumulating parameters (Section 5). Section 6 discusses related
work and Section 7 concludes. Some correctness issues of shortcut
fusion will be discussed in an appendix.

2 foldr/build

foldr/build fusion is perhaps the most successful technique for re-
moving intermediate data structures. But how does it work?

The whole story begins with two functions, foldr and build. Let’s
start by looking at foldr.

The function foldr is rather well-known to the functional pro-
gramming community. It has several names such as reduce and
accumulate. It is known to be the catamorphism for lists [MFP91].
It can be defined as follows:

foldr f n [] = n
foldr f n (x:xs) = f x (foldr f n xs)

Informally foldr goes through the list replaces every cons by its
first argument (f) and replaces nil by its second argument (n).

Next, we look at the function build which is less well-known and
rather specific to shortcut fusion. Here is how it is defined:

build g = g (:) []

The important thing with build is not the function itself but its
argument g. It is a function which is supposed to produce a list.
But it may not do so using the list constructors (:) and [] (cons
and nil) directly. Instead it must use whatever values are passed to it
as arguments to construct the list. This is because after applying the
foldr/build rule, g might no longer be producing lists at all. We will
shortly come back to how we can ensure that g doesn’t use the list
constructors directly. We note that build applied to foldr gives
the identity function, i.e.:

build foldr == id

The next part is the actual rule which can remove intermediate data
structures, the foldr/build rule. The beauty is in its simplicity:

foldr c n (build g) ==> g c n

This rule, as it stands, is, however, not correct. The correctness of
the rule relies on the fact that the function g does not use the list
constructors internally while producing the list. Instead it must use
its arguments to construct the list. The idea is then that if we pass it
something different than the list constructors, then another kind of
value is produced. And this is exactly what the foldr/build rule does.
So how can we make sure that g does not use the list constructors
to construct its result list? It can be ensured by restricting g’s type.
But in actual implementations it turns out to be more convenient to
give build a more refined type than the inferred one:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

(Haskell does not have types of higher rank but several implemen-
tations provide support for this.) From this type we can see that g
must be polymorphic in its result type and the only way that it can
produce it is to use its arguments. Using this type we can ensure
that g is sufficiently polymorphic.

Initially, work on model theory for polymorphic lambda calculus
was used to argue for the correctness of the rule [Wad89]. Recently,
a proof based on operational techniques has been given [Joh01].

In order for the rule to apply the programmer needs to define his/her
functions using foldr and build. Only then will the rule apply.
This has turned out not to be a big burden since many functions
in the standard libraries can be written in this style and therefore it
suffices to use those functions to be certain that intermediate lists
are removed.

It should be noted that the foldr/build rule is in itself rather harm-
less. It relies heavily on other transformations which enable the
rule to apply. The most important are inlining of functions and β-
reduction. In some cases it also relies on arity analysis [Gil96].

In this paper we will explicitly write out in each step what other
transformations are used to enable fusion in order to show that there
is no magic going on. Most of the transformations that we will
use are completely standard and are implemented in the Glasgow
Haskell Compiler [PJS98]. If this is not the case we will briefly
explain them.

2.1 Good producers and consumers

When talking about short cut fusion it is often handy to classify
functions as good producers and/or good consumers. This termi-
nology was introduced in [Gil96]. We will here define what they
mean and get some intuition about them.

The idea behind good producers and consumers is the following:
Whenever a good consumer is applied to a good producer the inter-
mediate data structure between the two can be removed. This can
be achieved by defining good producers in terms of build and good
consumers in terms of foldr.

More formally a good producer is a function which for some ex-
pression e and arguments a1 to an is defined as follows:

f a1 .. an = build e

In other words a good producer must be defined directly in terms of
build.

Good consumers are a little trickier to define. A function may take
several lists as arguments but need not be a good consumer in all
of these arguments. It is therefore necessary to consider a function
to be a good consumer in certain arguments. This gives rise to the
following definition. Consider the following function definition:

f a1 .. ak .. an = e

we will say that f is a good consumer in ak if ak occurs once in e
as the third argument to foldr.

It is actually possible to loosen the requirements on a good con-
sumer but the current definition will suffice in this paper.

Now we can see that if we have an application of a good consumer



applied to a good producer and we inline both function definitions
we can directly apply the foldr/build rule and remove the intermedi-
ate list. We will see several examples of this in the coming sections.

The informed reader notes that these definitions differs somewhat
from the definitions in [Gil96]. For the purpose of this paper this
difference is unimportant.

When we move to the next section we will revise the notion of good
consumers and producers to fit our purposes.

2.2 Limitations

It is well known that the foldr/build rule is unable to handle zip-like
functions and Gill describes it as a “significant shortcoming” in his
thesis [Gil96]. The reason is that foldr only traverses one list at a
time. However, it is quite possible to remove one of the two lists
which are fed to zip.

Functions that consume lists using accumulating parameters also
cause problems for the foldr/build rule. The reason is again the
function foldr. All good consumers have to be written in terms of
foldr and foldr simply doesn’t handle accumulating parameters.
Some readers might object to this because the function foldl is
defined using foldr and it uses accumulating parameters. Using
this definition buys us nothing however. It introduces suspended
function calls isomorphic to the removed list and so we have gained
nothing.

The foldr/build rule has other shortcomings as well but the ones we
just mentioned are the ones we will tackle in this paper.

3 destroy/unfoldr

The optimisation that we present in this paper has three impor-
tant ingredients that we will explain in this section. But before we
plunge into our explanation we would like to emphasise the fact that
the material presented in this section is not new. But, although not
new, many of the things we present here is not known to a wider
audience and they are vital to understand the contribution of this
paper.

3.1 unfoldr

Our first key ingredient is the function unfoldr. This is a rarely
used function which can be found in the Haskell Library report
[JH99a]. As the name reveals it does the opposite of foldr, it con-
structs lists instead of consuming them.

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
unfoldr f b = case f b of

Nothing -> []
Just (a,b’) -> a : unfoldr f b’

An operational intuition of a call unfoldr f b is as follows:
unfoldr is given an initial state b. The function f is applied to
b to determine whether we shall produce more of the output list.
If f b returns Nothing then the end of the list is returned. On the
other hand if the list should be longer, f b returns the value Just
(a,b’) where a is the new element of the list and b’ is the next
state we shall use to produce the rest of the list.

In some examples we will inline unfoldr. But inlining recursive
functions can be problematic. When we want to use unfoldr for

this purpose we will use the following definition which is non-
recursive but uses a locally defined recursive function which does
the job:

unfoldr f b = go b
where go b = case f b of

Nothing -> []
Just (a,b’) -> a : go b’

This version of unfoldr can easily be inlined.

3.2 destroy

Our next key ingredient is also a function. We have chosen to bap-
tise it destroy since it consumes lists 1. It does so in a fashion tai-
lored to fit together with unfoldr. Its definition is as follows:

destroy g xs = g listpsi xs
where listpsi :: [a] -> Maybe (a,[a])

listpsi [] = Nothing
listpsi (x:xs) = Just (x,xs)

The reader might wonder what the type of destroy is. We will
have reason to come back to this in the next subsection.

Just as build applied to foldr yields the identity function we have
a similar law for destroy and unfoldr. We have that destroy
composed with unfoldr yields the identity. Stated algebraically
this looks like:

destroy . unfoldr == id

This follows immediately from the fact that unfoldr listpsi ==
id.

The interesting thing with destroy is, as with build, not the func-
tion itself but its argument. g is a function which consumes a list,
but it must not do so by pattern matching on the list. Instead it is
passed a function through which it can inspect the list, thus we have
created a kind of “view”[Wad87] of lists for g.

3.3 The destroy/unfoldr rule

The third ingredient is a transformation rule using both destroy
and unfoldr. We call it the destroy/unfoldr rule and it looks like
this:

destroy g (unfoldr psi e) ==> g psi e

As with the foldr/build rule, this rule does not hold unconditionally
but we must require that the type of g is forall a.(a -> Maybe
(b,a)) -> a -> c)2 for some types b and c. This can be ensured
by giving destroy the following type:

destroy :: (forall a. (a -> Maybe (b,a)) -> a -> c)
-> [b] -> c

The idea with the destroy/unfoldr rule is (as with the foldr/build
rule) to define functions in terms of destroy and unfoldr. We

1In his thesis Gill calls this function unbuild [Gil96]. This was
unknown to us at the time we (re-)discovered this function and we
have chosen to stick to the name we came up with.

2Some readers might be worried about the use of the Maybe
type. Are we removing lists just to introduce another structure?
No, the Maybe type is only transient and will be removed when the
transformation machinery is finished.



can then inline these functions and apply the destroy/unfoldr rule
to remove intermediate lists. Next, we look into the problem of
defining list processing functions using destroy and unfoldr.

We believe that the destroy/unfoldr rule can be proved using similar
techniques as in [Joh01]. This is, however, a substantial exercise
and we leave it as future work.

3.4 Expressing list functions using unfoldr and
destroy

If we want to use the destroy/unfoldr rule to remove intermedi-
ate lists we must express our functions in terms of unfoldr and
destroy. Intuitively this should be quite easy but it will soon be-
come evident that there is more to it than meets the eye.

First we will revise the notion of good producers and consumers. A
good producer is a function which for some expressions psi, e and
arguments a1 to an is defined as follows:

f a1 .. an = unfoldr psi e

In order to get a feeling for how the destroy/unfoldr rule works let us
first look at some simple examples. The function enumFromTo takes
two integers n and m and returns a list of all integers between and
including n and m. Since it is a list producing function we should
define it using unfoldr. This can be done as follows:

enumFromTo n m =
unfoldr (\i -> if i > m

then Nothing
else Just (i,succ i)) n

An interesting example (at least in this context) of a function which
consumes a list is foldr. It can be defined using destroy in the
following way:

foldr k z xs = destroy foldrDU xs
where foldrDU psi xs =

case psi xs of
Nothing -> z
Just (x,ys) -> k x (foldrDU psi ys)

It should be noted that we can define a large class of list consumers
in terms of destroy. We will have more to say about this in section
5.

Next, we turn to the task of defining functions which both produce
and consume lists, e.g. map. The function map can be defined using
foldr and, as we saw, foldr could easily be written as a good
consumer. We shall therefore begin with a definition of map where
it is only a good consumer and then refine it:

map f xs = destroy mapDU ls
where mapDU psi xs =

case psi xs of
Nothing -> []
Just (x,ys) -> f x : mapDU psi ys

When we want to define a list producing function using unfoldr
we should aim at replacing [] with Nothing and : with Just. This
is not always possible because the second argument to : needs to
be a recursive call. In this case, however, it is perfectly possible and
we end up with the following definition:

map f xs = destroy (\psi a ->

unfoldr (mapDU psi) a) xs
where mapDU psi xs =

case psi xs of
Nothing -> Nothing
Just (x,ys) -> Just (f x,ys)

There is a problem with this definition however. It is not a good
producer since unfoldr is not at the outermost level of the function
definition. There is a way to write map so that it becomes a good
producer but then it is not a good consumer. There doesn’t seem to
be a way we can define map so that it is both a good producer and a
good consumer.

There is, however, a way out of our problems. Consider what hap-
pens when we want to fuse two map functions that sit next to each
other like this:

map f (map g xs)

When we inline both occurrences of map and α-rename we get the
following expression:

destroy (\psi a ->
unfoldr (mapDUf psi) a)

(destroy (\psi a ->
unfoldr (mapDUg psi) a) xs)

where mapDUf = ...
mapDUg = ...

We can see that the inner destroy prevents the unfoldr from con-
tacting the outer destroy and allowing the destroy/unfoldr rule to
apply. Our solution to this is another rule which lets a destroy
move inside another destroy and hopefully encounter an unfoldr.
The rule looks like this:

destroy g (destroy g’ ls) ==>
destroy (\psi a -> destroy g (g’ psi a)) ls

We will call this rule the destroy/destroy rule. It can easily be shown
correct by unfolding the definition of destroy. The idea with the
rule is that if g’ happens to be a function defined using unfoldr
then we will bring it together with the outer destroy using the
above rule.

Now we can continue with our example involving the two maps.
Here is what we will get if we apply our new destroy/destroy rule:

destroy (\psi1 a1 ->
destroy (\psi a ->

unfoldr (mapDUf psi) a)
((\psi a ->

unfoldr (mapDUg psi) a)
psi1 a1)) xs

where mapDUf = ...
mapDUg = ...

Performing two β-reductions will give us a possibility to apply the
destroy/unfoldr rule:

destroy (\psi1 a1 ->
destroy (\psi a -> unfoldr (mapDUf psi) a)

(unfoldr (mapDUg psi1) a1)) xs
where mapDUf = ...

mapDUg = ...

Applying the destroy/unfoldr rule and performing two β-reductions
gives us:



destroy (\psi1 a1 ->
unfoldr (mapDUf (mapDUg psi1)) a1) xs

where mapDUf = ...
mapDUg = ...

Inlining and simplifying mapDUf and mapDUg will give a map func-
tion which applies the function f.g to each element without creat-
ing any intermediate data structure.

We have seen how we can define map in terms of destroy and
unfoldr. Some other common list processing functions can be
found in figure 1.

4 zip fusion

One of the criticisms that have been raised against foldr/build fu-
sion is the following: Suppose we have a function f which recurses
over more than one list simultaniously. We will henceforth call
such functions zip-like. In the foldr/build framework we can make
f a good producer in only one of its arguments3. In this section
we show how destroy/unfoldr fusion solves this problem gracefully.
We do this by means of an example. Although we only give an ex-
ample it should be noted that the result is completely general.

The first thing we have to do is define the function zip in terms of
destroy and unfoldr keeping in mind that we would like to fuse
both its input lists. This turns out to be quite easy.

zip xs ys =
destroy (\ psi1 e1 ->

destroy (\ psi2 e2 ->
unfoldr (zipDU psi1 psi2) (e1,e2)
) ys

) xs
where zipDU psi1 psi2 (e1,e2) =

case psi1 e1 of
Nothing -> Nothing
Just (x,xs) ->
case psi2 e2 of
Nothing -> Nothing
Just (y,ys) -> Just ((x,y),(xs,ys))

We will now see how this definition of zip enables us to remove
the intermediate lists of both arguments. Consider the following
function:

ascii_table = zip (enumFromTo ’A’ ’Z’)
(enumFromTo 65 90)

Inlining zip and enumFromTo gives us:

ascii_table =
destroy (\psi1 e1 ->

destroy (\psi2 e2 ->
unfoldr (zipDU psi1 psi2)

(e1,e2))
(unfoldr (\i ->

if i > 90
then Nothing
else Just (i,succ i)) 65))

(unfoldr (\i -> if i > ’Z’

3It should be noted that even though f can only be a good con-
sumer in one of its arguments this argument need not be fixed. The
important thing is that f can only be a good consumer for one argu-
ment at a time.

then Nothing
else Just (i,succ i)) ’A’)

where zipDU = ...

This gives us two opportunities to apply the destroy/unfoldr rule.
Doing so will give:

ascii_table =
unfoldr (zipDU (\i -> if i > ’Z’

then Nothing
else Just (i,succ i))

(\i -> if i > 90
then Nothing
else Just (i,succ i)))

(’A’,65)
where zipDU = ...

Now, let us inline zipDU. After that, performing two β-reductions,
case-of-if and case-of-known will give us:

ascii_table =
unfoldr (\(e1,e2) ->

if e1 > ’Z’
then Nothing
else
if e2 > 90
then Nothing
else Just ((e1,e2),(succ e1,succ e2)))

(’A’,65)

Inlining unfoldr (and translating the lambda-pattern to a case) will
yield:

ascii_table = go (’A’,65)
where go b =

case (\a ->
case a of
(e1,e2) ->

if e1 > ’Z’
then Nothing
else
if e2 > 90
then Nothing
else Just ((e1,e2)

,(succ e1
,succ e2))) b of

Nothing -> []
Just (a,b’) -> a : go b’

This in turn can be simplified (via a β-reduction and performing
case-of-case and case-of-known transformations) to:

ascii_table = go (’A’,65)
where go b =
case b of

(e1,e2) ->
if e1 > ’Z’
then []
else if e2 > 90

then []
else (e1,e2) : go (succ e1,succ e2)

As we can see both intermediate lists have been removed.



map f xs = destroy (
�
psi a -> unfoldr (mapDU psi) a) xs

where mapDU psi xs = case psi xs of
Nothing -> Nothing
Just (x,ys) -> Just (f x,ys)

filter p xs = destroy (
�
psi a -> unfoldr (filterDU psi) a) xs

where filterDU psi xs = case psi xs of
Nothing -> Nothing
Just (b,ys) -> if p b

then Just (b,ys)
else filterDU psi ys

foldr f z xs = destroy foldrDU xs
where foldrDU psi xs = case psi xs of

Nothing -> z
Just (x,ys) -> f x (foldrDU psi ys)

enumFromTo n m = unfoldr (
�
i -> if i > m then Nothing else Just (i,succ i)) n

repeat x = unfoldr (
�
a -> Just (x,a)) undefined

[] = unfoldr (const Nothing) undefined
Figure 1. Some standard list processing functions defined using destroy and unfoldr

5 Fusion with accumulating parameters

Some functions that consume lists have to be defined using an ac-
cumulating parameter. Others are defined using an accumulating
parameter for efficiency reasons. If we want to fuse such functions
to remove intermediate lists we currently have to use rather sophis-
ticated methods [CDPR99, VK01]. In this section we show how de-
stroy/unfoldr fusion can achieve this elegantly in some cases. Again
we note that even though we only give an example the result is gen-
erally applicable.

Many functions consuming lists using accumulating parameters can
be expressed in terms of two higher order functions foldl and
foldl’. These functions are well known to the functional program-
mer. The latter function is a strict version of the first which allows
the compiler to generate code that is usually more efficient. We will
use foldl’ as an example to show how the destroy/unfoldr rule can
deal with accumulating parameters.

For our purposes we will define foldl’ in a rather roundabout way,
having two locally defined functions foldlDU and foldlDU’. Us-
ing foldl’ on this form simplifies the transformations that we want
to do.

foldl’ f b xs = destroy (foldlDU b) xs
where foldlDU acc psi xs = foldlDU’ acc xs

where foldlDU’ acc xs =
case psi xs of
Nothing -> acc
Just (a,ys) ->
let acc’ = f acc a
in seq acc’ (foldlDU’ acc’ ys)

seq is a function which evaluates its first argument and returns its
second argument after evaluating it. In this way acc’ will be eval-
uated before foldlDU’ is called recursively.

Now, to our example. Consider the following function definition:

bar f b n m = foldl’ f b (enumFromTo n m)

The function enumFromTo produces a list which is consumed by
foldl’. The goal as in all examples is to remove this intermediate
list.

We begin by inlining foldl’ and enumFromTo. This will yield:

bar f b n m =
destroy (foldlDU b)

(unfoldr (\i ->
if i > m
then Nothing
else Just (i,succ i)) n)

where foldlDU acc psi xs = foldlDU’ acc xs
where foldlDU’ acc xs = ...

This gives us an opportunity to apply the unfoldr/destroy rule. Do-
ing so will give us:

bar f b n m = foldlDU b (\i ->
if i > m
then Nothing
else Just (i,succ i)) n

where foldlDU acc psi xs = foldlDU’ acc xs
where foldlDU’ acc xs = ...

The next thing we will do is to inline foldlDU. After applying the
transformations case-of-case, case-of-known and β-reduction we
will end up with the following definition:

bar f b n m = foldlDU’ b n
where foldlDU’ acc xs =

if xs > m
then acc
else let acc’ = f acc xs

in seq acc’ (foldlDU’ acc’ (succ xs))

Assuming that the compiler can spot that foldlDU’ is strict in its
second argument this version of bar is as efficient as we may hope
for. Most notably, all intermediate structures between foldl’ and
enumFromTo have been removed.

6 Related work

Removing intermediate data structures is a popular research subject
and has received quite a lot of attention e.g. [Wad84, Wad90, Chi92,
GLJ93, SF93, TM95, Feg96, Chi99].

Fegaras, Sheard and Zhou were (to our knowledge) the first group
to attack to problem of fusing functions which recurse over multi-
ple data [FSZ94]. They extended their previous method for fusing



functions [SF93] to handle this wider class of functions. They rely
on a normalisation algorithm which transforms function definitions.
Their approach is rather powerful but it is unclear how well it would
work in a compiler with real programs as input.

Later, Takano and Meijer responded to the original shortcut fusion
paper by generalising the fusion law using hylomorphisms [TM95].
They start by observing that the foldr/build rule has a dual, the de-
stroy/unfoldr rule we use in this paper. However, they do not study
it any further but instead focus on fusing functions expressed as
hylomorphisms. It should be noted that although hylomorphisms
are generalisations of both foldr- and unfoldr-like functions their
transformation does not generalise the corresponding transforma-
tions. The problem is that hylomorphisms are unable to express
functions such as those using accumulating parameters, which can
be expressed with destroy. In their paper they show how their
method can fuse all lists arguments to the function zip. This claim
has, however, been criticised in the paper [HIT96] which develops
more theory to be able to fuse zip-like functions.

Recently there has been work on trying to extend the foldr/build rule
to handle zip-like functions [LKS00]. This approach has modified
the foldr function to use a notion of hyperfunctions. This, how-
ever, makes the initial simplicity of the foldr/build rule disappear
since the original foldr function is not usable any more and it also
requires all list processing functions to have their types changed.

Accumulating parameters are known to be problematic when re-
moving intermediate data structures and most techniques fail for
such functions. Ideas which have been developed to tackle this
weakness are to fuse attribute grammars [CDPR99] or macro tree
transducers [VK01]. These methods can handle quite a large class
of functions and deal easily with functions using accumulating pa-
rameters. However, these approaches are rather heavyweight. The
former method require that functions are rewritten into attribute
grammars which are quite different from the functional language
being transformed. The transformation is then applied on these in-
termediate forms and then translated back. In the latter method the
tranformation work on a restricted form of functions which have to
be identified before transforming them. In both cases the transfor-
mations involved are non-trivial. This is in contrast to our method
which is extremely simple, although it can probably not handle as
large a class of functions.

Recently Voigtländer has proposed a methodology for removing in-
termediate data structures from programs by abstracting over these
operations [Voi02]. The key idea is to use a generalised form of
build which abstracts not only the list constructors but other list
manipulating functions as well. Using this technique makes it pos-
sible to remove intermediate structures in many cases. Although
quite simple and elegant the technique does require the program-
mer to change the functions in which fusion is to take place. The
author suggests that this may be automated in a similar fasion as
[Chi99]. We believe that it is possible to dualise his result in the
same way as we have dualised shortcut fusion in this paper.

This paper also gives fuel to the opinion that the function unfoldr
is greatly under-appreciated [GJ98]. Gibbons and Jones note that
unfoldr is useful for deforestation but only together with foldr.
With our method we can remove a lot more intermediate lists since
we use destroy as a good consumer and not (the more restricted)
foldr.

7 Conclusion and future work

In this paper we have investigated an alternative, less well known
technique for shortcut fusion which we call the destroy/unfoldr rule.
We have shown that, despite its simplicity, it can tackle problems
which have shown to be rather difficult to handle. These problems
are fusing functions with accumulating parameters and removing
all intermediate lists from zip-like functions.

We have made a prototype implementation using the rules pragma
of the Glasgow Haskell Compiler [PJTH01]. The rules pragma al-
lows the programmer to specify left-to-right rewrite rules which the
compiler will apply on the program whenever it can. This has al-
lowed us to verify that the transformation presented in this paper
works for small examples. More work is needed for the implemen-
tation to scale up and we believe that the techniques developed for
the foldr/build rule can be used for that.

An interesting path of future work is to see how the foldr/build rule
and the destroy/unfoldr rule can cohabit. One way would be to let
the compiler choose among several different implementations of a
function in order to maximise fusion.
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A Shortcut fusion is not
an improvement

Using parametricity to prove the correctness of an optimisation is
a rather weak ground since it only tells us that the expressions will
compute the same values before and after transformation. But when
we are dealing with transformations we want to know if the trans-
formation actually improves the program or not. A reasonable thing
to expect is that the transformation “improves” programs in some
improvement theory [San98]. We will here give indications that
neither the foldr/build rule nor the destroy/unfoldr rule are space
improvements [GS01]. In the examples we will assume the seman-
tics used in the paper by Gustavsson and Sands.

A.1 The foldr/build rule increases sharing

First we will give an example showing that the foldr/build rule can
increase sharing in a program. When sharing is increased, bits of
memory is retained longer and can therefore result in higher mem-
ory demands of the program. Consider the following functions:

ones = build (\c n -> let l = c 1 l in l)
map f xs = build (\c n ->

foldr (\x xs -> f x ‘c‘ xs) n xs)

Suppose we have the following expression:

map square ones

Each element in the resulting list will be computed separately. Now,
suppose we inline the definitions and apply foldr/build fusion. After
some β-reductions we will then end up with the following expres-
sion:



build(\c n -> let l = c (f 1) l in l)

We can now see that in the computation f 1 is computed only once
and shared among the elements of the list.

It should be noted that in the original paper on the foldr/build rule
[GLJ93], repeat was given a definition similar to ones. Using
that definition will probably lead to increased sharing when the
foldr/build rule is used.

A.2 The destroy/unfoldr rule loses sharing

Next, we turn to the destroy/unfoldr rule. Since it is the dual of the
foldr/build rule we might expect examples where it can decrease the
sharing in a program. This turns out to be the case. Consider the
following functions:

foo xs = destroy bar xs
where bar psi xs =

case psi xs of
Just (a,ys) -> 1
Nothing -> case psi xs of

Nothing -> 1
Just (b,zs) -> 1

traverse [] = Nothing
traverse (x:xs) = traverse xs

foo is a rather strange looking function but it serves its purpose in
the example. The key thing to note is that it performs the call psi
xs twice.

Now, suppose we have the following expression:

foo (unfoldr traverse biglist)

where biglist is some arbitrary big list. What will happen is that
foo will try to inspect its list. When doing so unfoldr traverse
biglist will be evaluated to the empty list. This is done once and
for all since it will occur as the argument xs in the local function
bar. Lazy evaluation will make sure that the computation of xs
inside bar is shared with foo.

Now, let us see what happens when we transform our expression.
We begin by inline the definition of foo.

destroy bar (unfoldr traverse biglist)
where bar = ...

We have now an opportunity to apply the destroy/unfoldr rule. Do-
ing so and inlining the definition of bar will make us end up with:

case traverse biglist of
Just (a,ys) -> 1
Nothing -> case traverse biglist of

Nothing -> 1
Just (b,zs) -> 1

In this final expression traverse biglist is performed twice. We
have thus lost sharing.


